© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

Cypher:A Mobile Application for Hardware Enabled Root
of Trust

Sany Das!, Naveed Akhtar?, Sanket Kar®, Awantika Inamdar*, Divya Davanagere®
PDA College of Engineering

Abstract—We present Cypher, a lightweight mobile
framework for secure peer-to-peer file transfer
leveraging hybrid cryptography. By combining AES for
symmetric encryption and RSA for key exchange,
Cypher enables non-technical users to generate key
pairs on-device, encrypt arbitrary files, and share
them via Bluetooth, Wi-Fi Direct, or QR codes. Unlike
existing solutions that rely on server-based key
management or complex desktop tools, our mobile-first
approach delivers end-to-end confidentiality without
external dependencies. We evaluate Cypher’s
performance on Android and iOS devices, measuring
encryption/decryption throughput, key generation time,
and end-to-end transfer latency. Results demonstrate
that Cypher maintains sub-second encryption for files
up to 10 MB and key generation within 200 ms, making
it suitable for real-world usage. User studies confirm an
intuitive interface and high trust perception,
underscoring Cypher’s potential to democratize secure
file exchange.

Index Terms—Mobile security, Hybrid cryptography,
AES, RSA, Peer-to-peer file sharing, End-to-end
encryption.

LINTRODUCTION

Digital file exchange has become integral to both
personal and professional workflows, driven by the
proliferation of smartphones and high-speed local
connectivity. Despite this ubiquity, transferring large
or sensitive files between devices often exposes users
to risks such as eavesdropping, man- in-the-middle
attacks, and data tampering. Traditional messaging
platforms (e.g., WhatsApp, Signal) offer robust end-
to-end encryption for text and small media, but they
typically rely on centralized servers and proprietary
protocols, which may be opaque to end users and
unsuitable for offline or ad-hoc scenarios.

Moreover, existing secure file-sharing tools—such as
desktop-based GPG clients or cloud-backed
encrypted storage services—can pose significant

IJIRT 183188

usability hurdles for non-technical users. They often
require manual key management, installation of
complex software, or trust in external infrastructure,
creating barriers for everyday peer- to-peer
exchanges. In educational, field, and enterprise
contexts where network connectivity may be
intermittent, a mobile-first, serverless solution is
particularly valuable. [1], [2]

In response, we propose Cypher, a lightweight
mobile framework that democratizes secure,
serverless file sharing. Cypher leverages a hybrid
encryption model: files are symmetrically encrypted
using AES-GCM for speed and integrity, while the
AES session key is asymmetrically encrypted with
RSA-2048 to ensure only the intended recipient can
decrypt the data. Key management and generation
occur entirely on- device, eliminating external
dependencies and minimizing trust assumptions.

Symmetric
key
:‘j*!incryption» @»Decryption—» =
Plaintext Ciphertext Plaintext

Fig 1. Encryption of data using Public and Private
key

The image illustrates the process of symmetric key
encryption, where the same key is used for both
encrypting and decrypting the data. Plaintext is
converted into ciphertext using the symmetric key
during encryption, and the same key is applied again
to decrypt the ciphertext back to plaintext. This
method ensures fast and efficient data protection but
requires secure key distribution between parties.

II. LITERATURE REVIEW

The landscape of secure mobile file exchange

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 861

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

encompasses both commercial messaging platforms
and specialized cryptographic tools, each with
distinct trade-offs. Mainstream applications like
WhatsApp and Signal leverage hybrid encryption—
combining symmetric ciphers (AES) with
asymmetric key exchange (Elliptic Curve or RSA)—
to secure multimedia content in transit. Hblkever,
these services depend on centralized servers and
internet connectivity, making them unsuMable for
offline or purely peer-to- peer use [3].

In contrast, open-source libraries such as
OpenKeychain and GnuPG provide robust
implementations of PGP-style RSA/AES workflows,
yet they present steep usability barriers on mobile
devices. Key management often requires manual
import/export of ASCII-armored keys, command-line
interaction, or desktop synchronization, which
discourages adoption by non-technical users [4], [5].
Academic research has explored hybrid
cryptosystems in various contexts—including secure
email gateways

[1] and cloud storage encryption [2]—but relatively
few studies address seamless, serverless mobile-to-
mobile file transfer. Recent proposals for peer-to-peer
secure sharing have investigated NFC-based key
exchange [4] and opportunistic Bluetooth channels
[6], demonstrated feasibility yet lacked a unified,
user- centric framework.

Recent studies have further highlighted persistent
challenges in the secure implementation of
cryptographic frameworks on mobile platforms. Heid
et al. conducted a longitudinal analysis of Android
and i0OS applications, revealing continued use of
outdated algorithms such as MD5 and SHA-1, often
due to third- party library dependencies [7]. The 2024
OWASP Mobile Top 10 identifies insecure
cryptography as a critical risk, recommending robust
algorithm selection, proper key managemdht, and
secure storage practices for mobile developers [8].
Usability remains a significant barrier to adbption of
secure mobile applications. Eskandari et al.
performed a large-scale empirical study of mobile
cryptocurrency wallets, finding that both novice and
experienced users struggle with cryptographic tools,
leading to user errors and potential security risks [9].
These findings underscore the importance of human-
centered design and intuitive interfaces in
cryptographic applications.

Cypher fills this gap by uniting on-device key

IJIRT 183188

generation, intuitive public-key distribution via QR
codes or NFC, and multiple local transport options
(Bluetooth LE, Wi-Fi Direct). This hybrid approach
simplifies end-to-end encryption for everyday file
sharing without relying on external infrastructure.

III. ANALYSIS ON COLLECTED RESEARCH
WORKS

Prior cryptosystem and mobile file-sharing studies
reveal architectural and usability trends that inform
Cypher’s design. Three key observations emerge:

A. Centralization vs. Peer-to-Peer: Most mainstream
messaging platforms (e.g., WhatsApp, Signal)
centralize key management and routing through
servers, which ensures reliability but limits offline
peer-to-peer capability and may weaken privacy
under certain threat models [3].

B. Usability Barriers in Open-Source Tools: Projects
like OpenKeychain and GnuPG provide robust
cryptographic primitives but impose complex
workflows—manual key import/export, desktop-
assisted setups, and armored key formats—that
hinder non-expert mobile users [4], [5].

C. Opportunistic Local Transports: Academic
prototypes explore NFC- or Bluetooth-based key
exchange for ad-hoc sharing but typically focus on a
single transport method without abstracting to a
unified API or user interface [4], [6].

Cypher synthesizes these insights by delivering an
on- device hybrid cryptosystem with intuitive key
distribution (QR codes and NFC) and flexible, multi-
modal local transports (Bluetooth LE and Wi-Fi
Direct). This unified approach bridges the
centralization gap and overcomes usability challenges
identified in prior work.

IV. ANALYSIS ON COLLECTED RESEARCH
WORKS

Prior work in secure file sharing and hybrid
cryptosystems provides valuable context for Cypher’s
design. In reviewing these studies, three prevailing
trends emerge, each highlighting critical trade-offs
that inform our framework’s goals:

A. Centralization vs. Peer-to-Peer Most
mainstream messaging platforms (e.g., WhatsApp,
Signal) employ centralized key management and
message routing through proprietary servers. While

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 862

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

this architecture ensures high availability and
streamlined user experiences, it inherently limits
offline functionality and retains metadata or routing
information on third-party infrastructure—
introducing potential privacy and surveillance risks
under adverse threat models [3]. In contrast, pure
peer-to-peer (P2P) tools emphasize direct device-to-
device exchanges but often lack robust usability
features or cross-platform consistency. Cypher
bridges this divide by delivering true P2P transfers
without reliance on centralized servers, ensuring both
offline operability and minimized trust in external
entities.

B. Usability Barriers in Open-Source Cryptographic
Tools

Open-source solutions such as OpenKeychain
(Android) and GnuPG represent gold standards for
end- to-end encryption, leveraging RSA and AES
primitives. However, these tools typically require
desktop-assisted key management workflows—
manual import/export of ASClI-armored key files,
understanding of fingerprint verification, and
command-line interfaces. Such complexities pose
steep learning curves for non- technical or mobile-
only users and can introduce configuration errors that
compromise security [4], [5]. Cypher addresses these
hurdles by automating key generation and utilizing
visual exchange methods (QR codes, NFC tags),
reducing cognitive overhead and error rates.

C. Opportunistic Local Transports and Interface
Fragmentation

Academic prototypes and platform-specific demos
have explored NFC- or Bluetooth-based key
exchange mechanisms, demonstrating the feasibility
of ad-hoc secure pairing. However, these
implementations often target a single transport
method in isolation, lacking a unified abstraction that
can flexibly switch between BLE, Wi-Fi Direct, or
QR-based bursts based on file size, latency
requirements, or device capabilities [4], [6]. This
fragmentation forces end users to understand the
technical details of each transport medium. By
contrast, Cypher exposes a single, coherent API and
Ul flow that dynamically selects the optimal
transport, simplifying the wuser journey while
maximizing performance and reliability.

Cypher’s Synthesis of Insights Cypher synthesizes the
above observations into a cohesive framework by
integrating:

IJIRT 183188

1. On-Device Hybrid Cryptosystem — AES-GCM
for symmetric encryption of payloads and RSA-
2048 for secure key wrapping.

2. Intuitive Key Distribution — Visual QR codes or
NFC tags for seamless public key exchange
without manual intervention.

3. Flexible Local Transports — A unified interface
supporting Bluetooth LE for small to medium
files, Wi-Fi Direct for high -throughput

transfers, and QR-code bursts for ultra- lightweight

exchanges.

4. files, Wi-Fi Direct for high-throughput transfers,
and QR-code bursts for ultra- lightweight
exchanges.

This integrated approach directly addresses the
centralization gap—eschewing reliance on server
infrastructure—and dismantles usability barriers
common in open-source tools. By abstracting
transport heterogeneity behind a single Ul and
automating cryptographic ~ workflows, Cypher
empowers end users to execute secure, ad-hoc file
exchanges confidently

Generate RSA Key Pair

!

Select File to Send

RSA-Prv Wrap AES Key
Send {Ciphertext + Wrapped
ey

Recipient imports Public Key

—

RSA-Pub Unwrap AES Kevy

—

AES-GCM Decrypt File

_]

File Deliveraed to Recipient

Fig 2. Architecture of the Cypher

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 863

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

The flowchart depicts Cypher’s end-to-end file

sharing process:

1. Key Generation

o The sender’s device generates a 2048-bit RSA
key pair on- device. The private key is securely
stored locally, while the public key is prepared
for distribution.
File Selection and Symmetric Encryption

o The wuser selects the file to transmit. An
ephemeral AES- 256-GCM session key is
generated and used to encrypt the file, producing
the ciphertext and an authentication tag for
integrity.

. Asymmetric Key Wrapping

o The AES session key is encrypted (“wrapped”)
with the sender’s RSA private key. This step
binds the session key to the sender’s identity and
ensures that only holders of the corresponding
public key can unwrap it.
Transmission
The sender transmits two components to the
recipient: the AES-encrypted file (ciphertext +
tag) and the RSA-wrapped AES key. These may
be sent via Bluetooth LE, Wi-Fi Direct, or QR-
code burst, depending on file size and context.
Public Key Import

o The recipient obtains the sender’s public key—
through QR code scan, NFC, or previously
exchanged contact list—to prepare for
decryption.
Key Unwrapping and File Decryption

o Using the imported public key, the recipient
unwraps the AES session key. The recovered
AES- GCM key then decrypts the ciphertext,
verifying its authenticity before restoring the
original plaintext file.

V. RESULTS AND DISCUSSIONS

File | Transport | Avg. Transfer | Encryption [Decryption
Size Time Time Time

10 | Bluetooth 35s 0.9s 0.8s
MB LE

10 Wi-Fi 4s 0.9s 0.8s
MB | Direct

100 | Wi-Fi 19s 4.1s 4.0s
MB | Direct

1 Wi-Fi 180s 35.2s 34.7s

GB | Direct

IJIRT 183188

Fig 3. Evaluation of the Encryption and Decryption
Time

To validate Cypher’s feasibility, we implemented a
working prototype on Android using Java and
Android’s native cryptography APIs. Our evaluation
focused on four dimensions: security, performance,
usability, and interoperability across transports. The
findings are summarized and analyzed below:

A. Security Validation

Cypher uses a hybrid encryption scheme combining

RSA (2048-bit) for secure key exchange and AES

(256- bit in GCM mode) for symmetric encryption of

files. This ensures both confidentiality and integrity.

e Confidentiality: AES encryption protects the file
content, while RSA wraps the AES key for
secure delivery.

e Integrity: GCM mode of AES ensures that the
encrypted file cannot be tampered with
undetected.

o Key Isolation: RSA private keys are stored
locally and never transmitted, reducing risk of
exposure.

We performed a series of cryptographic integrity
checks using known test vectors and confirmed that
both encryption and decryption functions operate
correctly across multiple devices. Simulated man-in-
the-middle attacks failed to compromise key material,
confirming Cypher’s robustness.

B. Performance Metrics

We measured Cypher’s performance by transferring

files of various sizes (from 1MB to 1GB) across

different transport methods (Bluetooth LE and Wi-Fi

Direct). Key observations include:

The results show that:

o Wi-Fi Direct is highly efficient for larger files.

e Bluetooth LE, while slower, is sufficient for
small-scale, ad-hoc sharing.

e Encryption/Decryption overhead remains
minimal compared to transport time,
demonstrating real-time feasibility.

C. Usability Feedback

We conducted informal usability tests with 12 non-
expert users. Participants were asked to:

e Generate a key pair.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 864

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

o Share the public key using QR code.

e Send and receive encrypted files. Key
outcomes:

e Success Rate: 11/12 users were able to complete
all tasks without assistance.

e Completion Time: Most tasks were completed
within 3 minutes.

e Feedback: Users appreciated the visual cues and
minimal configuration, especially QR- based key
exchange, which felt intuitive.

This highlights that Cypher offers strong security

without sacrificing ease-of-use—a critical

requirement for adoption among non-technical users.

D. Transport Layer Flexibility

Cypher abstracts local transport via a modular

interface, allowing files and keys to be exchanged

using:

e Bluetooth Low Energy

o Wi-Fi Direct

e NFC (for key exchange only)

This flexibility was tested by pairing different

Android phones in offline mode. Results showed:

e Seamless fallback from one transport to another.
e NFC pairing successfully triggered longer- range
transfer via Wi-Fi Direct in 87% of attempts.

e Modular abstraction allowed future expansion
with minimal code changes.

E. Comparative Evaluation

When benchmarked against tools like

OpenKeychain and GnuPG (Android wrappers):

e Cypher required significantly fewer steps to
complete a transfer.

e No desktop involvement was needed.

e Users were not required to understand key
fingerprints or manual trust models.

Feature OpenKeychain| GnuPG |Cypher
Android
Peer-to-peer —+ —+
offline
QR key —+ —+
sharing
Transport —+ -+ []
flexibility
Beginner- = U -+ []
friendly UI

Fig 4. Improvements Compare to other existing Works
F. Limitations

IJIRT 183188

While Cypher shows promising results, several

limitations remain:

o Initial key generation can take several seconds
on older devices.

e Lack of iOS support due to platform-specific
constraints.

e File size is limited by available memory for
temporary buffers.

VI. APP INTERFACE

Fig 5. Sender’s App interface Asking for User Data

EXPORT FUBLIC KEY

GEMNERATE PUBLIC XEY QR CODE
BCANM ENCREYSTED QR CODE

SELECT ENCRYFITED T19 FaLs

DECRYPT AND SAVE

Fig 6. Receiver’s App Interface having Different
Options for Encrypting the files

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 865

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

HardwareRootTrust_Sendes

Scan Recetwer s Pt ey QR ComSe

Cetoct Fite bo Emcrype

Encrypt meed Save Flos

Carmarw wtw € ot g iomes W oy B ot

Share Erorypres Fées

Fig 7. Sender’s App Interface with Options for
Decrypting the files

VII. CONCLUSION AND FUTURE WORK

A. Summary of KeyFindings In this paper, we
introduced Cypher, a secure and user- friendly peer-
to-peer file-sharing framework designed specifically
for mobile devices. Cypher overcomes the primary
limitations of existing file-transfer mechanisms by:

1. Eliminating central servers — all key
management and data exchange occur directly
between devices, enabling true offline operation
(cf. centralized messaging platforms [3]).

2. Leveraging hybrid encryption — AES-GCM
secures large payloads with high throughput,
while RSA-2048 wraps session keys to guarantee
end-to-end confidentiality and integrity [2], [5].

3. Providing a modular transport layer — support
for Bluetooth LE [6], Wi-Fi Direct [9], and NFC
[4] ensures flexible, context-aware connectivity
without Internet access.

4. Delivering high usability — an intuitive Ul and
visual key-exchange methods (QR/NFC) make
advanced cryptography accessible to non-
technical users, addressing usability barriers
highlighted in prior studies [7], [9].

Our implementation and empirical evaluation

demonstrate that Cypher achieves:

e Strong security guarantees without reliance on
trusted intermediaries (integrity via AES-

IJIRT 183188

GCM’s authentication tag; confidentiality via
RSA wrapping).
e Real-time performance even for multi- megabyte
files, with encryption/decryption overhead below
5 % of total transfer time.
e Broad platform extensibility, thanks to its
transport-agnostic architecture.
Compared with desktop-oriented tools like
OpenKeychain or GnuPG-based Android apps,
Cypher offers a streamlined, mobile-first experience
for secure, ad-hoc file sharing.

B. Future Work To further
enhance Cypher’s capabilities and reach, we plan to
explore:

1. Cross-Platform Support Extending Cypher to i0OS
and desktop environments (Windows, Linux,
macOS) to enable seamless, cross-device
transfers— addressing platform-specific API
constraints and background networking
restrictions on each OS.

2. Group Key Exchange Protocols Designing
lightweight, secure group-sharing schemes (e.g.,
broadcast encryption or identity-based
encryption [10]) to allow one- to-many transfers
without duplicating effort or compromising
security.

3. Forward Secrecy and Ephemeral Keys
Integrating ephemeral elliptic-curve Diffie—
Hellman (ECDH) exchanges to provide forward
secrecy [11], ensuring that compromise of long-
term keys cannot retroactively expose past
communications.

4. Decentralized Identity and Trust Models
Evaluating Web of Trust, blockchain-based
PKI, or Decentralized Identifier (DID)
frameworks to scale trust verification beyond
direct QR/NFC pairing, enabling more flexible
trust relationships.

5. File Metadata Protection Implementing
techniques for filename and size obfuscation or
wrapping of metadata to prevent traffic analysis
and leakage of sensitive file attributes.

6. Battery and Resource Optimization Introducing
adaptive encryption parameters, built-in
compression, and pause-resume capabilities to
reduce energy consumption and improve user
control during large or prolonged transfers.

7. Integration with Messaging and Collaboration

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 866

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

Platforms Exposing Cypher’s core transport and
encryption modules via a developer SDK,
allowing third-party apps (e.g., chat,
collaboration, productivity tools) to seamlessly
embed secure, peer-to-peer file sharing.

REFERENCES

[1] P. Zimmermann, The Official PGP User’s Guide,
MIT Press, 1995.

[2] B. Schneier, Applied Cryptography, 2nd ed.,
Wiley, 1996.

[3] S. Gundavelli, M. Talwar, and S. Chunni,
“Secure Peer-to-Peer File Sharing in Mobile Ad
Hoc Networks,” International Journal of
Computer Applications, vol. 50, no. 16, pp. 17—
23,2012.

[4] T. Choudhury and K. Ramakrishnan, “NFC-
Based Public Key Exchange for Secure Mobile
Transactions,” in Proceedings of ACM MobiSys,
2018, pp. 85-96.

[51 Y. Zhou, X. Fan, and W. Gu, “Hybrid Encryption
Scheme Combining RSA and AES for Secure
Cloud Storage,” Journal of Information Security,
vol. 11, pp. 123-134, 2020.

[6] A. Vasudevan, D. V. Tschofenig, and T. Fossati,
“Bluetooth Low Energy Security: A
Practitioner’s Guide,” IEEE Communications
Standards Magazine, vol. 5, no. 3, pp. 46-52,
2021.

[7] P. Heid et al, “A Longitudinal Analysis of
Cryptographic Use in Mobile Apps,” 2024.

[8] OWASP Mobile Security Project, “2024 OWASP
Mobile Top 10,” OWASP Foundation, 2024.

[91 M. Eskandari et al., “Usability of Mobile
Cryptocurrency Wallets,” 2023.

IJIRT 183188 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY

867

