Electroencephalographic Evidence of Bio-Electromagnetic Field Generation During Vayu Pendulum Therapy: AI-Enhanced Three-Stage EEG Analysis Using RMS Maximus 24

Dr. Shishir Mishra¹, Dr. Manoj Prabhakar²

¹BNYS, MD, AI & Computer Engineer – Bharat Copper Therapy and Research Center (BCTRC), Nagpur, India ²BHMS – Bharat Copper Therapy and Research Center (BCTRC), Nagpur, India

Abstract- Background: Vayu Pendulum Therapy, part of Bharat Copper Therapy, is claimed to generate low-frequency bio-electromagnetic oscillations and synchronized pulses that influence the human bio-field. AI-assisted EEG analysis offers objective detection of such subtle effects.

Objective: To record and analyze EEG changes before, during, and 1 minute after Vayu Pendulum Therapy using RMS Maximus 24, combined with AI-driven spectral and coherence analysis.

Methods: EEG recordings were made in three stages baseline, 1 minute after therapy start, and immediate therapy start. AI algorithms were used to extract frequency, amplitude, and synchronization data.

Results: Baseline: Dominant alpha/beta rhythms (8-25 Hz), mean amplitude 38.4 μV, synchronization.

1-Minute Vayu EEG: Low-Hz power \$185\%, coherence index 0.75, pulses regular at ~190 μV.

Immediate Vayu EEG: Low-Hz power ↑173%, coherence index 0.67, pulses irregular, peak 198 μV.

Conclusion: AI EEG confirms Vayu Pendulum Therapy produces rapid, measurable bio-electromagnetic patterns that stabilize within 1 minute, matching the therapy's claimed operational frequency.

1. INTRODUCTION

Bharat Copper Therapy integrates elemental energy principles into therapeutic applications. The Vayu Pendulum is designed to emit oscillations in the 0.5-8 Hz range with periodic high-energy pulses.

By combining EEG with AI-based analytics, therapy-induced frequency shifts can be measured with greater accuracy and objectivity than by human visual inspection alone.

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

2. METHODOLOGY

Equipment:

RMS Maximus 24-channel EEG system

Sensitivity: 7 µV/mm Bandpass: 0.1–70 Hz

AI modules: FFT spectral analysis, coherence

mapping, pulse detection

Subject:

One healthy adult volunteer, seated with eyes closed, in a quiet environment. EEG recordings analyzed

using AI algorithms to quantify changes.

Procedure:

1. Stage 1 - Baseline: 3-minute EEG without pendulum.

2. Stage 2 - Vayu Pendulum EEG (1 minute after

start): Ongoing therapy after 60 seconds.

3. Stage 3 – Immediate Vayu Pendulum EEG: At the

moment therapy began.

3. RESULTS

Stage 1 – Baseline EEG (No Pendulum)

Dominant alpha/beta bands.

Mean amplitude: 38.4 µV. Coherence index: 0.21.

No high-amplitude pulses detected.

Stage 2 – Vayu Pendulum EEG (1 minute after start)

Low-Hz power ↑ 185% from baseline.

Mean amplitude: 102.3 µV.

Coherence index: 0.75 (high stability).

Pulses: Regular every 4-5 sec, mean amplitude

190 µV.

Stage 3 – Immediate Vayu Pendulum EEG

Low-Hz power ↑ 173% from baseline.

Mean amplitude: 94.6 μV. Coherence index: 0.67.

Pulses: Peak 198 μV, irregular.

AI Statistical Summary Table:

Stage 1 – Baseline Parameter Stage 2 –

1 Min Vayu Stage 3 – Immediate Vayu

Low-Hz Power Change +185% +173% Mean Amplitude (µV) 38.4 102.3 94.6 Coherence Index 0.21 0.75 0.67 190 Pulse Amplitude (μV) None (regular) 198 (irregular)

4. FREQUENCY MATCHING ANALYSIS

The claimed Vayu Pendulum output range (0.5–8 Hz) matches the AI-measured dominant band (0.48-7.9 Hz).

No similar activity was present in baseline, confirming therapy-specific origin.

5. CONCLUSION

AI EEG analysis demonstrates that Vayu Pendulum Therapy immediately alters brain-field electrical activity, producing low-Hz coherent oscillations with high-energy pulses.

Within 1 minute, the pattern stabilizes into rhythmic pulses, indicating bio-field entrainment.

REFERENCES

- [1] Adey, W. R. (1993). Biological effects of electromagnetic fields. Journal of Cellular Biochemistry, 51(4), 410-416.
- [2] Cvetkovic, D., & Cosic, I. (2009). Alterations of human EEG responses to ELF electromagnetic field. International Journal of Bioelectromagnetism, 11(2), 71–80.
- [3] Vollono, C.. et al. (2021).Electroencephalography: Technical aspects and clinical applications. Journal of Neurophysiology, 125(3), 901-918.
- [4] Searle, A., & Phillips, D. (2004). The therapeutic properties of copper and copper-containing compounds. Complementary Therapies Clinical Practice, 10(3), 162–169.