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Abstract—Supervised machine learning classification
algorithms are widely applied across diverse domains,
including healthcare, finance, and natural language
processing. Selecting the most appropriate classifier for
a given task remains a challenge, particularly due to
variations in dataset characteristics and performance
trade-offs. This study presents a comprehensive
empirical evaluation of six widely used classification
algorithms: Logistic Regression, Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), Naive
Bayes, Decision Tree, and Random Forest [1], [3]. Each
model is assessed on multiple publicly available
benchmark datasets using standard performance
metrics, including Accuracy, Precision, Recall, F1-Score,
Area Under the Receiver Operating Characteristic
Curve (AUC), and Confusion Matrix analysis. To ensure
a fair comparison, all classifiers are trained under
consistent experimental conditions with hyper
parameter tuning applied where applicable [4], [14]. The
results highlight key differences in model behavior,
including strengths and limitations in terms of accuracy,
interpretability, = computational efficiency, and
robustness to data imbalance [1], [7]. This study aims to
assist researchers and practitioners in selecting suitable
classification models based on empirical evidence and
task-specific requirements.

Index Terms—Supervised Machine Learning,
Classification Algorithms, Hyper parameter Tuning,
Performance Evaluation, Random Forest, Support
Vector Machine (SVM)

1. INTRODUCTION
In recent years, machine learning (ML) has become an

essential paradigm for building data-driven systems
capable of learning from examples and making
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predictions. Among the core tasks in ML, supervised
classification plays a crucial role in applications such
as spam detection, disease diagnosis, credit risk
assessment, sentiment analysis, and fraud detection
[1], [7]. The performance of a classification system
depends significantly on the choice of algorithm and
the characteristics of the dataset, including feature
distribution, dimensionality, and class balance [1], [7].
A wide variety of classification algorithms have been
developed, each with its own theoretical foundations,
computational trade-offs, and ideal use cases. Popular
models such as Logistic Regression, Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), Naive
Bayes, Decision Tree, and Random Forest are
frequently used in both academic research and real-
world applications [2], [7]. While some algorithms
emphasize simplicity and interpretability, others are
designed for higher accuracy or better scalability with
complex data [11].

Despite the extensive use of these models, selecting
the most appropriate classifier for a given problem
remains non-trivial. Model performance can vary
widely depending on data properties, and different
evaluation metrics may lead to different conclusions
about a model’s effectiveness. Therefore, a systematic
comparison of classification algorithms under
consistent experimental conditions is essential to
understand their relative strengths, weaknesses, and
practical suitability [4], [9].

This study aims to provide a comprehensive empirical
comparison of commonly used supervised
classification algorithms across multiple benchmark
datasets. Each algorithm is evaluated using standard
performance metrics, including Accuracy, Precision,
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Recall, F1-Score, AUC, and confusion matrix
analysis. By conducting experiments under uniform
settings and applying hyper parameter tuning where
appropriate, this work offers empirical insights that
can inform the selection of classifiers based on
specific application requirements

2. CLASSIFICATION ALGORITHMS: A
COMPREHENSIVE OVERVIEW

Supervised classification is a fundamental task in
machine learning, where the objective is to predict
discrete class labels from input features based on
patterns learned from labeled training data. Numerous
algorithms have been developed for this purpose, each
grounded in different learning paradigms and offering
distinct trade-offs in terms of accuracy,
interpretability, scalability, and robustness [1]. This
section provides a refined conceptual overview of six
widely used classification algorithms: Logistic
Regression, Support Vector Machine, K-Nearest
Neighbors, Naive Bayes, Decision Tree, and Random
Forest.

Logistic Regression (LR) is a probabilistic, linear
classification model that estimates the likelihood of a
binary outcome using the logistic function. Its primary
strengths lie in its simplicity, interpretability, and
computational efficiency. Model coefficients directly
indicate the influence of each input feature, making it
especially useful in domains such as healthcare or
social sciences where model transparency is critical
[11, [7]. However, its linear decision boundaries limit
its performance on complex or non-linear datasets, and
it assumes minimal multicollinearity among input
variables.

Support Vector Machine (SVM) is a margin-based
classifier that seeks the optimal hyperplane that
maximizes separation between classes in the feature
space. The use of kernel functions enables SVM to
capture non-linear relationships, making it effective in
high-dimensional settings. It demonstrates strong
generalization performance, especially in text and
image classification tasks. Nonetheless, SVM can be
computationally expensive, sensitive to the choice of
kernel and hyper parameters, and less scalable to large
datasets.

K-Nearest Neighbors (KNN) is a non-parametric,
instance-based learning algorithm that classifies
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samples based on the majority vote of their nearest
neighbors in the training set. It is simple to implement,
requires no model training, and adapts naturally to
multi-class problems. However, it is highly sensitive
to the choice of distance metric and the number of
neighbors (k), and it suffers from high computational
cost during prediction. Moreover, its performance
deteriorates in high-dimensional spaces due to the
curse of dimensionality [1].

Naive Bayes (NB) is a family of probabilistic
classifiers based on Bayes’ Theorem, under the
assumption of conditional independence among
features given the class label. Despite this strong
assumption, Naive Bayes performs well in many
practical  applications,  particularly in  text
classification and spam filtering, where high-
dimensional, sparse data are common. It is extremely
fast, scalable, and robust to irrelevant features.
However, its independence assumption can lead to
suboptimal performance when features are correlated

[1].

Decision Trees (DT) are hierarchical models that
recursively split the feature space into sub regions
based on criteria such as information gain or Gini
impurity. They are inherently interpretable, support
both categorical and numerical features, and capture
non-linear relationships without requiring feature
scaling. However, they are prone to overfitting,
especially in the absence of pruning, and their
structure can be unstable with small variations in data.
Random Forest (RF) is an ensemble learning method
that constructs multiple decision trees using
bootstrapped training samples and random feature
subsets, combining their outputs through majority
voting. This approach improves predictive accuracy
and reduces overfitting compared to individual trees.
Random Forest is robust, scalable, and provides
estimates of feature importance, but its ensemble
nature limits interpretability and increases training
time and memory requirements [1], [11].

Each of these classifiers brings unique advantages
suited to specific data characteristics and problem
contexts. In the subsequent sections, we evaluate their
empirical performance across multiple benchmark
datasets using standard evaluation metrics, offering a
comparative analysis to guide informed algorithm
selection.
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3. RESEARCH OBJECTIVE

The primary aim of this study is to empirically

evaluate the performance of widely used supervised

machine learning classification algorithms. The
specific objectives are as follows:

1. To compare the classification performance of
Logistic Regression, Support Vector Machine, K-
Nearest Neighbors, Naive Bayes, Decision Tree,
and Random Forest across multiple benchmark
datasets using standard evaluation metrics such as
Accuracy, Precision, Recall, F1-Score, AUC, and
the Confusion Matrix.

2. To examine the influence of dataset characteristics
such as class distribution, feature dimensionality,
and sample size on the effectiveness and behavior
of each algorithm [1].

3. To provide practical insights that support the
selection of suitable classification models based
on empirical evidence, considering trade-offs

between  accuracy, interpretability, and
computational efficiency [4], [14].

4. METHODOLOGY

This section outlines the experimental framework
adopted to empirically compare the performance of six
popular machine learning classification algorithms
across multiple benchmark datasets. The methodology
covers dataset selection, preprocessing, model training
and tuning, evaluation metrics, and experiment design
to ensure a rigorous and fair assessment.

4.1. Dataset selection

To capture diverse characteristics and challenges in
classification tasks, we selected three widely used
publicly available benchmark datasets [2] [12],
summarized in Table 1.

These datasets vary in size, feature dimensionality,
class balance, and domain, providing a comprehensive
testing ground for the algorithms.

Dataset Name Domain Number of Instances Number of Number of Class
Features Classes Distribution
Iris Biology 150 4 3 Balanced
Wine Chemistry 178 13 3 Slightly
imbalanced
Breast Cancer Healthcare 569 30 2 Mildly
imbalanced
(357/212)

Table 1: Summary of datasets used

4.2. Data Preprocessing

Before training the models, each dataset underwent a
consistent set of pre-processing steps to ensure data
quality and compatibility with the machine learning
algorithms used. First, the datasets were examined for
missing values; fortunately, none were found in any of
the selected datasets, eliminating the need for
imputation or removal of incomplete records.

Next, numerical features were standardized using z-
score normalization, which transforms the data to have
zero mean and unit variance. This step is particularly
important for algorithms sensitive to the scale of input
features, such as Support Vector Machines (SVM) and
K-Nearest Neighbours (KNN), as it ensures that each
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feature contributes equally to the distance calculations
or optimization processes involved in training [14].
Since the chosen datasets did not contain categorical
variables, no encoding techniques, such as one-hot
encoding or label encoding, were necessary.

Finally, each dataset was split into training and testing
subsets, using a 70:30 ratios. The splitting was
performed using stratified sampling, which preserves
the original class distribution in both subsets. This
approach helps prevent bias during training and
ensures that performance evaluation reflects the true
distribution of classes in the data.
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4.3 Model Training and Hyper parameter Tuning

The six classification algorithms under study—
Logistic Regression (LR), Support Vector Machine
(SVM), K-Nearest Neighbours (KNN), Naive Bayes
(NB), Decision Tree (DT), and Random Forest (RF)—
were implemented using Python’s widely-used scikit-
learn library (version 1.2.2) [14]. The experiments
were conducted in a Jupyter Notebook environment to
facilitate reproducibility and interactive analysis [10],
[13].

To achieve a fair and unbiased comparison across
models, hyper parameter tuning was systematically
performed for each algorithm. This involved applying
a grid search strategy combined with 5-fold cross-
validation on the training data. Grid search

exhaustively explores predefined combinations of
hyperparameter values to identify the configuration
that yields the best cross-validated performance [4],
[9].

By tuning hyper parameters such as the regularization
strength in Logistic Regression, kernel type and
gamma in SVM, or the number of neighbours in KNN,
the study ensured that each algorithm was evaluated at
its optimal or near-optimal settings. This process helps
avoid skewed results that could arise from default
parameter settings and provides a more realistic
picture of the relative strengths of each classification
model. Table 2 summarizes the hyper parameter
search spaces. and 30% testing subsets, using stratified
sampling to preserve class proportions.

Algorithm

Hyper parameters Tuned

Search Values

Logistic Regression

Regularization strength (C)

[0.01,0.1, 1, 10, 100]

SVM Kernel type ['linear', 'rbf']
Regularization strength (C) [0.1, 1, 10]
Kernel coefficient (gamma, for rbf) ['scale’, 'auto']
KNN Number of neighbors (k) [3,5,7,9]
Distance metric [‘euclidean', 'manhattan']
Naive Bayes No hyper parameters tuned (default) N/A

Decision Tree

Maximum tree depth

[None, 5, 10, 20]

Minimum samples split

[2, 5, 10]

Random Forest

Number of trees (estimators)

[50, 100, 200]

Maximum tree depth

[None, 10, 20]

Table 2: Hyper parameter search space for each algorithm

5. EVALUATION METRICS
To ensure a comprehensive and balanced evaluation of

model performance, multiple standard classification
metrics were employed [5], [6]. Accuracy was used to
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measure the overall proportion of correctly classified
instances across all classes. However, accuracy alone
can be misleading in imbalanced datasets. Therefore,
Precision and Recall were also calculated. Precision
quantifies the proportion of true positive predictions
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among all instances classified as positive, indicating
the classifier’s reliability in predicting the positive
class. Recall (also known as Sensitivity) measures the
ability of the model to correctly identify actual
positive instances. To balance these two measures, the
F1-Score, the harmonic mean of Precision and Recall,
was used [5]. It provides a single metric that considers
both false positives and false negatives. Additionally,
the Area Under the Receiver Operating Characteristic
Curve (AUC-ROC) was used to assess the classifiers’
ability to distinguish between classes, particularly in
binary classification tasks. Finally, the Confusion
Matrix was analyzed to provide detailed insights into
the classification performance by showing the
distribution of true positives, false positives, true
negatives, and false negatives for each class.

5.1. Experimental Procedure

For each dataset, the experiments followed a
consistent and rigorous protocol. The data was first
split into training and testing subsets using a 70:30
ratios, with stratified sampling employed to maintain
the original class distribution in both splits. Hyper
parameter tuning was conducted on the training set

using a 5-fold cross-validation strategy to identify

optimal settings for each classifier [8], [15]. After
selecting the best hyper parameters, each model was
trained on the entire training set and subsequently
evaluated on the unseen test data. To ensure robustness
and account for performance variability due to random
splits, the entire experimental pipeline—including
data splitting, training, and evaluation—was repeated
ten times with different random seeds. The final
reported results represent the average of these ten
iterations, ensuring greater statistical stability and
reliability of the findings.

6. RESULTS AND DISCUSSION

This section presents the empirical findings from the
experiments described earlier, analyzing the
comparative performance of the six classification
algorithms across the three benchmark datasets. We
report averaged results over 10 random train-test splits
to ensure robustness.

6.1 Comparative Performance Metrics

Table3 summarizes the mean evaluation metrics—
Accuracy, Precision, Recall, F1-Score, and AUC—for
each algorithm on each dataset.

Algorithm Dataset Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) AUC

Logistic Iris 96.7+1.2 96.5+1.5 96.3+14 96.4+1.3 0.98 +0.01
Regression
Wine 94.1+14 93.7+1.7 93.5+1.5 93.6+1.6 0.97+0.01
Breast Cancer 95.0+0.8 948+ 1.0 939+1.1 943+ 1.0 0.96 +0.01
SVM Iris 97.3+1.0 97.0+1.2 96.9+1.1 96.9 £ 1.1 0.99 £ 0.01
Wine 955+1.2 953+1.5 95.0+1.3 95.1+1.4 0.98 £0.01
Breast Cancer 96.4+0.7 96.1 £0.8 95.7+£0.9 95.9+0.8 0.98 £0.01
KNN Iris 95.0+1.4 94.8+1.6 945+1.5 94.6+1.5 0.96 £ 0.02
Wine 923+1.8 92.1+2.0 91.5+1.9 91.8+1.9 0.94 £ 0.02
Breast Cancer 932+ 1.1 928+ 1.3 92.0+14 924+1.3 0.93 £0.02
Naive Bayes Iris 93.5+1.7 929+19 92.7+1.8 92.8+1.8 0.94 £ 0.02
Wine 90.7 2.1 90.2+23 89.5+22 89.8+22 0.91+0.03
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Breast Cancer 91.6+15 91.0+1.6 90.5+1.7 90.7+1.6 0.90+0.03

Decision Tree Iris 940+15 93.5+1.7 932+1.6 933+1.6 0.95+0.02
Wine 91.8+1.9 91.3+2.1 90.7+2.0 91.0+2.0 0.92 +0.02

Breast Cancer 925+1.2 92.0+1.4 913+1.5 91.6+1.4 0.91 £0.02

Random Forest Iris 97.0+1.1 96.8+1.3 96.7+1.2 96.7+1.2 0.99 £0.01
Wine 95.8+1.3 955+ 1.5 952+14 953+1.4 0.98 +0.01

Breast Cancer 97.1+£0.8 96.9+0.9 96.6£0.9 96.7+0.9 0.98 £ 0.01

Table 3: Average performance metrics of classification algorithms across datasets (mean =+ std).

6.2 Discussion

From Table 3, Random Forest and SVM consistently
achieved the highest performance across all datasets,
demonstrating their ability to capture complex patterns
in data, including non-linear relationships. Logistic
Regression, despite its simplicity, also performed
competitively, especially on the Breast Cancer dataset,
suggesting the underlying linear separability of this
dataset.

KNN showed reasonable performance but lagged
behind more sophisticated algorithms, which can be
attributed to its sensitivity to feature scaling and local
noise. Naive Bayes, while efficient, had the lowest
overall scores, likely due to its strong independence
assumptions being violated in real-world datasets.

Decision Trees performed moderately, offering
interpretability at the cost of slightly lower predictive
power. The results suggest that ensemble methods like
Random Forest strike a favorable balance between
accuracy and robustness.

6.3 Confusion Matrix Analysis

Figure 1 illustrates the confusion matrix for the
Random Forest classifier on the Breast Cancer dataset,
highlighting its ability to correctly classify both
positive and negative cases with minimal
misclassifications.

Figure 1: Confusion matrix for Random Forest on
Breast Cancer dataset.
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Confusion Matrix: Random Forest on Breast Cancer Dataset
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6.4 ROC Curves

Figure 2 presents the ROC curves of the top two
classifiers—Random Forest and SVM-—across the
datasets. Both classifiers exhibit high true positive
rates with low false positives, with AUC scores
exceeding 0.95 consistently.

Figure 2: ROC curves for Random Forest and SVM on
each dataset.
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6.5 Computational Efficiency

Figure 3: Compares the average training and
prediction times (in seconds) for each algorithm on the
Breast Cancer dataset.
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7. CONCLUSION

This study presented an empirical comparison of six
widely used machine learning classification
algorithms—Logistic Regression, Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), Naive
Bayes, Decision Tree, and Random Forest—using
standard benchmark datasets [12] and evaluation
metrics. Each model was evaluated rigorously using
stratified cross-validation, hyper parameter tuning,
and repeated trials to ensure fair and robust
performance assessment [9].

The results demonstrate that Random Forest and SVM
consistently outperformed other classifiers in terms of
accuracy, Fl-score, and AUC across all datasets,
highlighting their effectiveness in handling both linear
and non-linear decision boundaries. Logistic
Regression showed strong performance on linearly
separable data and remained competitive due to its
interpretability and low computational overhead.
KNN and Decision Trees offered reasonable
classification performance, but their sensitivity to data
noise and structure made them less reliable in some
scenarios. Naive Bayes, although computationally
efficient, showed limitations due to its strong
independence assumptions, particularly on more
complex datasets.

Beyond accuracy, the study also highlighted important
trade-offs among the models in terms of
interpretability, computational efficiency, and
robustness. These findings can guide practitioners and
researchers in selecting appropriate classifiers based
on specific task requirements and dataset
characteristics.
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For future work, the scope can be extended to include
deep learning models and ensemble boosting
techniques  like XGBoost and LightGBM.
Additionally, evaluating classifiers on larger, real-
world imbalanced datasets and incorporating
explainability methods could provide further practical
insights.
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