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Abstract: Brain tumors are among the most dangerous 

types of cancer and highlight the importance of a timely 

and accurate diagnosis. An example of a non-invasive, 1-

source modality to identify and assess brain tumors is 

Magnetic Resonance Imaging (MRI). Interpreting MRI 

data manually via visual inspection is time-consuming 

and can be error-prone. To that end, this study proposes 

an automated classification framework with deep 

learning models such as Convolutional Neural Networks 

(CNN), and hybrid approaches of CNN and Support 

Vector Machine (CNN+SVM) and CNN and the k-nearest 

neighbors algorithm (CNN+KNN). Transfer learning is 

also used by using fine-tuned pre-trained networks of 

InceptionV3 and Xception. The experiments were 

performed on both the Sartaj dataset and the BraTS 

dataset. The results indicate that transfer learning can aid 

my classification performance, with Xception achieving a 

maximum accuracy of 94.1%. Furthermore, the proposed 

approach demonstrates statistically reliable and robust 

results. 
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I.  INTRODUCTION 

 

Brain tumors represent a significant public health 

problem, commonly resulting in loss of neurological 

capacity and mortality. It is necessary to achieve early 

and accurate classification using MRI scans, in the 

planning of future treatment options. Troublesome to 

classify is that manual segmentation for expert analysis 

is time consuming and can vary between observers. In 

recent years, deep learning techniques have improved 

medical imaging by automating the feature extraction 

and classification process. Using Convolution Neural 

Networks (CNNs), it is particularly easy to provide an 

effective recognition of image features, including in 

cases with reporting of brain tumors. Furthermore, the 

combined use of CNN with classical classifiers, such as 

Support Vector Machine (CNN+SVM) and K-Nearest 

Neighbor (CNN+KNN) can pair CNN feature learning 

with classical classifiers with the potential of improved 

classification rates. Finally, in situations of limited 

availability of dataset, transfer learning models such as 

InceptionV3 and Xception provide the opportunity to 

utilize knowledge acquired gained via large datasets for 

specified tasks. 

 

  II.LITERATURE SURVEY 

 

A major advancement in brain tumor classification 

using MRI scans has occurred largely because of deep 

learning. Machine learning methods like k-Nearest 

Neighbors, Support Vector Machines, and decision 

trees relied on handcrafted features and expertise in the 

domain. In contrast, deep learning methods like 

Convolutional Neural Networks used to build models 

rely on automation for performing the feature 

extraction process and provide tremendous accuracy 

for imaging tasks. 

Pereira et al. [1] demonstrated a CNN-based model that 

implemented new methodology for performing multi-

modal MRI (e.g. T1-weighted, T2-weighted, FLAIR, 

diffusion tensor imaging (DTI)) segmentation of brain 

tumors (e.g. gliomas). Their architecture was 

fundamentally different as they chose to use very small 

convolutional kernels and take advantage of patch-

based training along with multi-modal inputs, meaning 

development and exploration of spatial context around 

regions-of-interest enhanced accuracy while requiring 

less human additional annotation. 
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A similar study (Hossain et al. [2]) demonstrated a 

hybrid architecture using CNNs and SVMs, where 

features were deep learned from the MRI scans with 

CNNs, followed by classification using a SVM. While 

Hossain et al. [2] did not work with multi-modal input, 

they did show this hybrid approach supported better 

multi-class classification and the importance for 

established classifiers of integrated with deep learning 

methods and that it supported better generalization as 

the amount of data available decreased. 

Deepak and Ameer [3] studied transfer learning by 

utilizing a pre-trained VGG19 model for brain tumor 

classification. Their findings noted improved 

performance when fine-tuning VGG19 on MRI 

datasets over models trained from scratch, and 

suggested that utilizing high-level features from larger 

datasets, such as ImageNet, can provide a more 

significant advantage in domain-specific medical 

problems. 

Zhou et al. [4] studied the performance of InceptionV3 

as a deep and wide CNN architecture for medical 

imaging tasks. Their results showed improved 

classification accuracy when fine-tuning InceptionV3 

with a brain MRI dataset, which they attributed to 

InceptionV3's ability to learn and represent multi-scale 

features. 

The BraTS dataset, introduced by Menze et al. [5], is 

now the de-facto benchmark dataset for brain tumor 

classification and segmentation with its public MRI 

scans for high-grade gliomas, low-grade gliomas, and 

annotated MRI scans using T1, T2, T1c and FLAIR 

modalities. Ths dataset has enabled evaluation to be 

done uniformly and improves reproducibility in 

research. 

Additionally, Xception architecture, put forth by 

Chollet [6], that utilizes depthwise separable 

convolutions has gained traction for both speed and 

classification accuracy. It makes sense for medical 

imaging—where you may not have access to large 

datasets or computational resources—to use the 

Xception architecture for brain MRI classification 

purposes. 

In light of the above, past works would seem to suggest 

that, to some degree, CNNs, hybrid CNN+SVM 

approaches, Xception, InceptionV3 networks as 

transfer learning, can help improve the speed and 

accuracy of brain tumor classification systems. 

 III. METHODOLOGY 

 

This section outlines the general methodology of our 

approach for brain tumor classification. The 

methodology is organized into dataset selection, 

preprocessing, model architectures, and model training. 

A.  DATASET 

SARTAJ DATASET 

The Sartaj dataset is an open-access T1-weighted 

contrast-enhanced dataset of MRI scans consisting of 

three clearly defined tumor classes: pituitary tumour, 

meningioma, and glioma. Each of the classes have 

similar numbers of samples and appropriate class 

labels, making this dataset suitable for a multi-class 

classification problem. The sustainability of the same 

imaging modality and the clearly defined scope makes 

this dataset especially useful for models that are built 

from scratch. 

THE BRATS DATASET 

The segmentation of brain tumours (BraTS) dataset [5] 

is one of the most heavily used datasets for brain 

tumours. It provides multi-modal MRI scans including: 

• T1 (anatomical scan) 

•  T1c (contrast-enhanced T1) 

•  T2 (fluid-sensitive) 

•  Fluid Attenuated Inversion Recovery, or FLAIR 

Each image is labeled with tumor regions and includes 

ground-truth segmentation maps for low-grade gliomas 

(LGG) and high-grade gliomas (HGG). The dataset 

allows for classification and segmentation tasks, 

additionally each image contains ground truth 

annotations verified by a radiologist adding significant 

value and usability as a clinically relevant dataset. 

B. PREPROCESSING 

As noted in the current literature, MRI images often 

contain noise and artifacts which can affect model 
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performance. For both datasets the following 

preprocessing steps were applied: 

• Skull Stripping: This step involves removing the 

surrounding non-brain tissues, such as the skull or 

scalp, using various morphological operations and 

thresholding methodologies [7]. Skull stripping ensures 

that the models are only centering during training on 

brain tissue, where the tumors are seen. 

• Intensity Normalization: MRI images will frequently 

vary because of the brightness and contrast each patient 

and scanner can afford. Intensity normalization is the 

process of scaling the pixel values into a standard 

range, such as 0-1 or -1 to 1, to minimize variability and 

make it easier for the models to learn [8]. 

• Resizing: All MRI images were resized to 224×224 

pixels to maintain consistency and compatibility with 

standard CNN architectures like InceptionV3 and 

Xception, which require fixed-size inputs [6]. 

C. MODELS USED 

We employed five models in this study, including 

traditional CNNs, hybrid models, and fine-tuned pre-

trained networks. 

1. CNN (Custom-Built) 

A custom 5-layer CNN architecture was designed from 

scratch using ReLU activation and max-pooling. It 

consists of: 

• Convolution layers (3×3 kernels) 

•  Max pooling (2×2) 

•  Flattening 

•  Dense layers with dropout to prevent overfitting 

This model serves as a baseline to evaluate 

performance without transfer learning. 

2. CNN + SVM 

In the proposed hybrid approach, the Convolutional 

Neural Network (CNN) functions as a feature extractor, 

utilizing layers up to the second-last dense layer. The 

deep features obtained are then fed into a Support 

Vector Machine (SVM) equipped with a Radial Basis 

Function (RBF) kernel [2]. This architecture leverages 

the CNN’s capability for hierarchical feature learning 

alongside the strong classification performance of the 

SVM. 

3. CNN + KNN 

Here, CNN extracts feature which are subsequently 

categorised using the K-Nearest Neighbors (KNN) 

algorithm with k = 5. K-Nearest Neighbors (KNN) 

performs well in scenarios where the feature space is 

distinctly separable and serves as a useful baseline to 

evaluate the performance of classical classifiers when 

combined with CNN-extracted features. [9]. 

4. INCEPTIONV3 (FINE-TUNED) 

The InceptionV3 model, pre-trained on ImageNet, is 

fine-tuned by: 

• Removing the final classification layer 

• Adding custom fully connected layers 

• Re-training the model on MRI data with a lower 

learning rate 

InceptionV3’s modular architecture facilitates efficient 

training and enhances generalization by effectively 

capturing multi-scale spatial features. [4] 

5. XCEPTION (FINE-TUNED) 

Based on the Inception framework, Xception utilizes 

depthwise separable convolutions and undergoes a 

comparable fine-tuning process: 

• The original final layers are substituted with a dropout 

layer and a global average pooling layer 

• Adapted to the classification of brain tumours This 

architecture provides a fair balance between accuracy 

and processing expense. [6] 
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D. TRAINING DETAILS 

Tensor Flow was used to implement each model and 

Keras deep learning libraries and were trained under 

the same conditions for fair comparison: 

• Optimizer: A 0.0001 learning rate Adam optimiser 

was employed due to its adaptive nature and fast 

convergence  

• Batch Size: 32 pictures in a batch size were chosen 

to balance memory efficiency and gradient stability. 

• Epochs: Models were trained for 30 epochs, which 

was sufficient for convergence without overfitting. 

• Loss Function: Suitable for multi-class classification, 

categorical cross-entropy was used. 

• Validation Split: A 20% validation set was used from 

the training data to monitor performance during 

training and prevent overfitting. 

IV.  RESULTS AND DISCUSSIONS 

In this section, five different models for classifying 

brain tumours are compared utilising MRI data: a 

custom-designed CNN, hybrid models integrating 

CNN with SVM and KNN, and two fine-tuned pre-

trained architectures—InceptionV3 and Xception. 

A.  QUANTITATIVE ASSESSMENT OF PERFORMANCE 

Accuracy, precision, recall, and F1-score are common 

measures used to evaluate the models' categorisation 

performance. The following table provides a summary 

of the outcomes: 

Model Accuracy(%) Precision Recall F1-Score 

CNN 89.2 0.88 0.89 0.88 

CNN + SVM 91.4 0.91 0.91 0.91 

CNN + KNN 90.1 0.89 0.90 0.89 

InceptionV3 (FT) 93.5 93.5 0.94 0.93 

Xception (FT) 94.1 0.94 0.94 0.94 

These results reveal a clear advantage of using transfer learning. Models fine-tuned from pre-trained architectures 

outperformed both the baseline CNN and hybrid models.                          

B.  GRAPHICAL COMPARISON 

In the bar chart (see Fig. 1), we observe that: 
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Figure 1: Accuracy comparison of CNN, CNN+SVM, CNN+KNN, InceptionV3 (FT), and Xception (FT) on brain 

tumor MRI classification task 

• Xception achieved the highest accuracy, followed by 

InceptionV3, confirming the advantage of Using 

medical datasets to refine pre-trained deep learning 

models [4], [6]. 

• Hybrid approaches such as CNN+SVM and 

CNN+KNN also surpassed the plain CNN model, 

validating previous findings that combining deep 

features with classical classifiers enhances 

classification performance on limited data [2], [9]. 

These results are in line with studies by Deepak and 

Ameer [3], and Zhou et al. [4], which demonstrate that 

transfer learning significantly enhances model 

performance in medical image analysis, particularly 

when training data is scarce. 

C.  STATISTICAL ANALYSIS 

To evaluate whether the differences in model 

performance were statistically significant, on the 

accuracy results, a one-way ANOVA (Analysis of 

Variance) was performed. 

• Null Hypothesis (H₀): The mean accuracy of the five 

models does not differ significantly. 

• The alternative hypothesis (H₁) states that at least one 

model exhibits a markedly different performance. 

A p-value of less than 0.05 from the ANOVA test 

indicated that the differences in model performance 

are statistically significant. 

Additionally, a result of Tukey’s HSD (Honestly 

Significant Difference) post-hoc analysis showed that 

both InceptionV3 and Xception had significantly 

higher mean accuracy compared to the baseline CNN 

model and hybrid models (p < 0.01). These results 

validate the superiority of transfer learning models in 

this application domain. 

D.  INTERPRETATION OF RESULTS 

The model performances can be interpreted as follows: 

• The baseline CNN, although effective, has 

limitations due to fewer layers and smaller training 

capacity. This aligns with Pereira et al.’s findings [1], 

where deep architectures performed better in tumor 

segmentation tasks. 

• Hybrid models (CNN+SVM and CNN+KNN) 

showed improved performance due to the combination 

of powerful CNN feature extractors with robust 

classical classifiers [2], [9]. 

• Transfer learning with InceptionV3 and Xception, 

both pre-trained on ImageNet, produced the best 

results. These networks bring advanced feature 

representation capabilities that generalize well to 

medical images even when trained on natural image 

datasets [4], [6]. 

Overall, the performance ranking (from highest to 

lowest) is: Xception > InceptionV3 > CNN+SVM > 

CNN+KNN > CNN 

V. FUTURE SCOPE 

Despite the promising results achieved by CNN-based 

and transfer learning models in classifying brain 

tumors using MRI scans, several avenues remain open 

for further research and enhancement: 

A. MULTI-MODAL DATA FUSION 

Future studies could integrate MRI combined with 

several imaging modalities (such as PET, CT, and 

DWI) to improve classification accuracy. Combining 

functional and structural imaging can provide a more 

holistic understanding of tumor characteristics [1], 

[10]. 

B. INCORPORATION OF SEGMENTATION AND 

LOCALIZATION 

While this work focuses on classification, 

incorporating tumor segmentation before 

classification could improve interpretability. Models 

like U-Net and attention-based CNNs can precisely 
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locate tumor boundaries, aiding clinicians in treatment 

planning [11]. 

C. EXPLAINABLE AI (XAI) 

A significant limitation of current deep learning 

models is the lack of interpretability. Future research 

could involve explainable AI techniques like Grad-

CAM, SHAP, or LIME to highlight which parts of the 

MRI images contribute most to classification 

decisions [12], [13]. This would enhance the clinical 

acceptance of AI tools. 

D. CLINICAL VALIDATION AND DEPLOYMENT 

Although the models perform well on publicly 

available datasets, clinical deployment requires 

validation on real-world hospital data. Domain shifts 

(scanner types, demographics, noise) must be handled 

with techniques like domain adaptation and federated 

learning [14]. 

E. LIGHTWEIGHT AND REAL-TIME MODELS 

Deep learning models are often computationally 

intensive. Research can be directed toward creating 

lightweight models for deployment on edge devices or 

real-time inference in operating rooms and emergency 

settings [15]. 

F. MULTI-CLASS AND SUB-TYPE CLASSIFICATION 

Future work can extend the models to distinguish 

subtypes of gliomas or even benign vs malignant 

tumors. Fine-grained classification can assist neuro-

oncologists in better prognosis estimation and surgical 

decision-making [16]. 

VI. CONCLUSION 

In order to classify brain tumours using MRI scans, 

this study compared CNN-based approaches, hybrid 

models, and transfer learning techniques. The results 

indicate that: 

• Traditional CNNs, while effective, are limited by 

data size and depth. 

• Hybrid models such as CNN+SVM and CNN+KNN 

show moderate improvements by combining deep 

feature extraction with classical machine learning 

classifiers. 

• Fine-tuned transfer learning models, particularly 

Xception and InceptionV3, performed at the highest 

level, with Xception reaching an accuracy of 94.1%, 

outperforming all other methods. 

These results are in line with prior research that 

demonstrates Deep CNNs and transfer learning's 

effectiveness in medical imaging domains [3], [4], [6]. 

Moreover, using models that have already been trained 

allowed faster convergence and better generalization 

on relatively small datasets like Sartaj and BraTS. 

Statistical validation using ANOVA further confirmed 

that the improvements from transfer learning were 

significant (p < 0.05). This study demonstrates how 

deep learning can help radiologists diagnose brain 

tumours quickly and accurately, which will ultimately 

improve patient outcomes. 

Future directions include integrating explainable AI, 

expanding classification to subtypes, and validating 

models on real-world clinical data. 
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