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Abstract—Supervised machine learning classification 

algorithms are widely applied across diverse domains, 

including healthcare, finance, and natural language 

processing. Selecting the most appropriate classifier for 

a given task remains a challenge, particularly due to 

variations in dataset characteristics and performance 

trade-offs. This study presents a comprehensive 

empirical evaluation of six widely used classification 

algorithms: Logistic Regression, Support Vector 

Machine (SVM), K-Nearest Neighbors (KNN), Naive 

Bayes, Decision Tree, and Random Forest [1], [3]. Each 

model is assessed on multiple publicly available 

benchmark datasets using standard performance 

metrics, including Accuracy, Precision, Recall, F1-Score, 

Area Under the Receiver Operating Characteristic 

Curve (AUC), and Confusion Matrix analysis. To ensure 

a fair comparison, all classifiers are trained under 

consistent experimental conditions with hyper 

parameter tuning applied where applicable [4], [14]. The 

results highlight key differences in model behavior, 

including strengths and limitations in terms of accuracy, 

interpretability, computational efficiency, and 

robustness to data imbalance [1], [7]. This study aims to 

assist researchers and practitioners in selecting suitable 

classification models based on empirical evidence and 

task-specific requirements. 

 

Index Terms—Supervised Machine Learning, 

Classification Algorithms, Hyper parameter Tuning, 

Performance Evaluation, Random Forest, Support 

Vector Machine (SVM) 

 

1. INTRODUCTION 

 

In recent years, machine learning (ML) has become an 

essential paradigm for building data-driven systems 

capable of learning from examples and making 

predictions. Among the core tasks in ML, supervised 

classification plays a crucial role in applications such 

as spam detection, disease diagnosis, credit risk 

assessment, sentiment analysis, and fraud detection 

[1], [7]. The performance of a classification system 

depends significantly on the choice of algorithm and 

the characteristics of the dataset, including feature 

distribution, dimensionality, and class balance [1], [7]. 

A wide variety of classification algorithms have been 

developed, each with its own theoretical foundations, 

computational trade-offs, and ideal use cases. Popular 

models such as Logistic Regression, Support Vector 

Machine (SVM), K-Nearest Neighbors (KNN), Naive 

Bayes, Decision Tree, and Random Forest are 

frequently used in both academic research and real-

world applications [2], [7]. While some algorithms 

emphasize simplicity and interpretability, others are 

designed for higher accuracy or better scalability with 

complex data [11]. 

Despite the extensive use of these models, selecting 

the most appropriate classifier for a given problem 

remains non-trivial. Model performance can vary 

widely depending on data properties, and different 

evaluation metrics may lead to different conclusions 

about a model’s effectiveness. Therefore, a systematic 

comparison of classification algorithms under 

consistent experimental conditions is essential to 

understand their relative strengths, weaknesses, and 

practical suitability [4], [9]. 

This study aims to provide a comprehensive empirical 

comparison of commonly used supervised 

classification algorithms across multiple benchmark 

datasets. Each algorithm is evaluated using standard 

performance metrics, including Accuracy, Precision, 



© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002 

IJIRT 183223 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 972 

Recall, F1-Score, AUC, and confusion matrix 

analysis. By conducting experiments under uniform 

settings and applying hyper parameter tuning where 

appropriate, this work offers empirical insights that 

can inform the selection of classifiers based on 

specific application requirements 

 

2. CLASSIFICATION ALGORITHMS: A 

COMPREHENSIVE OVERVIEW 

 

Supervised classification is a fundamental task in 

machine learning, where the objective is to predict 

discrete class labels from input features based on 

patterns learned from labeled training data. Numerous 

algorithms have been developed for this purpose, each 

grounded in different learning paradigms and offering 

distinct trade-offs in terms of accuracy, 

interpretability, scalability, and robustness [1]. This 

section provides a refined conceptual overview of six 

widely used classification algorithms: Logistic 

Regression, Support Vector Machine, K-Nearest 

Neighbors, Naive Bayes, Decision Tree, and Random 

Forest.  

Logistic Regression (LR) is a probabilistic, linear 

classification model that estimates the likelihood of a 

binary outcome using the logistic function. Its primary 

strengths lie in its simplicity, interpretability, and 

computational efficiency. Model coefficients directly 

indicate the influence of each input feature, making it 

especially useful in domains such as healthcare or 

social sciences where model transparency is critical 

[1], [7]. However, its linear decision boundaries limit 

its performance on complex or non-linear datasets, and 

it assumes minimal multicollinearity among input 

variables.  

Support Vector Machine (SVM) is a margin-based 

classifier that seeks the optimal hyperplane that 

maximizes separation between classes in the feature 

space. The use of kernel functions enables SVM to 

capture non-linear relationships, making it effective in 

high-dimensional settings. It demonstrates strong 

generalization performance, especially in text and 

image classification tasks. Nonetheless, SVM can be 

computationally expensive, sensitive to the choice of 

kernel and hyper parameters, and less scalable to large 

datasets.  

 

K-Nearest Neighbors (KNN) is a non-parametric, 

instance-based learning algorithm that classifies 

samples based on the majority vote of their nearest 

neighbors in the training set. It is simple to implement, 

requires no model training, and adapts naturally to 

multi-class problems. However, it is highly sensitive 

to the choice of distance metric and the number of 

neighbors (k), and it suffers from high computational 

cost during prediction. Moreover, its performance 

deteriorates in high-dimensional spaces due to the 

curse of dimensionality [1]. 

 

Naive Bayes (NB) is a family of probabilistic 

classifiers based on Bayes’ Theorem, under the 

assumption of conditional independence among 

features given the class label. Despite this strong 

assumption, Naive Bayes performs well in many 

practical applications, particularly in text 

classification and spam filtering, where high-

dimensional, sparse data are common. It is extremely 

fast, scalable, and robust to irrelevant features. 

However, its independence assumption can lead to 

suboptimal performance when features are correlated 

[1].  

 

Decision Trees (DT) are hierarchical models that 

recursively split the feature space into sub regions 

based on criteria such as information gain or Gini 

impurity. They are inherently interpretable, support 

both categorical and numerical features, and capture 

non-linear relationships without requiring feature 

scaling. However, they are prone to overfitting, 

especially in the absence of pruning, and their 

structure can be unstable with small variations in data.  

Random Forest (RF) is an ensemble learning method 

that constructs multiple decision trees using 

bootstrapped training samples and random feature 

subsets, combining their outputs through majority 

voting. This approach improves predictive accuracy 

and reduces overfitting compared to individual trees. 

Random Forest is robust, scalable, and provides 

estimates of feature importance, but its ensemble 

nature limits interpretability and increases training 

time and memory requirements [1], [11].  

Each of these classifiers brings unique advantages 

suited to specific data characteristics and problem 

contexts. In the subsequent sections, we evaluate their 

empirical performance across multiple benchmark 

datasets using standard evaluation metrics, offering a 

comparative analysis to guide informed algorithm 

selection. 
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3. RESEARCH OBJECTIVE 

 

The primary aim of this study is to empirically 

evaluate the performance of widely used supervised 

machine learning classification algorithms. The 

specific objectives are as follows:  

1. To compare the classification performance of 

Logistic Regression, Support Vector Machine, K-

Nearest Neighbors, Naive Bayes, Decision Tree, 

and Random Forest across multiple benchmark 

datasets using standard evaluation metrics such as 

Accuracy, Precision, Recall, F1-Score, AUC, and 

the Confusion Matrix.  

2. To examine the influence of dataset characteristics 

such as class distribution, feature dimensionality, 

and sample size on the effectiveness and behavior 

of each algorithm [1].  

3. To provide practical insights that support the 

selection of suitable classification models based 

on empirical evidence, considering trade-offs 

between accuracy, interpretability, and 

computational efficiency [4], [14]. 

 

4. METHODOLOGY 

 

This section outlines the experimental framework 

adopted to empirically compare the performance of six 

popular machine learning classification algorithms 

across multiple benchmark datasets. The methodology 

covers dataset selection, preprocessing, model training 

and tuning, evaluation metrics, and experiment design 

to ensure a rigorous and fair assessment. 

4.1. Dataset selection 

To capture diverse characteristics and challenges in 

classification tasks, we selected three widely used 

publicly available benchmark datasets [2] [12], 

summarized in Table 1.  

These datasets vary in size, feature dimensionality, 

class balance, and domain, providing a comprehensive 

testing ground for the algorithms. 

 

Dataset Name Domain Number of Instances Number of 

Features 

Number of 

Classes 

Class 

Distribution 

Iris Biology 150 4 3 Balanced 

Wine Chemistry 178 13 3 Slightly 

imbalanced 

Breast Cancer Healthcare 569 30 2 Mildly 

imbalanced 

(357/212) 

Table 1: Summary of datasets used  

 

4.2. Data Preprocessing 

Before training the models, each dataset underwent a 

consistent set of pre-processing steps to ensure data 

quality and compatibility with the machine learning 

algorithms used. First, the datasets were examined for 

missing values; fortunately, none were found in any of 

the selected datasets, eliminating the need for 

imputation or removal of incomplete records. 

Next, numerical features were standardized using z-

score normalization, which transforms the data to have 

zero mean and unit variance. This step is particularly 

important for algorithms sensitive to the scale of input 

features, such as Support Vector Machines (SVM) and 

K-Nearest Neighbours (KNN), as it ensures that each 

feature contributes equally to the distance calculations 

or optimization processes involved in training [14]. 

Since the chosen datasets did not contain categorical 

variables, no encoding techniques, such as one-hot 

encoding or label encoding, were necessary. 

 

Finally, each dataset was split into training and testing 

subsets, using a 70:30 ratios. The splitting was 

performed using stratified sampling, which preserves 

the original class distribution in both subsets. This 

approach helps prevent bias during training and 

ensures that performance evaluation reflects the true 

distribution of classes in the data. 
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4.3 Model Training and Hyper parameter Tuning 

The six classification algorithms under study—

Logistic Regression (LR), Support Vector Machine 

(SVM), K-Nearest Neighbours (KNN), Naive Bayes 

(NB), Decision Tree (DT), and Random Forest (RF)—

were implemented using Python’s widely-used scikit-

learn library (version 1.2.2) [14]. The experiments 

were conducted in a Jupyter Notebook environment to 

facilitate reproducibility and interactive analysis [10], 

[13]. 

To achieve a fair and unbiased comparison across 

models, hyper parameter tuning was systematically 

performed for each algorithm. This involved applying 

a grid search strategy combined with 5-fold cross-

validation on the training data. Grid search 

exhaustively explores predefined combinations of 

hyperparameter values to identify the configuration 

that yields the best cross-validated performance [4], 

[9]. 

By tuning hyper parameters such as the regularization 

strength in Logistic Regression, kernel type and 

gamma in SVM, or the number of neighbours in KNN, 

the study ensured that each algorithm was evaluated at 

its optimal or near-optimal settings. This process helps 

avoid skewed results that could arise from default 

parameter settings and provides a more realistic 

picture of the relative strengths of each classification 

model. Table 2 summarizes the hyper parameter 

search spaces. and 30% testing subsets, using stratified 

sampling to preserve class proportions. 

 

 

Table 2: Hyper parameter search space for each algorithm 

 

5. EVALUATION METRICS 

 

To ensure a comprehensive and balanced evaluation of 

model performance, multiple standard classification 

metrics were employed [5], [6]. Accuracy was used to 

measure the overall proportion of correctly classified 

instances across all classes. However, accuracy alone 

can be misleading in imbalanced datasets. Therefore, 

Precision and Recall were also calculated. Precision 

quantifies the proportion of true positive predictions 

Algorithm Hyper parameters Tuned Search Values 

Logistic Regression Regularization strength (C) [0.01, 0.1, 1, 10, 100] 

SVM Kernel type ['linear', 'rbf'] 

 Regularization strength (C) [0.1, 1, 10] 

 Kernel coefficient (gamma, for rbf) ['scale', 'auto'] 

KNN Number of neighbors (k) [3, 5, 7, 9] 

 Distance metric ['euclidean', 'manhattan'] 

Naive Bayes No hyper parameters tuned (default) N/A 

Decision Tree Maximum tree depth [None, 5, 10, 20] 

 Minimum samples split [2, 5, 10] 

Random Forest Number of trees (estimators) [50, 100, 200] 

 

 Maximum tree depth [None, 10, 20] 
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among all instances classified as positive, indicating 

the classifier’s reliability in predicting the positive 

class. Recall (also known as Sensitivity) measures the 

ability of the model to correctly identify actual 

positive instances. To balance these two measures, the 

F1-Score, the harmonic mean of Precision and Recall, 

was used [5]. It provides a single metric that considers 

both false positives and false negatives. Additionally, 

the Area Under the Receiver Operating Characteristic 

Curve (AUC-ROC) was used to assess the classifiers’ 

ability to distinguish between classes, particularly in 

binary classification tasks. Finally, the Confusion 

Matrix was analyzed to provide detailed insights into 

the classification performance by showing the 

distribution of true positives, false positives, true 

negatives, and false negatives for each class. 

 

5.1.  Experimental Procedure 

For each dataset, the experiments followed a 

consistent and rigorous protocol. The data was first 

split into training and testing subsets using a 70:30 

ratios, with stratified sampling employed to maintain 

the original class distribution in both splits. Hyper 

parameter tuning was conducted on the training set 

using a 5-fold cross-validation strategy to identify 

optimal settings for each classifier [8], [15]. After 

selecting the best hyper parameters, each model was 

trained on the entire training set and subsequently 

evaluated on the unseen test data. To ensure robustness 

and account for performance variability due to random 

splits, the entire experimental pipeline—including 

data splitting, training, and evaluation—was repeated 

ten times with different random seeds. The final 

reported results represent the average of these ten 

iterations, ensuring greater statistical stability and 

reliability of the findings. 

 

6. RESULTS AND DISCUSSION 

 

This section presents the empirical findings from the 

experiments described earlier, analyzing the 

comparative performance of the six classification 

algorithms across the three benchmark datasets. We 

report averaged results over 10 random train-test splits 

to ensure robustness. 

6.1 Comparative Performance Metrics 

Table3 summarizes the mean evaluation metrics—

Accuracy, Precision, Recall, F1-Score, and AUC—for 

each algorithm on each dataset. 

 

Algorithm Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC 

Logistic 

Regression 

Iris 96.7 ± 1.2 96.5 ± 1.5 96.3 ± 1.4 96.4 ± 1.3 0.98 ± 0.01 

 Wine 94.1 ± 1.4 93.7 ± 1.7 93.5 ± 1.5 93.6 ± 1.6 0.97 ± 0.01 

 Breast Cancer 95.0 ± 0.8 94.8 ± 1.0 93.9 ± 1.1 94.3 ± 1.0 0.96 ± 0.01 

SVM Iris 97.3 ± 1.0 97.0 ± 1.2 96.9 ± 1.1 96.9 ± 1.1 0.99 ± 0.01 

 Wine 95.5 ± 1.2 95.3 ± 1.5 95.0 ± 1.3 95.1 ± 1.4 0.98 ± 0.01 

 Breast Cancer 96.4 ± 0.7 96.1 ± 0.8 95.7 ± 0.9 95.9 ± 0.8 0.98 ± 0.01 

KNN Iris 95.0 ± 1.4 94.8 ± 1.6 94.5 ± 1.5 94.6 ± 1.5 0.96 ± 0.02 

 Wine 92.3 ± 1.8 92.1 ± 2.0 91.5 ± 1.9 91.8 ± 1.9 0.94 ± 0.02 

 Breast Cancer 93.2 ± 1.1 92.8 ± 1.3 92.0 ± 1.4 92.4 ± 1.3 0.93 ± 0.02 

Naive Bayes Iris 93.5 ± 1.7 92.9 ± 1.9 92.7 ± 1.8 92.8 ± 1.8 0.94 ± 0.02 

 Wine 90.7 ± 2.1 90.2 ± 2.3 89.5 ± 2.2 89.8 ± 2.2 0.91 ± 0.03 
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 Breast Cancer 91.6 ± 1.5 91.0 ± 1.6 90.5 ± 1.7 90.7 ± 1.6 0.90 ± 0.03 

Decision Tree Iris 94.0 ± 1.5 93.5 ± 1.7 93.2 ± 1.6 93.3 ± 1.6 0.95 ± 0.02 

 Wine 91.8 ± 1.9 91.3 ± 2.1 90.7 ± 2.0 91.0 ± 2.0 0.92 ± 0.02 

 Breast Cancer 92.5 ± 1.2 92.0 ± 1.4 91.3 ± 1.5 91.6 ± 1.4 0.91 ± 0.02 

Random Forest Iris 97.0 ± 1.1 96.8 ± 1.3 96.7 ± 1.2 96.7 ± 1.2 0.99 ± 0.01 

 Wine 95.8 ± 1.3 95.5 ± 1.5 95.2 ± 1.4 95.3 ± 1.4 0.98 ± 0.01 

 Breast Cancer 97.1 ± 0.8 96.9 ± 0.9 96.6 ± 0.9 96.7 ± 0.9 0.98 ± 0.01 

Table 3: Average performance metrics of classification algorithms across datasets (mean ± std). 

 

6.2 Discussion 

From Table 3, Random Forest and SVM consistently 

achieved the highest performance across all datasets, 

demonstrating their ability to capture complex patterns 

in data, including non-linear relationships. Logistic 

Regression, despite its simplicity, also performed 

competitively, especially on the Breast Cancer dataset, 

suggesting the underlying linear separability of this 

dataset. 

 

KNN showed reasonable performance but lagged 

behind more sophisticated algorithms, which can be 

attributed to its sensitivity to feature scaling and local 

noise. Naive Bayes, while efficient, had the lowest 

overall scores, likely due to its strong independence 

assumptions being violated in real-world datasets. 

 

Decision Trees performed moderately, offering 

interpretability at the cost of slightly lower predictive 

power. The results suggest that ensemble methods like 

Random Forest strike a favorable balance between 

accuracy and robustness. 

 

6.3 Confusion Matrix Analysis 

Figure 1 illustrates the confusion matrix for the 

Random Forest classifier on the Breast Cancer dataset, 

highlighting its ability to correctly classify both 

positive and negative cases with minimal 

misclassifications. 

Figure 1: Confusion matrix for Random Forest on 

Breast Cancer dataset. 

 
6.4 ROC Curves 

Figure 2 presents the ROC curves of the top two 

classifiers—Random Forest and SVM—across the 

datasets. Both classifiers exhibit high true positive 

rates with low false positives, with AUC scores 

exceeding 0.95 consistently. 

Figure 2: ROC curves for Random Forest and SVM on 

each dataset. 

 
6.5 Computational Efficiency 

Figure 3:  Compares the average training and 

prediction times (in seconds) for each algorithm on the 

Breast Cancer dataset. 
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7. CONCLUSION 

 

This study presented an empirical comparison of six 

widely used machine learning classification 

algorithms—Logistic Regression, Support Vector 

Machine (SVM), K-Nearest Neighbors (KNN), Naive 

Bayes, Decision Tree, and Random Forest—using 

standard benchmark datasets [12] and evaluation 

metrics. Each model was evaluated rigorously using 

stratified cross-validation, hyper parameter tuning, 

and repeated trials to ensure fair and robust 

performance assessment [9]. 

The results demonstrate that Random Forest and SVM 

consistently outperformed other classifiers in terms of 

accuracy, F1-score, and AUC across all datasets, 

highlighting their effectiveness in handling both linear 

and non-linear decision boundaries. Logistic 

Regression showed strong performance on linearly 

separable data and remained competitive due to its 

interpretability and low computational overhead. 

KNN and Decision Trees offered reasonable 

classification performance, but their sensitivity to data 

noise and structure made them less reliable in some 

scenarios. Naive Bayes, although computationally 

efficient, showed limitations due to its strong 

independence assumptions, particularly on more 

complex datasets. 

Beyond accuracy, the study also highlighted important 

trade-offs among the models in terms of 

interpretability, computational efficiency, and 

robustness. These findings can guide practitioners and 

researchers in selecting appropriate classifiers based 

on specific task requirements and dataset 

characteristics. 

For future work, the scope can be extended to include 

deep learning models and ensemble boosting 

techniques like XGBoost and LightGBM. 

Additionally, evaluating classifiers on larger, real-

world imbalanced datasets and incorporating 

explainability methods could provide further practical 

insights. 
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