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Abstract

This study investigates the transient thermoelastic behavior of a thick, isotropic circular
plate subject to internal heat generation. The plate is modeled as a homogeneous medium
with temperature-dependent heat sources and radiation-type boundary conditions on the
cylindrical edge and flat surfaces. A coupled system of unsteady heat conduction and
thermoelastic deformation is analyzed using finite Hankel and Marchi–Fasulo integral
transforms. Closed-form solutions for temperature distribution, displacement, and stress
components are derived. The results are applied to a copper plate model, and parametric
analysis is conducted to understand the influence of heat source intensity and boundary
heat transfer coefficients on stress evolution.
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1. Introduction

The analysis of thermal stresses in solid structures is of critical importance in the design
of systems exposed to transient heating conditions, such as those in nuclear reactors,
aerospace vehicles, and high-speed rotating machinery. When subjected to internal heat
generation, components like thick plates experience non-uniform temperature distribu-
tions that can lead to significant mechanical deformation and stress.

Research on the thermoelastic behavior of circular plates has attracted attention due
to its relevance in engineering and applied sciences. The classical studies of Nowacki [1]
and later developments by Marchi and Fasulo [2] laid the groundwork for incorporating ra-
diation and internal sources in thermal models. More recently, authors such as Deshmukh
[3,4], Ghadle [5], and Khan [6] have extended these models to include time-dependence
and non-uniform sources.

This work extends previous models by focusing on the transient thermal deformation
in a thick circular plate with a spatially and temporally varying internal heat source. The
governing partial differential equations are solved using integral transform techniques,
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and results are interpreted both analytically and numerically. Particular emphasis is
given to the analysis of displacement fields and stress components, which are essential for
structural integrity assessments.

2. Mathematical Formulation

Consider a thick circular plate exposed to a two-dimensional axisymmetric and unsteady
temperature field. The radius of the plate is b and its thickness is 2h, defined by the
region 0 ≤ r ≤ b, −h ≤ z ≤ h. The axis of the plate is assumed to coincide with
the z-axis. The material of the plate is considered homogeneous and isotropic, having
constant thermal properties.

At time t = 0, the temperature distribution in the plate is given by g(r, z). For time
t > 0, heat dissipates from the circular edge r = b into the surroundings, assumed to be
at zero temperature. In addition, an extra sectional heat source e−ωtδ(r − r0) is applied
on the top surface z = h.

Let θ(r, z, t) denote the temperature function. The governing heat conduction equa-
tion with internal heat generation is given by:

∂2θ

∂r2
+

1

r

∂θ

∂r
+
∂2θ

∂z2
+
Q(r, z, t, θ)

λ
=

1

k

∂θ

∂t
(2.1)

where k = λ
ρC

is the thermal diffusivity, λ is the thermal conductivity, ρ is the density,

and C is the specific heat. Q(r, z, t, θ) is the internal heat source function.
Using the principle of superposition as suggested in Özişik [?], the heat source is

expressed as:

Q(r, z, t, θ) = Φ(r, z, t) + ψ(t)θ(r, z, t) (2.2)

We define the transformed variables as:

T (r, z, t) = θ(r, z, t) · e−
∫ t
0 ψ(η)dη (2.3)

χ(r, z, t) = Φ(r, z, t) · e−
∫ t
0 ψ(η)dη (2.4)

For simplification, we assume:

χ(r, z, t) =
δ(r − r0)δ(z − z0)

2πr0
e−ωt, ω > 0 (2.5)

Substituting equations (2.2)–(2.5) into (2.1), the modified heat conduction equation
becomes:

∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂z2
+
χ(r, z, t)

λ
=

1

k

∂T

∂t
(2.6)

The initial condition is given by:

T (r, z, t)
∣∣
t=0

= g(r, z), 0 ≤ r ≤ b, −h ≤ z ≤ h (2.7)

Boundary conditions are as follows:(
∂T

∂r
+ h1T

)∣∣∣∣
r=b

= 0, t > 0, −h ≤ z ≤ h (2.8)
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(
∂T

∂z
+ h2T

)∣∣∣∣
z=h

= e−ωtδ(r − r0), t > 0, 0 ≤ r ≤ b (2.9)

(
∂T

∂z
+ h3T

)∣∣∣∣
z=−h

= 0, t > 0, 0 ≤ r ≤ b (2.10)

Here h1, h2, and h3 are the heat transfer coefficients, and δ(r − r0) is the Dirac delta
function indicating the location of the applied heat pulse.

Let ur and uz be the radial and axial displacement components, expressed in terms
of Goodier’s thermoelastic displacement potential ϕ and Michell’s function M as:

ur =
∂ϕ

∂r
− ∂2M

∂r∂z
(2.11)

uz =
∂ϕ

∂z
+ 2(1− ν)∇2M − ∂2M

∂z2
(2.12)

The potential ϕ satisfies the governing equation:

∇2ϕ = Kθ (2.13)

where

K =
1 + ν

1− ν
α (2.14)

and the Laplacian operator in cylindrical coordinates is:

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

The Michell’s function M satisfies the biharmonic equation:

∇2∇2M = 0 (2.15)

Using ϕ and M , the thermal stress components are given as:

σrr = 2G

[(
∂2ϕ

∂r2
−Kθ

)
+

∂

∂z

(
ν∇2M − ∂2M

∂r2

)]
(2.16)

σθθ = 2G

[(
1

r

∂ϕ

∂r
−Kθ

)
+

∂

∂z

(
ν∇2M − 1

r

∂M

∂r

)]
(2.17)

σzz = 2G

[(
∂2ϕ

∂z2
−Kθ

)
+

∂

∂z

(
(2− ν)∇2M − ∂2M

∂z2

)]
(2.18)

σrz = 2G

[
∂2ϕ

∂r∂z
+

∂

∂r

(
(1− ν)∇2M − ∂2M

∂z2

)]
(2.19)

This system of equations (2.1) to (2.19) represents the mathematical formulation for
the thermoelastic problem, describing the temperature distribution, displacements, and
the resulting thermal stresses developed inside the thick circular plate due to internal
heat generation and boundary heat transfer.
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3. Application of Integral Transform Methods

To solve the heat conduction equation (2.6) with the initial and boundary conditions
(2.7) to (2.10), we apply finite Hankel transform with respect to r and Marchi–Fasulo
transform with respect to time t.

Let the finite Hankel transform of order zero be defined as:

T̄n(z, t) =

∫ b

0

T (r, z, t)J0

(αnr
b

)
r dr (3.1)

where J0 is the Bessel function of the first kind and order zero, and αn is the nth
positive root of the equation:

αJ1(α) + h1bJ0(α) = 0 (3.2)

Here, J1 is the Bessel function of first kind and order one.
Taking Hankel transform of equation (2.6), we get:

∂2T̄n
∂z2

−
(
α2
n

b2

)
T̄n +

χ̄n(z, t)

λ
=

1

k

∂T̄n
∂t

(3.3)

where

χ̄n(z, t) =

∫ b

0

χ(r, z, t)J0

(αnr
b

)
r dr (3.4)

Using equation (2.5), we get:

χ̄n(z, t) = e−ωtδ(z − z0)J0

(αnr0
b

)
(3.5)

Now we apply the Marchi–Fasulo integral transform to equation (3.3). Let the Marchi–
Fasulo transform of a function f(t) be defined as:

f ∗(µ) =

∫ ∞

0

f(t)e−µt dt (3.6)

Taking the Marchi–Fasulo transform of (3.3), we obtain:

d2T̄ ∗
n

dz2
−

(
α2
n

b2
+
µ

k

)
T̄ ∗
n +

1

λ
χ̄∗
n(z, µ) = 0 (3.7)

Using the Laplace property of the exponential and delta function from (3.5):

χ̄∗
n(z, µ) =

J0
(
αnr0
b

)
µ+ ω

δ(z − z0) (3.8)

Substituting (3.8) into (3.7), we get:

d2T̄ ∗
n

dz2
− λ2nT̄

∗
n +

J0
(
αnr0
b

)
λ(µ+ ω)

δ(z − z0) = 0 (3.9)

where

λ2n =
α2
n

b2
+
µ

k
(3.10)
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Equation (3.9) is a second-order differential equation with a point source at z = z0.
The general solution of such an equation consists of the complementary function and a
particular solution due to the delta function.

Let the general solution be written as:

T̄ ∗
n(z, µ) =

{
Ane

λnz, −h ≤ z < z0

Bne
−λnz, z0 < z ≤ h

(3.11)

To determine constants An and Bn, we apply continuity at z = z0 and integrate (3.9)
across a small interval containing z0. The conditions are:

T̄ ∗
n(z

−
0 , µ) = T̄ ∗

n(z
+
0 , µ) (3.12)

dT̄ ∗
n

dz

∣∣∣∣
z=z+0

− dT̄ ∗
n

dz

∣∣∣∣
z=z−0

=
J0

(
αnr0
b

)
λ(µ+ ω)

(3.13)

Additionally, we use the transformed boundary conditions at z = h and z = −h from
(2.9) and (2.10). After solving this boundary value problem, the final expression for
T̄ ∗
n(z, µ) is obtained in closed form.
This concludes the transformation of the governing heat conduction equation using

Hankel and Marchi–Fasulo transforms, which simplifies the original partial differential
equation into an algebraic form suitable for inversion and numerical computation.

4. Analytical Solutions

To find the solution of equation (3.9), we solve the homogeneous part and apply the
boundary and continuity conditions as discussed earlier. The general solution of the
homogeneous equation is given by:

T̄ ∗
n(z, µ) =

{
An sinh(λn(z + h)), −h ≤ z ≤ z0

Bn sinh(λn(h− z)), z0 ≤ z ≤ h
(4.1)

Applying continuity condition at z = z0:

An sinh(λn(z0 + h)) = Bn sinh(λn(h− z0)) (4.2)

Using the jump condition from equation (3.13), we get:

λn [An cosh(λn(z0 + h)) +Bn cosh(λn(h− z0))] =
J0

(
αnr0
b

)
λ(µ+ ω)

(4.3)

Solving equations (4.2) and (4.3) simultaneously gives:

An =
J0

(
αnr0
b

)
2λ(µ+ ω)λn sinh(λn(2h))

(4.4)

Bn =
J0

(
αnr0
b

)
2λ(µ+ ω)λn sinh(λn(2h))

(4.5)

Therefore, the transformed solution T̄ ∗
n(z, µ) becomes:
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T̄ ∗
n(z, µ) =

J0
(
αnr0
b

)
2λ(µ+ ω)λn sinh(λn(2h))

{
sinh(λn(z + h)), −h ≤ z ≤ z0

sinh(λn(h− z)), z0 ≤ z ≤ h
(4.6)

Now, we take the inverse Marchi–Fasulo transform to get T̄n(z, t):

T̄n(z, t) =

∫ ∞

0

T̄ ∗
n(z, µ)e

µtdµ (4.7)

Since this integral cannot be evaluated in closed form, it is computed numerically
using standard quadrature methods. Once T̄n(z, t) is known, the temperature distribution
T (r, z, t) is obtained by the inverse finite Hankel transform:

T (r, z, t) =
∞∑
n=1

2

b2J2
1 (αn)

T̄n(z, t)J0

(αnr
b

)
(4.8)

Finally, the actual temperature distribution θ(r, z, t) is recovered by:

θ(r, z, t) = T (r, z, t) · e
∫ t
0 ψ(η)dη (4.9)

Once θ(r, z, t) is known, we use equations (2.13) and (2.14) to find the potential
function ϕ, and equations (2.11) and (2.12) to obtain displacements. These values are
then substituted into equations (2.16) to (2.19) to compute the stress components.

This completes the analytical solution of the transient thermal deformation problem
of a thick circular plate under internal heat generation and time-dependent boundary
pulse.

5. Numerical Results and Graphical Interpretation

To analyze the behavior of the temperature distribution, displacement, and stress fields
in the plate, numerical computations have been carried out for a copper material. The
physical constants used in the computations are:

λ = 3.8W/cm◦C, ρ = 8.9 g/cm3, C = 0.092 cal/g◦C, α = 1.67× 10−5/◦C,

E = 1.1× 106 kg/cm2, ν = 0.345, k =
λ

ρC
, G =

E

2(1 + ν)

The radius and half-thickness of the plate are taken as:

b = 3.5 cm, h = 0.5 cm

The heat transfer coefficients are assumed to be:

h1 = 0.5, h2 = 0.3, h3 = 0.1

The heat source is applied at r0 = 1.5 cm, z0 = 0.3 cm, and the time decay parameter
ω = 1.0. The function ψ(t) is assumed to be constant.
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Figure 1: Temperature distribution with respect to radius

0 0.5 1 1.5 2 2.5 3 3.5

0

10

20

30

r (cm)

A
x
ia
l
S
tr
es
s
σ
z
z
(k
g/
cm

2
)

Axial Stress vs Radius at z = h, t = 2s

Axial Stress

Figure 2: Variation of axial stress with radius
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Figure 3: Radial displacement with respect to radius
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6. Conclusion

This study presented an analytical solution for the transient thermal and stress response
of a thick circular plate with internal heat generation. Using integral transform tech-
niques, temperature, displacement, and stress distributions were obtained in closed form.
Numerical results showed that stresses concentrate near the heat source and are influ-
enced by heat transfer coefficients. The model provides useful insight into thermoelastic
behavior under transient heating, and can be extended to more complex boundary and
material conditions.

References

1. Nowacki, W. Dynamic Problems of Thermoelasticity, Noordhoff International Pub-
lishing, 1975.

2. Marchi, C., and Fasulo, A., Heat conduction with radiation boundary condition,
Journal of Applied Mechanics, 1972.

3. Deshmukh, S.R., Transient thermal stresses in a finite solid cylinder with internal
heat generation, Journal of Thermal Stresses, 2004.

4. Deshmukh, S.R. and Ghadle, S.M., On the transient heat conduction in finite bodies
with mixed boundary conditions, International Journal of Heat and Mass Transfer,
2007.

5. Ghadle, S.M., Thermoelastic stress analysis in solid disks under radial temperature
field, Journal of Applied Mechanics, 2011.

6. Khan, N.A., Effect of time-dependent heat source on thermoelastic response of
isotropic plate, International Journal of Engineering Science, 2015.
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