
© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IJIRT 183188 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 861

Cypher:A Mobile Application for Hardware Enabled Root

of Trust

Sany Das1, Naveed Akhtar2, Sanket Kar3, Awantika Inamdar4, Divya Davanagere5

PDA College of Engineering

Abstract—We present Cypher, a lightweight mobile

framework for secure peer-to-peer file transfer

leveraging hybrid cryptography. By combining AES for

symmetric encryption and RSA for key exchange,

Cypher enables non-technical users to generate key

pairs on-device, encrypt arbitrary files, and share

them via Bluetooth, Wi-Fi Direct, or QR codes. Unlike

existing solutions that rely on server-based key

management or complex desktop tools, our mobile-first

approach delivers end-to-end confidentiality without

external dependencies. We evaluate Cypher’s

performance on Android and iOS devices, measuring

encryption/decryption throughput, key generation time,

and end-to-end transfer latency. Results demonstrate

that Cypher maintains sub-second encryption for files

up to 10 MB and key generation within 200 ms, making

it suitable for real-world usage. User studies confirm an

intuitive interface and high trust perception,

underscoring Cypher’s potential to democratize secure

file exchange.

Index Terms—Mobile security, Hybrid cryptography,

AES, RSA, Peer-to-peer file sharing, End-to-end

encryption.

I.INTRODUCTION

Digital file exchange has become integral to both

personal and professional workflows, driven by the

proliferation of smartphones and high-speed local

connectivity. Despite this ubiquity, transferring large

or sensitive files between devices often exposes users

to risks such as eavesdropping, man- in-the-middle

attacks, and data tampering. Traditional messaging

platforms (e.g., WhatsApp, Signal) offer robust end-

to-end encryption for text and small media, but they

typically rely on centralized servers and proprietary

protocols, which may be opaque to end users and

unsuitable for offline or ad-hoc scenarios.

Moreover, existing secure file-sharing tools—such as

desktop-based GPG clients or cloud-backed

encrypted storage services—can pose significant

usability hurdles for non-technical users. They often

require manual key management, installation of

complex software, or trust in external infrastructure,

creating barriers for everyday peer- to-peer

exchanges. In educational, field, and enterprise

contexts where network connectivity may be

intermittent, a mobile-first, serverless solution is

particularly valuable. [1], [2]

In response, we propose Cypher, a lightweight

mobile framework that democratizes secure,

serverless file sharing. Cypher leverages a hybrid

encryption model: files are symmetrically encrypted

using AES-GCM for speed and integrity, while the

AES session key is asymmetrically encrypted with

RSA-2048 to ensure only the intended recipient can

decrypt the data. Key management and generation

occur entirely on- device, eliminating external

dependencies and minimizing trust assumptions.

Fig 1. Encryption of data using Public and Private

key

The image illustrates the process of symmetric key

encryption, where the same key is used for both

encrypting and decrypting the data. Plaintext is

converted into ciphertext using the symmetric key

during encryption, and the same key is applied again

to decrypt the ciphertext back to plaintext. This

method ensures fast and efficient data protection but

requires secure key distribution between parties.

II. LITERATURE REVIEW

The landscape of secure mobile file exchange

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IJIRT 183188 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 862

encompasses both commercial messaging platforms

and specialized cryptographic tools, each with

distinct trade-offs. Mainstream applications like

WhatsApp and Signal leverage hybrid encryption—

combining symmetric ciphers (AES) with

asymmetric key exchange (Elliptic Curve or RSA)—

to secure multimedia content in transit. However,

these services depend on centralized servers and

internet connectivity, making them unsuitable for

offline or purely peer-to- peer use [3].

In contrast, open-source libraries such as

OpenKeychain and GnuPG provide robust

implementations of PGP-style RSA/AES workflows,

yet they present steep usability barriers on mobile

devices. Key management often requires manual

import/export of ASCII-armored keys, command-line

interaction, or desktop synchronization, which

discourages adoption by non-technical users [4], [5].

Academic research has explored hybrid

cryptosystems in various contexts—including secure

email gateways

[1] and cloud storage encryption [2]—but relatively

few studies address seamless, serverless mobile-to-

mobile file transfer. Recent proposals for peer-to-peer

secure sharing have investigated NFC-based key

exchange [4] and opportunistic Bluetooth channels

[6], demonstrated feasibility yet lacked a unified,

user- centric framework.

Recent studies have further highlighted persistent

challenges in the secure implementation of

cryptographic frameworks on mobile platforms. Heid

et al. conducted a longitudinal analysis of Android

and iOS applications, revealing continued use of

outdated algorithms such as MD5 and SHA-1, often

due to third- party library dependencies [7]. The 2024

OWASP Mobile Top 10 identifies insecure

cryptography as a critical risk, recommending robust

algorithm selection, proper key management, and

secure storage practices for mobile developers [8].

Usability remains a significant barrier to adoption of

secure mobile applications. Eskandari et al.

performed a large-scale empirical study of mobile

cryptocurrency wallets, finding that both novice and

experienced users struggle with cryptographic tools,

leading to user errors and potential security risks [9].

These findings underscore the importance of human-

centered design and intuitive interfaces in

cryptographic applications.

Cypher fills this gap by uniting on-device key

generation, intuitive public-key distribution via QR

codes or NFC, and multiple local transport options

(Bluetooth LE, Wi-Fi Direct). This hybrid approach

simplifies end-to-end encryption for everyday file

sharing without relying on external infrastructure.

III. III. ANALYSIS ON COLLECTED RESEARCH

WORKS

IV.

Prior cryptosystem and mobile file-sharing studies

reveal architectural and usability trends that inform

Cypher’s design. Three key observations emerge:

A. Centralization vs. Peer-to-Peer: Most mainstream

messaging platforms (e.g., WhatsApp, Signal)

centralize key management and routing through

servers, which ensures reliability but limits offline

peer-to-peer capability and may weaken privacy

under certain threat models [3].

B. Usability Barriers in Open-Source Tools: Projects

like OpenKeychain and GnuPG provide robust

cryptographic primitives but impose complex

workflows—manual key import/export, desktop-

assisted setups, and armored key formats—that

hinder non-expert mobile users [4], [5].

C. Opportunistic Local Transports: Academic

prototypes explore NFC- or Bluetooth-based key

exchange for ad-hoc sharing but typically focus on a

single transport method without abstracting to a

unified API or user interface [4], [6].

Cypher synthesizes these insights by delivering an

on- device hybrid cryptosystem with intuitive key

distribution (QR codes and NFC) and flexible, multi-

modal local transports (Bluetooth LE and Wi-Fi

Direct). This unified approach bridges the

centralization gap and overcomes usability challenges

identified in prior work.

V. IV. ANALYSIS ON COLLECTED RESEARCH

WORKS

VI.

Prior work in secure file sharing and hybrid

cryptosystems provides valuable context for Cypher’s

design. In reviewing these studies, three prevailing

trends emerge, each highlighting critical trade-offs

that inform our framework’s goals:

A. Centralization vs. Peer-to-Peer Most

mainstream messaging platforms (e.g., WhatsApp,

Signal) employ centralized key management and

message routing through proprietary servers. While

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IJIRT 183188 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 863

this architecture ensures high availability and

streamlined user experiences, it inherently limits

offline functionality and retains metadata or routing

information on third-party infrastructure—

introducing potential privacy and surveillance risks

under adverse threat models [3]. In contrast, pure

peer-to-peer (P2P) tools emphasize direct device-to-

device exchanges but often lack robust usability

features or cross-platform consistency. Cypher

bridges this divide by delivering true P2P transfers

without reliance on centralized servers, ensuring both

offline operability and minimized trust in external

entities.

B. Usability Barriers in Open-Source Cryptographic

Tools

Open-source solutions such as OpenKeychain

(Android) and GnuPG represent gold standards for

end- to-end encryption, leveraging RSA and AES

primitives. However, these tools typically require

desktop-assisted key management workflows—

manual import/export of ASCII-armored key files,

understanding of fingerprint verification, and

command-line interfaces. Such complexities pose

steep learning curves for non- technical or mobile-

only users and can introduce configuration errors that

compromise security [4], [5]. Cypher addresses these

hurdles by automating key generation and utilizing

visual exchange methods (QR codes, NFC tags),

reducing cognitive overhead and error rates.

C. Opportunistic Local Transports and Interface

Fragmentation

Academic prototypes and platform-specific demos

have explored NFC- or Bluetooth-based key

exchange mechanisms, demonstrating the feasibility

of ad-hoc secure pairing. However, these

implementations often target a single transport

method in isolation, lacking a unified abstraction that

can flexibly switch between BLE, Wi-Fi Direct, or

QR-based bursts based on file size, latency

requirements, or device capabilities [4], [6]. This

fragmentation forces end users to understand the

technical details of each transport medium. By

contrast, Cypher exposes a single, coherent API and

UI flow that dynamically selects the optimal

transport, simplifying the user journey while

maximizing performance and reliability.

Cypher’s Synthesis of Insights Cypher synthesizes the

above observations into a cohesive framework by

integrating:

1. On-Device Hybrid Cryptosystem – AES-GCM

for symmetric encryption of payloads and RSA-

2048 for secure key wrapping.

2. Intuitive Key Distribution – Visual QR codes or

NFC tags for seamless public key exchange

without manual intervention.

3. Flexible Local Transports – A unified interface

supporting Bluetooth LE for small to medium

files, W i -Fi D i r e c t f o r h i g h -throughput

transfers, and QR-code bursts for ultra- lightweight

exchanges.

4. files, Wi-Fi Direct for high-throughput transfers,

and QR-code bursts for ultra- lightweight

exchanges.

This integrated approach directly addresses the

centralization gap—eschewing reliance on server

infrastructure—and dismantles usability barriers

common in open-source tools. By abstracting

transport heterogeneity behind a single UI and

automating cryptographic workflows, Cypher

empowers end users to execute secure, ad-hoc file

exchanges confidently

Fig 2. Architecture of the Cypher

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IJIRT 183188 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 864

The flowchart depicts Cypher’s end-to-end file

sharing process:

1. Key Generation

o The sender’s device generates a 2048-bit RSA

key pair on- device. The private key is securely

stored locally, while the public key is prepared

for distribution.

2. File Selection and Symmetric Encryption

o The user selects the file to transmit. An

ephemeral AES- 256-GCM session key is

generated and used to encrypt the file, producing

the ciphertext and an authentication tag for

integrity.

3. Asymmetric Key Wrapping

o The AES session key is encrypted (“wrapped”)

with the sender’s RSA private key. This step

binds the session key to the sender’s identity and

ensures that only holders of the corresponding

public key can unwrap it.

4. Transmission

o The sender transmits two components to the

recipient: the AES-encrypted file (ciphertext +

tag) and the RSA-wrapped AES key. These may

be sent via Bluetooth LE, Wi-Fi Direct, or QR-

code burst, depending on file size and context.

5. Public Key Import

o The recipient obtains the sender’s public key—

through QR code scan, NFC, or previously

exchanged contact list—to prepare for

decryption.

6. Key Unwrapping and File Decryption

o Using the imported public key, the recipient

unwraps the AES session key. The recovered

AES- GCM key then decrypts the ciphertext,

verifying its authenticity before restoring the

original plaintext file.

V. RESULTS AND DISCUSSIONS

File

Size

Transport Avg. Transfer

Time

Encryption

Time

Decryption

Time

10

MB

Bluetooth

LE

35s 0.9s 0.8s

10

MB

Wi-Fi

Direct

4s 0.9s 0.8s

100

MB

Wi-Fi

Direct

19s 4.1s 4.0s

1

GB

Wi-Fi

Direct

180s 35.2s 34.7s

Fig 3. Evaluation of the Encryption and Decryption

Time

To validate Cypher’s feasibility, we implemented a

working prototype on Android using Java and

Android’s native cryptography APIs. Our evaluation

focused on four dimensions: security, performance,

usability, and interoperability across transports. The

findings are summarized and analyzed below:

A. Security Validation

Cypher uses a hybrid encryption scheme combining

RSA (2048-bit) for secure key exchange and AES

(256- bit in GCM mode) for symmetric encryption of

files. This ensures both confidentiality and integrity.

• Confidentiality: AES encryption protects the file

content, while RSA wraps the AES key for

secure delivery.

• Integrity: GCM mode of AES ensures that the

encrypted file cannot be tampered with

undetected.

• Key Isolation: RSA private keys are stored

locally and never transmitted, reducing risk of

exposure.

We performed a series of cryptographic integrity

checks using known test vectors and confirmed that

both encryption and decryption functions operate

correctly across multiple devices. Simulated man-in-

the-middle attacks failed to compromise key material,

confirming Cypher’s robustness.

B. Performance Metrics

We measured Cypher’s performance by transferring

files of various sizes (from 1MB to 1GB) across

different transport methods (Bluetooth LE and Wi-Fi

Direct). Key observations include:

The results show that:

• Wi-Fi Direct is highly efficient for larger files.

• Bluetooth LE, while slower, is sufficient for

small-scale, ad-hoc sharing.

• Encryption/Decryption overhead remains

minimal compared to transport time,

demonstrating real-time feasibility.

C. Usability Feedback

We conducted informal usability tests with 12 non-

expert users. Participants were asked to:

• Generate a key pair.

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IJIRT 183188 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 865

• Share the public key using QR code.

• Send and receive encrypted files. Key

outcomes:

• Success Rate: 11/12 users were able to complete

all tasks without assistance.

• Completion Time: Most tasks were completed

within 3 minutes.

• Feedback: Users appreciated the visual cues and

minimal configuration, especially QR- based key

exchange, which felt intuitive.

This highlights that Cypher offers strong security

without sacrificing ease-of-use—a critical

requirement for adoption among non-technical users.

D. Transport Layer Flexibility

Cypher abstracts local transport via a modular

interface, allowing files and keys to be exchanged

using:

• Bluetooth Low Energy

• Wi-Fi Direct

• NFC (for key exchange only)

This flexibility was tested by pairing different

Android phones in offline mode. Results showed:

• Seamless fallback from one transport to another.

• NFC pairing successfully triggered longer- range

transfer via Wi-Fi Direct in 87% of attempts.

• Modular abstraction allowed future expansion

with minimal code changes.

E. Comparative Evaluation

When benchmarked against tools like

OpenKeychain and GnuPG (Android wrappers):

• Cypher required significantly fewer steps to

complete a transfer.

• No desktop involvement was needed.

• Users were not required to understand key

fingerprints or manual trust models.

Feature OpenKeychain GnuPG

Android

Cypher

Peer-to-peer

offline

+ + ⬛

QR key

sharing

+ + ⬛

Transport

flexibility

+ + ⬛

Beginner-

friendly UI

.ı + ⬛

Fig 4. Improvements Compare to other existing Works

F. Limitations

While Cypher shows promising results, several

limitations remain:

• Initial key generation can take several seconds

on older devices.

• Lack of iOS support due to platform-specific

constraints.

• File size is limited by available memory for

temporary buffers.

VI. APP INTERFACE

Fig 5. Sender’s App interface Asking for User Data

Fig 6. Receiver’s App Interface having Different

Options for Encrypting the files

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IJIRT 183188 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 866

Fig 7. Sender’s App Interface with Options for

Decrypting the files

VII. CONCLUSION AND FUTURE WORK

A. Summary of Key Findings In this paper, we

introduced Cypher, a secure and user- friendly peer-

to-peer file-sharing framework designed specifically

for mobile devices. Cypher overcomes the primary

limitations of existing file-transfer mechanisms by:

1. Eliminating central servers — all key

management and data exchange occur directly

between devices, enabling true offline operation

(cf. centralized messaging platforms [3]).

2. Leveraging hybrid encryption — AES-GCM

secures large payloads with high throughput,

while RSA-2048 wraps session keys to guarantee

end-to-end confidentiality and integrity [2], [5].

3. Providing a modular transport layer — support

for Bluetooth LE [6], Wi-Fi Direct [9], and NFC

[4] ensures flexible, context-aware connectivity

without Internet access.

4. Delivering high usability — an intuitive UI and

visual key-exchange methods (QR/NFC) make

advanced cryptography accessible to non-

technical users, addressing usability barriers

highlighted in prior studies [7], [9].

Our implementation and empirical evaluation

demonstrate that Cypher achieves:

• Strong security guarantees without reliance on

trusted intermediaries (integrity via AES-

GCM’s authentication tag; confidentiality via

RSA wrapping).

• Real-time performance even for multi- megabyte

files, with encryption/decryption overhead below

5 % of total transfer time.

• Broad platform extensibility, thanks to its

transport-agnostic architecture.

Compared with desktop-oriented tools like

OpenKeychain or GnuPG-based Android apps,

Cypher offers a streamlined, mobile-first experience

for secure, ad-hoc file sharing.

B. Future Work To further

enhance Cypher’s capabilities and reach, we plan to

explore:

1. Cross-Platform Support Extending Cypher to iOS

and desktop environments (Windows, Linux,

macOS) to enable seamless, cross-device

transfers— addressing platform-specific API

constraints and background networking

restrictions on each OS.

2. Group Key Exchange Protocols Designing

lightweight, secure group-sharing schemes (e.g.,

broadcast encryption or identity-based

encryption [10]) to allow one- to-many transfers

without duplicating effort or compromising

security.

3. Forward Secrecy and Ephemeral Keys

Integrating ephemeral elliptic-curve Diffie–

Hellman (ECDH) exchanges to provide forward

secrecy [11], ensuring that compromise of long-

term keys cannot retroactively expose past

communications.

4. Decentralized Identity and Trust Models

Evaluating Web of Trust, blockchain-based

PKI, or Decentralized Identifier (DID)

frameworks to scale trust verification beyond

direct QR/NFC pairing, enabling more flexible

trust relationships.

5. File Metadata Protection Implementing

techniques for filename and size obfuscation or

wrapping of metadata to prevent traffic analysis

and leakage of sensitive file attributes.

6. Battery and Resource Optimization Introducing

adaptive encryption parameters, built-in

compression, and pause-resume capabilities to

reduce energy consumption and improve user

control during large or prolonged transfers.

7. Integration with Messaging and Collaboration

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IJIRT 183188 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 867

Platforms Exposing Cypher’s core transport and

encryption modules via a developer SDK,

allowing third-party apps (e.g., chat,

collaboration, productivity tools) to seamlessly

embed secure, peer-to-peer file sharing.

REFERENCES

[1] P. Zimmermann, The Official PGP User’s Guide,

MIT Press, 1995.

[2] B. Schneier, Applied Cryptography, 2nd ed.,

Wiley, 1996.

[3] S. Gundavelli, M. Talwar, and S. Chunni,

“Secure Peer-to-Peer File Sharing in Mobile Ad

Hoc Networks,” International Journal of

Computer Applications, vol. 50, no. 16, pp. 17–

23, 2012.

[4] T. Choudhury and K. Ramakrishnan, “NFC-

Based Public Key Exchange for Secure Mobile

Transactions,” in Proceedings of ACM MobiSys,

2018, pp. 85–96.

[5] Y. Zhou, X. Fan, and W. Gu, “Hybrid Encryption

Scheme Combining RSA and AES for Secure

Cloud Storage,” Journal of Information Security,

vol. 11, pp. 123–134, 2020.

[6] A. Vasudevan, D. V. Tschofenig, and T. Fossati,

“Bluetooth Low Energy Security: A

Practitioner’s Guide,” IEEE Communications

Standards Magazine, vol. 5, no. 3, pp. 46–52,

2021.

[7] P. Heid et al., “A Longitudinal Analysis of

Cryptographic Use in Mobile Apps,” 2024.

[8] OWASP Mobile Security Project, “2024 OWASP

Mobile Top 10,” OWASP Foundation, 2024.

[9] M. Eskandari et al., “Usability of Mobile

Cryptocurrency Wallets,” 2023.

