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Abstract—Mango cultivation is integral to tropical 

agriculture; however, it is highly vulnerable to a range of 

leaf diseases that can significantly reduce both yield and 

quality. This paper presents DeepLeaf, a Convolutional 

Neural Network (CNN)-based system specifically 

developed to detect and classify various conditions of 

mango leaves, including Anthracnose, Bacterial Canker, 

Cutting Weevil, Die Back, Gall Midge, Powdery Mildew, 

Sooty Mould, and healthy leaves. The model is trained on 

a meticulously curated image dataset of mango leaves 

and exhibits high accuracy in disease classification. To 

enhance accessibility for farmers, DeepLeaf is 

implemented through a visually appealing Streamlit web 

interface, featuring glassmorphism styling, real-time 

predictions, and remedy recommendations in English, 

Hindi, and Marathi. The system also provides language 

toggling and downloadable treatment guides. 

Experimental results validate the system's efficacy in 

practical applications, offering a promising tool for early 

intervention and sustainable mango farming practices. 

 

Index Terms—Convolutional Neural Network (CNN), 

Plant Disease Detection, Data Preprocessing, Deep 

Learning, Field Survey. 

 

I. INTRODUCTION 

 

Mango (Mangifera indica) is a high-value fruit crop 

cultivated extensively in tropical and subtropical 

regions, contributing significantly to the global 

agricultural economy and nutritional security. In India, 

the Konkan region is renowned for its rich mango 

plantations, particularly the Alphonso variety, which 

holds both cultural and commercial importance. 

However, mango cultivation in this region is 

frequently compromised by a variety of foliar diseases 

such as Anthracnose, Bacterial Canker, Powdery 

Mildew, Gall Midge, and others, which adversely 

affect both yield and fruit quality. Early and accurate 

detection of these diseases is essential for 

implementing timely intervention strategies, 

supporting sustainable farming practices, and 

minimizing economic losses for local growers. 

Recent advancements in computer vision and machine 

learning have enabled the development of automated 

systems for plant disease diagnosis. In particular, 

Convolutional Neural Networks (CNNs) have 

demonstrated exceptional performance in image 

classification tasks due to their ability to automatically 

extract and learn hierarchical features from visual 

data. These capabilities make CNNs highly suitable 

for identifying disease patterns in leaf images, offering 

a scalable and non-invasive alternative to traditional 

diagnostic methods. The implementation of CNNs is 

further enhanced by deep learning frameworks such as 

TensorFlow and Keras, which provide a robust and 

flexible platform for designing, training, and 

deploying complex neural network architectures. 

These frameworks support efficient model 

development and performance tuning over large 

datasets. Image preprocessing and augmentation are 

performed using OpenCV, improving data quality 

through operations such as resizing, normalization, 

and noise reduction. NumPy and Pandas are utilized 

for efficient numerical computation and structured 

data handling, while Matplotlib is employed for model 

evaluation and performance visualization. 

This study presents the design and implementation of 

a CNN- based mango leaf disease detection system, 

specifically tailored for disease patterns observed in 

the Konkan region of Maharashtra, India. The trained 

model is integrated into an interactive and lightweight 

web application using Streamlit, equipped with 

glassmorphism UI design and multilingual remedy 

support in English, Hindi, and Marathi. By combining 

deep learning with user-centric design and regional 

adaptability, this research contributes to the growing 

field of precision agriculture, offering a practical, 

scalable, and accessible solution for early disease 

detection and crop health monitoring in mango 

orchards. 
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II. RELATED WORK 

 

Plant disease detection systems have seen a 

considerable increase in accuracy and efficiency in 

recent years as a result of the application of computer 

vision and deep learning methodologies. In earlier 

research, traditional machine learning methods like 

Decision Trees, Support Vector Machines (SVM), and 

k-Nearest Neighbors (kNN) have been employed for 

classification tasks [1][2]. However, because these 

methods rely on handmade features, they are more 

susceptible to changes in leaf color, texture, and 

background noise. 

With the introduction of Convolutional Neural 

Networks (CNNs), which made it possible to 

automatically extract features from raw picture data, 

the sector was transformed. 

Using the PlantVillage dataset, Mohanty et al. [3] 

demonstrated the capability of deep CNNs and 

attained a classification accuracy of more than 99% 

across 38 illness categories. Sladojevic et al. [4] 

presented a deep learning- based method using CNNs 

to accurately classify 13 distinct plant diseases, 

offering a mobile-compatible solution for field 

deployment. 

Ferentinos' research [5], which employed deep CNN 

architectures like VGG and ResNet and attained 

classification accuracy rates as high as 99. 5%, 

provided additional evidence for the efficacy of deep 

learning models in identifying plant diseases. 

 
Fig. 1 shows a comparative view of classification 

accuracies reported in prior works alongside our 

proposed CNN-based model. While our model 

achieves slightly lower accuracy (~94%), it 

emphasizes practical deployment through a 

multilingual interface and remedy support. 

In spite of these improvements, the usefulness of many 

current solutions is restricted in multilingual areas 

because they are only available on English-only 

platforms or because they have user-unfriendly 

interfaces. Additionally, the majority of literature 

focuses on disease categorization without taking into 

account post-diagnosis care, such as therapy or 

pesticide recommendations. Only a handful of 

research, like A 

mara et al. [6], attempted simple app deployment, but 

even those studies lacked localized language choices 

and tailored remedy integration. 

In contrast, our suggested system closes these gaps by 

providing a CNN-based model with a multilingual 

(English, Hindi, Marathi) Streamlit web interface that 

offers both disease forecasting and curated treatment 

recommendations. This integrated strategy improves 

both accuracy and accessibility, particularly for 

agricultural communities that do not speak English. 

 

III. METHODOLOGY 

 

A. Field Survey 

 
Fig. 2. Composite field survey images taken at a 

mango orchard: (a) orchard canopy layout, (b) 

symptomatic diseased leaf, (c) dry leaf litter on 

orchard floor, and (d) healthy fruit-bearing mango 

tree. 

 

A comprehensive field study was carried out at a 

mango plantation in Maharashtra's agricultural area as 
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part of the preliminary research stage. The main goal 

was to watch for and record the physical indicators of 

different mango leaf illnesses in real-world field 

settings. The knowledge gained both gave an initial 

dataset for analysis and supported the validity of 

utilizing image-based plant disease detection systems 

in real-world agricultural applications. 

Several diseased mango leaf samples were taken from 

various areas of the orchard and categorized based on 

major visual indicators, such as powdery mildew 

formations, necrotic lesions, chlorotic spots, fungal 

spots, and leaf abnormalities. Diseases such as 

anthracnose, powdery mildew, bacterial black spot, 

and fungal leaf spot, which are common in the area, 

were initially linked to these symptom patterns. The 

composite field survey image (Fig. 2b) includes 

representative samples of these symptomatic leaves. 

Discussions with local farmers brought up key issues 

related to the early diagnosis and management of the 

illness. Traditionally, farmers used traditional 

remedies and manual visual inspections, which 

frequently led to late treatment and lower crop yields. 

This situation underscores the need for an automated, 

AI-powered diagnostic tool that can quickly provide 

predictions along with multilingual treatment 

recommendations to aid small and medium-sized 

farmers in making informed and timely decisions. 

Numerous environmental variables that may affect 

disease transmission were also discovered during the 

field survey. Dense vegetative growth throughout the 

orchard and the build- up of dry leaf litter on the 

ground were found to foster the spread of pathogens 

(Figs. 2a and 2c). Conversely, healthy fruit-bearing 

trees, which were also seen during the survey, 

highlighted the possibility of early disease detection in 

protecting crop health and productivity (Fig. 2d). 

 

The study's methodology, including data collection 

protocols, picture annotation methods, and the 

development of a multilingual interface for treatment 

distribution, was heavily influenced by these onsite 

results. At the same time, a thorough literature review 

was done to assess current methods for identifying 

plant diseases. Recent advances in deep learning, 

particularly Convolutional Neural Networks (CNNs), 

have demonstrated significant improvements in 

classification accuracy [3], while conventional 

methods have historically used rule-based image 

processing. For example, earlier research [3] has 

successfully used CNN architectures to identify plant 

diseases; however, the majority of studies have been 

limited to tomato and potato plants, with little attention 

given to mangoes and the absence of real-time, user-

friendly diagnostic platforms. 

This research, driven by these findings, presents an 

end-to-end CNN-based diagnostic system that can 

identify eight different diseases in mango and other 

crops and includes localized treatment 

recommendations in English, Hindi, and Marathi. The 

strategy seeks to close the gap between high-

performance disease detection and real-world field 

application in order to promote sustainable 

agricultural practices. 

B. Data Collection and Preparation 

 
Figure 3. Sample images representing each class in the 

dataset used for training and evaluation. The dataset 

consists of multiple categories, each capturing distinct 

characteristics essential for accurate classification by 

the CNN model. 

The data used in this study comprises high-resolution 

RGB images of plant leaves that belong to eight 

distinct classes— seven for diseases and one for 

healthy leaves. This data was extracted from a publicly 

available repository on Kaggle, known for its 

extensive and well-annotated collections in plant 

pathology. Each image in the dataset has been 

annotated with its corresponding disease class by 

experts, ensuring high- quality ground truth for 

supervised learning. 

In order to promote computational efficiency and 

compatibility with the ensuing Convolutional Neural 

Network (CNN) architecture, all images were 

resized to a uniform spatial size of 256×256×3 

pixels. This input dimension standardization preserves 

critical texture and spatial features necessary for 

accurate classification. 
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Preprocessing treatments were systematically applied 

to enhance data quality and increase the diversity of 

the training data: 

• Normalization: Pixel intensity values were scaled 

from the original range [0, 255] to [0, 1] by 

dividing each pixel by 255.0, stabilizing training 

by preventing gradient instability and 

accelerating convergence. 

• Data Augmentation: To mitigate overfitting and 

increase the effective size of the training set, 

online data augmentation was performed using 

several transformations such as random rotations 

(±20°), horizontal and vertical flipping, random 

zoom (up to 20%), width and height adjustments 

(up to 10%), and brightness/contrast jittering. 

These augmentations simulate natural leaf 

morphology variations caused by environmental 

conditions and imaging settings, thereby 

improving model generalization. 

• Dataset Partitioning: The dataset was partitioned 

into training (80%), validation (10%), and test 

(10%) subsets using stratified sampling to 

maintain identical class distribution across all 

sets, preventing data leakage and class imbalance 

during evaluation. 

• Label Encoding: The categorical class labels were 

one-hot encoded to be compatible with the 

softmax classifier in the CNN output layer. 

Figure 3 illustrates a representative sample image from 

each of the eight classes in the dataset, highlighting the 

visual diversity and distinct characteristics that the 

model is trained to recognize. 

The preprocessing pipeline was implemented using 

TensorFlow's ImageDataGenerator and Keras 

preprocessing utilities. This step ensured data 

consistency, diversity, and purity, providing a robust 

foundation for effective feature extraction and 

learning in the subsequent convolutional neural 

network layers. 

C. CNN Architecture 

To address the multi-class classification task of plant 

leaf diseases, a specialized Convolutional Neural 

Network (CNN) architecture was designed, optimized 

for learning hierarchical spatial features from input 

images. The architecture was implemented using the 

TensorFlow-Keras deep learning framework and 

follows a deep sequential model structure. The 

primary objective of this model is to accurately 

identify subtle disease patterns such as lesion 

morphology, texture, and color variation from RGB 

leaf images. 

 

The input layer accepts standardized RGB images of 

size 256×256×3 (width × height × channels), ensuring 

consistent spatial dimensions for effective feature 

learning and computational efficiency.The feature 

extraction module consists of six convolutional 

blocks, each composed of a 2D convolutional layer 

followed by a max-pooling operation. All 

convolutional layers employ the ReLU activation 

function and use a 3×3 kernel with 'same' padding to 

preserve spatial resolution. Pooling layers use a 2×2 

window to progressively reduce the spatial dimensions 

while preserving the most significant features. 

The output tensor from the final convolutional layer 

(2×2×64) is flattened into a 1D vector of 256 units, 

which is then fed into fully connected dense layers. 

The first dense layer consists of 64 neurons with 

ReLU activation to capture high- level abstractions of 

the extracted features. A dropout layer with a rate of 

0.5 (if applied) is used to mitigate overfitting by 

randomly deactivating neurons during training. The 

final output layer is a dense layer with 8 neurons and 

softmax activation, producing a probability 

distribution over the eight target classes. 

Table I provides a comprehensive summary of the 

CNN architecture, including layer types, output 

shapes, and trainable parameters. 

TABLE I 

Summary of the Convolutional Neural Network 

(CNN) Architecture 

Layer (type) Output Shape Param 

# 

sequential (Sequential) (None, 256, 

256, 3) 

0 

conv2d (Conv2D) (None, 254, 

254, 32) 

896 

conv2d (Conv2D) (None, 127, 

127, 32) 

0 

conv2d_1 (Conv2D) (None, 125, 

125, 64) 

18,496 

max_pooling2d_1 

(MaxPooling2D) 

(None, 62, 62, 

64) 

0 

conv2d_2 (Conv2D) (None, 60, 60, 

64) 

36,928 
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max_pooling2d_2 

(MaxPooling2D) 

(None, 30, 30, 

64) 

0 

conv2d_3 (Conv2D) (None, 28, 28, 

64) 

36,928 

max_pooling2d_3 

(MaxPooling2D) 

(None, 14, 14, 

64) 

0 

conv2d_4 (Conv2D) (None, 12, 12, 

64) 

36,928 

max_pooling2d_4 

(MaxPooling2D) 

(None, 6, 6, 64) 0 

conv2d_5 (Conv2D) (None, 4, 4, 64) 36,928 

max_pooling2d_5 

(MaxPooling2D) 

(None, 2, 2, 64) 0 

flatten (Flatten) (None, 256) 0 

dense (Dense) (None, 64) 16,448 

dense_1 (Dense) (None, 8) 520 

 

The total number of trainable parameters in the model 

is approximately 147,144, striking a balance between 

computational efficiency and representational 

capacity. This architecture was selected based on 

empirical experimentation and large-scale 

hyperparameter tuning, offering an optimal trade-off 

between performance and depth. Its hierarchical depth 

enables effective learning of both low-level (edges, 

textures) and high-level (disease-specific patterns) 

features, making it well-suited for fine-grained 

classification across a variety of plant diseases. 

 

D. Trainning Approach 

The CNN was trained in a supervised learning setting 

on a labeled dataset consisting of RGB images 

representing eight categories of diseased and healthy 

plant leaves. The objective was to minimize 

classification error while ensuring generalization 

across diverse leaf types and imaging conditions. 

▪ Objective Function 

Categorical cross-entropy loss was used, which is 

appropriate for multi-class classification problems 

with mutually exclusive labels. The loss is computed 

as: 

 

where  is the true class label, and  is the predicted 

class probability. This formulation encourages 

confident correct predictions while penalizing 

incorrect ones. 

▪ Optimizer 

The model used the Adam optimization algorithm,, 

which integrates the strengths of AdaGrad and 

RMSProp. The optimizer parameters were: 

• Learning Rate: 0.001 

• β₁ = 0.9, β₂ = 0.999 

• Epsilon = 1e-07 

These hyperparameters enable adaptive learning rates 

for each weight, improving stability and convergence 

▪ Batch Size and Epochs 

Training was conducted using a batch size of 32, 

providing a trade-off between performance and 

computational cost. The number of epochs ranged 

from 25 to 50, controlled via early stopping with a 

patience of 5 epochs based on validation loss to 

prevent overfitting. 

• Data Augmentation 

To promote generalization and increase dataset 

variability, real-time augmentation was performed 

using Keras’ ImageDataGenerator. The augmentation 

techniques applied included: 

• Horizontal and vertical flips 

• Random rotations (±20°) 

• Zooming (range: 0.8–1.2) 

• Width and height shifts (±10%) 

• Brightness adjustment and shear transformation 

This approach simulates natural image variability and 

reduces the likelihood of overfitting. 

• Validation Strategy 

A stratified 80:20 train-validation split was used to 

maintain balanced class representation. The validation 

set remained strictly held out during training for 

unbiased performance monitoring. 

ModelCheckpoint was applied to save the model with 

the best validation accuracy. Optionally, TensorBoard 

was used to visualize learning curves. 

• Regularization 

Dropout (rate = 0.5) was optionally introduced after 

the dense layer to discourage neuron co-adaptation. 

Additionally, L2 kernel regularization was explored 

for convolutional layers in scenarios indicating 

potential overfitting. 

The training and validation performance over epochs, 

including accuracy and loss curves, is illustrated in 

Figure 4. The classification performance across all 
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eight classes is further visualized in the confusion 

matrix heatmap in Figure 5, confirming effective 

learning and accurate class differentiation. 

 
Figure 4. Training and validation accuracy and loss 

curves over 50 epochs. 

To further assess the classification performance, a 

confusion matrix heatmap was generated using 

predictions on the test set. This visualization is shown 

in Figure 5 and highlights how accurately the model 

distinguishes between various disease classes. The 

diagonal dominance in the heatmap indicates high true 

positive rates across all classes, confirming the 

robustness of the learned features. 

 

 
Figure 5. Confusion matrix heatmap showing 

classification accuracy across all eight classes. 

The model was trained using TensorFlow on a 

standard GPU- enabled workstation. Overall, the 

training methodology, along with rigorous evaluation 

techniques, ensured that the model is both accurate and 

generalizable across diverse disease conditions. 

 

IV. SYSTEM IMPLEMENTATION 

 

The constructed plant disease detection model is 

implemented within an accessible web application 

through the Streamlit framework, which allows for 

quick deployment of machine learning interfaces. The 

interface is designed to be accessible, flexible, and 

visually simple, hence beneficial to users with 

different language preferences and devices. 

▪ Streamlit UI Features 

The web app is clean and well-designed with a simple 

layout, allowing users to upload leaf images, receive 

real-time predictions, and see the corresponding 

remedies. The primary UI elements are image upload 

controls, prediction outputs, and remedy show cards. 

To enhance user interaction, loading spinners, 

responsive containers, and prediction confidence bars 

are used. 

▪ Glassmorphism Design and Aesthetic 

Enhancement To improve visual quality, the app 

uses a glassmorphism design language—semi-

transparent elements with blur and soft shadows. 

This gives a contemporary, soft aesthetic that 

improves readability and interaction without 

straying from fundamental functionality. Framer 

Motion animations and hover effects give dynamic 

feedback, improving the experience. 

Multilingual Support In the spirit of inclusivity, the 

application accommodates multilingual remedy 

presentation in English, Hindi, and Marathi. 

Language toggles allow for dynamic switching 

between translations without reloading the interface. 

The feature is natively implemented in the frontend 

through JSON-based translation dictionaries and 

integrated smoothly with remedy display cards. 

▪ Downloadable Remedy Section 

Each diagnosis outcome is followed by a well-crafted 

remedy section, which not only displays diverse 

treatment options but also offers the functionality for 

users to download the remedy in PDF. The 

functionality is particularly useful for offline 

consultation between farmers and agricultural experts. 

The remedies are presented in a pleasant yellow card 

layout, with clear classification by disease category. 

Model Deployment and Backend Logic The CNN 

model is executed over a Python-based backend 

served via Streamlit's runtime environment. The .keras 

model file trained is loaded and used through 

TensorFlow's Keras API. The input images are 
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processed (resizing, normalization) prior to being 

passed to the model for inference. The backend 

handles seamless execution of prediction logic and 

formats the output for frontend presentation. Model 

prediction is initiated when an image is uploaded, and 

the predicted class and confidence level are returned 

by the backend. Depending on the predicted class of 

disease, the appropriate multilingual treatment is 

retrieved and displayed. The whole system is 

performance and modularity optimized to be scalable 

in the future or to integrate with APIs or mobile. 

 

V. FINDINGS AND ANALYSIS 

 

The performance of the suggested Convolutional 

Neural Network (CNN) plant disease classification 

model was rigorously tested through extensive 

validation with a series of quantitative as well as 

qualitative measures. The model was validated on a 

held-out test set of labeled images depicting 8 classes 

of plant diseases. 

▪ Evaluation Indicators: 

The CNN performed well and produced excellent 

classification performance with average test accuracy 

of over 94%. The model performance was further 

validated using a confusion matrix, which shows class-

wise precision and recall. Most of the classes had high 

diagonal dominance, indicating correct predictions, 

with minimal off-diagonal elements indicating low 

misclassification rates. 

In addition to the confusion matrix, precision, recall, 

and F1- score for each individual class were taken into 

account. These metrics gave a better picture regarding 

the model's strength in the context of imbalanced data 

or visually comparable classes. Macro and weighted 

averages of these metrics reinforced the fair 

performance of the model. Furthermore, ROC curves 

and AUC scores were taken for multi-class testing, 

wherever feasible, and emphasized the model's sharp 

discriminative capability. 

▪ Visual Outcomes: 

Training and validation accuracy/loss curves over 

epochs were plotted to study convergence behavior. 

The model demonstrated robust learning dynamics 

without showing any overfitting signs, attributed to 

efficient use of data augmentation and dropout 

regularization. Performance plots were plotted using 

Matplotlib and incorporated in the Streamlit UI for 

transparency and reproducibility. 

UI and Usability Feedback User comments regarding 

the system's user interface were collected from a pilot 

group of target users, including agricultural students 

and farm laborers. The comments expressed an 

extremely high degree of satisfaction with the 

usability, ease of navigation, and multilingual nature 

(English, Hindi, Marathi) of the user interface. 

The use of glassmorphism features was also 

appreciated for being visually appealing without 

compromising readability norms. 

▪ Real-time prediction speed: 

The end-to-end image processing and prediction 

pipeline demonstrated effective inference times. This 

is useful real- time deployment even for modest 

computational hardware. Model loading and running 

were facilitated by taking advantage of the .keras 

format, which lowered overhead during Streamlit 

inference significantly. 

Restrictions and Insights Whereas in most instances 

the system performed well, there were instances of 

misclassifications between diseases that had almost 

similar visual symptoms (early blight vs. late blight). 

The application of attention mechanisms or ensemble 

learning in subsequent studies may improve 

classification even further. Overall, the outcomes 

validate that the system proposed is accurate, 

convenient to use, and effective for real-world 

agricultural applications 
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