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Abstract—Alzheimer’s Disease (AD), a leading cause of 

cognitive decline among the elderly, necessitates timely 

diagnosis for effective management and treatment. This 

study presents a novel non-invasive multimodal deep 

learning framework that integrates 

electroencephalography (EEG) signals, cognitive test 

scores, and magnetic resonance imaging (MRI) features 

to enhance the early prediction and progression analysis 

of AD. EEG signals are preprocessed using bandpass 

filtering and Principal Component Analysis (PCA) for 

dimensionality reduction, while key features are 

extracted using Hilbert Transform. These features are 

then classified using various machine learning 

algorithms including Linear Discriminant Analysis 

(LDA), Support Vector Machines (SVM), Artificial 

Neural Networks (ANN), and others. Among all, LDA 

combined with PCA achieved the highest classification 

accuracy of 96.6%. The experimental results highlight 

the efficacy of EEG-based multimodal analysis in 

distinguishing between Alzheimer’s, Mild Cognitive 

Impairment (MCI), and healthy controls. This research 

underscores the potential of multimodal deep learning 

systems in advancing early-stage AD diagnostics and 

provides insights for future clinical deployment. 
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1. INTRODUCTION 

 

Alzheimer’s Disease (AD) is a chronic and 

progressive neurodegenerative disorder that impairs 

memory, cognition, and functional abilities, 

significantly affecting the quality of life of millions 

worldwide. As the global aging population increases, 

the incidence of AD and related dementias continues 

to rise, creating an urgent need for early and accurate 

diagnostic tools. Traditional diagnostic methods, such 

as neuroimaging and neuropsychological assessments, 

are either invasive, expensive, or insufficiently 

sensitive to detect the disease in its prodromal stages. 

Recent advancements in biomedical signal processing 

and artificial intelligence have opened new frontiers 

for non-invasive diagnostic systems. In particular, 

electroencephalography (EEG) has emerged as a 

promising modality due to its ability to capture brain 

activity in real-time with high temporal resolution. 

However, the standalone use of EEG data often lacks 

specificity for conclusive diagnosis. Consequently, 

integrating multimodal data—such as cognitive test 

scores and structural neuroimaging (e.g., MRI)—

enhances the predictive robustness of diagnostic 

frameworks. 

This paper introduces a novel deep learning-based 

multimodal system that combines EEG signal features, 

cognitive scores, and MRI-derived biomarkers to 

improve the prediction of AD onset and progression. 

The proposed framework utilizes advanced feature 

extraction techniques such as the Hilbert Transform, 

dimensionality reduction using Principal Component 

Analysis (PCA), and multiple classification algorithms 

to identify subtle neural patterns that differentiate 

between healthy individuals, patients with Mild 

Cognitive Impairment (MCI), and those with AD. 

By evaluating various machine learning models, 

including Linear Discriminant Analysis (LDA), 

Support Vector Machines (SVM), and Artificial 

Neural Networks (ANN), we assess the classification 

accuracy and diagnostic potential of the system. The 

results demonstrate that LDA combined with PCA 

yields superior performance, highlighting the 

feasibility of using EEG-driven multimodal 

approaches for early AD detection. This study 
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contributes to the growing body of research 

advocating for data-driven, non-invasive tools in the 

field of neurological healthcare. 

 

2. RELATED WORKS 

 

Early detection of Alzheimer’s Disease (AD) has been 

a focal point of research in recent years due to its rising 

prevalence and irreversible nature. Several studies 

have explored diverse modalities for identifying early 

markers of AD, including neuroimaging, 

neuropsychological testing, and electrophysiological 

measurements. 

Electroencephalography (EEG) has shown promise for 

capturing neurophysiological alterations related to AD 

due to its high temporal resolution and cost-

effectiveness. Babiloni et al. [1] demonstrated that 

EEG abnormalities in the alpha and beta frequency 

bands correlate with cognitive impairment levels in 

AD patients. Similarly, Musaeus et al. [2] explored 

spectral EEG changes and found reduced alpha 

coherence in MCI and AD subjects. 

Cognitive scores, such as those obtained from Mini-

Mental State Examination (MMSE), have been widely 

used for classifying AD stages, although they are 

subjective and limited in sensitivity [3]. To overcome 

this limitation, researchers have proposed integrating 

EEG features with cognitive metrics. For instance, 

Dauwels et al. [4] applied nonlinear EEG analysis 

combined with clinical scores to improve diagnostic 

specificity. 

 

In addition to EEG, magnetic resonance imaging 

(MRI) provides anatomical insights into brain atrophy 

associated with AD. Jack et al. [5] extensively 

characterized volumetric brain changes in AD and 

proposed MRI-based biomarkers. More recent works, 

such as that by Suk et al. [6], utilized deep learning for 

multimodal fusion of MRI and PET data, achieving 

improved classification accuracy. 

Machine learning methods have also gained traction in 

AD diagnosis. Klöppel et al. [7] applied support vector 

machines (SVM) to MRI data and achieved high 

sensitivity in distinguishing AD patients from healthy 

controls. A combination of EEG and machine learning 

was employed by Trambaiolli et al. [8], who reported 

improved classification using frequency-domain 

features. 

Deep learning techniques are increasingly being 

adopted for automated classification in 

neurodegenerative disorders. Gupta et al. [9] 

demonstrated the efficacy of convolutional neural 

networks (CNNs) in classifying MRI scans of AD 

patients, while Roy et al. [10] extended this by 

incorporating recurrent networks for temporal analysis 

of EEG sequences. 

 

Hilbert Transform and entropy-based methods have 

been used for EEG feature extraction in cognitive 

decline detection. For instance, Sharma and Pachori 

[11] implemented Hilbert-Huang Transform on EEG 

signals to differentiate between healthy and AD-

affected subjects. Principal Component Analysis 

(PCA) remains a popular method for dimensionality 

reduction, as noted in studies like that of Liu et al. [12]. 

Recent multimodal frameworks integrating EEG, 

MRI, and clinical scores have shown improved 

outcomes. Liu et al. [13] developed a multimodal 

fusion model that combined EEG and structural MRI 

for better classification. Yang et al. [14] further 

enhanced this approach using attention-based deep 

learning techniques. 

 

Despite these advancements, many of the existing 

models either rely on invasive procedures or lack 

generalizability across datasets. Therefore, our 

proposed system uniquely integrates non-invasive 

EEG features, cognitive metrics, and MRI biomarkers 

using a deep learning framework, evaluated across 

multiple classifiers to identify an optimal model.  

 

3. EXPERIMENTAL SETUP AND METHODS 

 

3.1 Dataset and Participants 

The dataset used in this study was obtained from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI), 

a widely recognized repository that provides 

multimodal data for neurodegenerative disease 

research. A total of 120 participants were selected and 

divided equally into three groups: 40 Healthy Controls 

(HC), 40 individuals with Mild Cognitive Impairment 

(MCI), and 40 patients clinically diagnosed with 

Alzheimer’s Disease (AD). These participants were 

chosen based on the availability of complete EEG 

recordings, cognitive assessments, and MRI scans to 

ensure a comprehensive and balanced multimodal 

dataset.  
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Figure 1: Experimental Setup 

 

3.2 Experimental Infrastructure 

The study was conducted using a high-performance 

computing platform to handle the intensive data 

processing and model training tasks. The hardware 

setup included a workstation powered by an NVIDIA 

Titan X GPU and 64 GB of RAM as shown in figure 

1. The software stack was built using Python 3.9, 

TensorFlow 2.12, and PyTorch 2.0 for implementing 

deep learning models, while MATLAB-based 

EEGLAB and FreeSurfer were employed for signal 

and neuroimaging preprocessing tasks, respectively. 

This infrastructure allowed seamless integration of 

heterogeneous data sources and efficient model 

experimentation. 

 

3.3 EEG Data Acquisition and Preprocessing 

EEG signals were acquired using a 32-channel 

BioSemi ActiveTwo system, with electrodes placed 

according to the international 10–20 system. The 

recordings included both resting-state (5 minutes) and 

task-based (10 minutes) sessions, where subjects 

engaged in memory-related cognitive tasks. The 

sampling frequency was fixed at 512 Hz, allowing 

high-resolution temporal data collection. 

The preprocessing of EEG data began with bandpass 

filtering in the range of 0.5 to 45 Hz to eliminate noise 

and physiological artifacts. Independent Component 

Analysis (ICA) was then applied to further remove 

ocular and muscular interference. Following artifact 

removal, dimensionality reduction was performed 

using Principal Component Analysis (PCA) to retain 

the most informative components while reducing 

computational complexity. This enabled effective 

extraction of meaningful features from high-

dimensional EEG signals. 

 

3.4 Feature Extraction from EEG Signals 

To capture the time-varying characteristics of the brain 

signals, Hilbert Transform was applied to the pre-

processed EEG data. This allowed the extraction of 

instantaneous amplitude and frequency components 

critical for neurological analysis. Several features 

were derived from these transformed signals, 

including power spectral densities across delta, theta, 

alpha, beta, and gamma frequency bands. 

Additionally, entropy-based metrics such as spectral 

entropy and approximate entropy were computed to 

quantify signal complexity. Functional connectivity 

features were also obtained through coherence 

analysis, providing insights into inter-regional brain 

communication patterns. These features collectively 

formed the EEG-based input to the classification 

models. 

 

3.5 MRI and Cognitive Assessments 

MRI data were processed using the Free Surfer toolset 

to extract volumetric and morphometric features 

relevant to Alzheimer’s progression. Biomarkers such 

as hippocampal volume, cortical thickness, and 

ventricular enlargement were quantified for each 

subject. In parallel, cognitive evaluations including 

Mini-Mental State Examination (MMSE), 

Alzheimer’s Disease Assessment Scale-Cognitive 

Subscale (ADAS-Cog), and Clinical Dementia Rating 

(CDR) were collected and normalized. These 

cognitive scores served as objective indicators of 

neuropsychological status and were integrated with 

EEG and MRI features for a holistic representation of 

each participant's neurological condition. 

 

3.6 Classification Framework 

Multiple machine learning classifiers were explored to 

evaluate the predictive capability of the multimodal 

feature set. These included Linear Discriminant 

Analysis (LDA), Artificial Neural Networks (ANN), 

Support Vector Machines (SVM) with both linear and 

non-linear kernels, K-Nearest Neighbours (KNN), 

Decision Trees, and ensemble-based models such as 

boosted SVM. Each classifier was trained to perform 

a three-way classification of the subjects into HC, 

MCI, and AD categories. The goal was to identify the 

most effective algorithm for detecting cognitive 
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deterioration at various stages of Alzheimer's 

progression. 

 

3.7 Training and Validation Strategy 

Model training was performed using the Adam 

optimization algorithm with an initial learning rate set 

to 0.0001. The categorical cross-entropy loss function 

was employed for multi-class classification tasks, and 

Kullback-Leibler (KL) divergence was additionally 

used to model disease progression trends. The data 

was split into training, validation, and testing subsets 

in a 70:15:15 ratio. Each model was trained for a 

maximum of 100 epochs, with early stopping applied 

to monitor validation performance and mitigate over 

fitting. A batch size of 16 was used during training to 

balance memory efficiency and learning stability. 

 

4. RESULTS DISCUSSION 

 

The experimental results from the proposed 

multimodal deep learning framework demonstrate the 

effectiveness of integrating EEG signal features, MRI-

based structural biomarkers, and cognitive test scores 

for early diagnosis and progression prediction of 

Alzheimer’s Disease (AD). Across all classifiers 

evaluated, Linear Discriminant Analysis (LDA) 

exhibited the highest classification accuracy. When 

Principal Component Analysis (PCA) was applied as 

a dimensionality reduction step, LDA achieved an 

accuracy of 96.6%, while its performance without 

PCA reached 93.2%. This significant increase 

underscores the benefit of PCA in eliminating noise 

and redundant features, thereby enhancing the model's 

ability to separate class boundaries clearly. 

 

Support Vector Machines (SVM) with both linear and 

kernel-based implementations also showed 

competitive performance, recording accuracies of 

95.5% and 96.6% with and without PCA respectively. 

These results confirm the findings of previous studies 

[6][7], which highlight SVM's robustness in 

neuroimaging classification tasks. Although Artificial 

Neural Networks (ANN) achieved slightly lower 

accuracy than LDA and SVM, the ANN model still 

performed well with over 90% accuracy. This slight 

drop is likely due to the relatively small dataset, as 

deep learning models generally require larger sample 

sizes to generalize effectively [9]. Nonetheless, the 

ANN classifier demonstrated its potential in learning 

complex patterns from high-dimensional feature 

spaces. 

The effect of PCA was consistent across all classifiers, 

leading to improved performance metrics such as 

sensitivity, specificity, and F1-score. The application 

of PCA not only reduced computational complexity 

but also improved the model’s generalization by 

focusing on the most informative components. This 

observation aligns with similar work conducted by Liu 

et al. [12], where PCA enhanced classification in brain 

disease diagnosis using EEG and MRI modalities. 

Confusion matrices revealed that models trained with 

PCA consistently reduced misclassification rates, 

particularly in distinguishing Mild Cognitive 

Impairment (MCI) from both Alzheimer’s and Healthy 

Control (HC) groups. 

An important outcome of the study was the superior 

performance of the multimodal feature integration. 

EEG alone, while useful, may lack the anatomical and 

cognitive context necessary for precise diagnosis. By 

fusing EEG with MRI-based volumetric features and 

cognitive scores like MMSE and ADAS-Cog, the 

model gained a multidimensional view of each 

subject’s neurophysiological and neuropsychological 

state. This approach echoes the conclusions of Yang et 

al. [14] and Suk et al. [6], who found that multimodal 

fusion significantly improves diagnostic performance 

over unimodal systems. 

Another key finding is the model's ability to accurately 

classify individuals in the intermediate MCI stage. The 

early identification of MCI is critical, as it represents 

a transitional phase that may evolve into full-blown 

AD if not properly managed. The confusion matrix of 

LDA with PCA clearly shows improved classification 

of MCI cases, which often pose challenges due to 

overlapping characteristics with both AD and HC 

groups. This reinforces the clinical utility of the 

framework in targeting preclinical stages of dementia. 

Despite these positive results, the model's performance 

is subject to the constraints of dataset size and 

homogeneity. Although balanced across the three 

diagnostic categories, the sample size of 120 subjects 

may limit the generalizability of results to broader 

populations. Additionally, the use of lab-grade EEG 

systems may not directly translate to real-world or 

portable clinical settings. Addressing these issues 

through larger, more diverse datasets and the inclusion 

of wearable EEG systems will be essential in future 

studies.  
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Overall, the proposed framework proves to be a 

promising approach for non-invasive and accurate 

prediction of Alzheimer’s Disease onset and 

progression. It leverages the strengths of multimodal 

data and modern machine learning techniques to 

achieve clinically relevant diagnostic accuracy. The 

outcomes suggest strong potential for deployment in 

early screening systems, provided that future work 

addresses current limitations through data 

augmentation, real-world testing, and model explain 

ability enhancements [15]. 

 
Figure 2: Confusion Matrices of various algorithms 

for AD Vs MCI Vs. HC Classification without PCA 

 
Figure 3: Confusion Matrices of various algorithms 

for AD Vs MCI Vs HC Classification with PCA 

5. CONCLUSION AND FUTURE WORKS 

 

This study introduced a non-invasive multimodal deep 

learning framework for the early detection and 

progression prediction of Alzheimer’s Disease (AD). 

By integrating features from EEG signals, MRI-based 

structural biomarkers, and cognitive scores, the 

proposed model demonstrated high classification 

accuracy across multiple machine learning classifiers. 

Notably, Linear Discriminant Analysis (LDA) 

combined with Principal Component Analysis (PCA) 

achieved the highest accuracy of 96.6%, underscoring 

the effectiveness of feature dimensionality reduction 

in improving diagnostic performance. The findings 

validate the strength of combining functional, 

structural, and behavioural data to capture the complex 

manifestations of cognitive decline. The results also 

emphasize the clinical potential of multimodal, data-

driven approaches in enhancing early-stage diagnosis 

and monitoring of neurodegenerative diseases like 

AD. 

Although the current framework exhibits high 

accuracy and robust classification capabilities, several 

enhancements can further extend its applicability. 

Future research may focus on expanding the dataset to 

include a more diverse population sample, which 

would improve model generalization across 

demographic variations. Incorporating longitudinal 

EEG recordings and multi-time point cognitive 

assessments could enable tracking of disease 

progression over time. Integration with wearable EEG 

devices will also be explored to facilitate portable, 

real-time diagnostics in home care settings. Moreover, 

deep learning architectures such as Convolutional 

Neural Networks (CNNs) and Long Short-Term 

Memory (LSTM) networks may be employed to 

capture spatial-temporal patterns more effectively. 

Finally, incorporating explainable AI (XAI) 

techniques will be essential to interpret model 

predictions, thus enhancing trust and transparency in 

clinical deployments. 
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