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Abstract: The Max-Radial Subdivision Number 𝒔𝒅𝛛𝑹
(𝑮) 

of a graph 𝐺 is the minimum number of edges that must 

be subdivided (where an edge can be subdivided at most 

once) in order to increase the Max-Radial number. The 

Max-Radial subdivision number 𝒔𝒅𝛛𝑹
(𝑮) =  ∞, if the 

subdivision of edges, the Max-Radial number does not 

increase. In this paper, we determine the Max-Radial 

subdivision number of some standard graphs. Also we 

discuss existence theorems and realization theorems of 

this parameter. 
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1 INTRODUCTION 

Let 𝐺(𝑉, 𝐸) be a simple connected graph of order 

|𝑉(𝐺)| = 𝑛. For other notation and terminology, we 

follow [2, 6]. The distance 𝑑(𝑢, 𝑣) between two 

vertices 𝑢 and 𝑣 in G is the length of a shortest path 

joining them. The eccentricity 𝑒(𝑣) of a vertex 𝑣 in a 

connected graph G is the maximum distance between 

the vertices 𝑣 and 𝑢 for all 𝑢 in 𝐺. The radius 𝑟𝑎𝑑(𝐺) 

is the minimum eccentricity of the vertices. The 

diameter𝑑(𝐺) is the maximum eccentricity of the 

vertices. For further reference on distance in graphs, 

one can refer [3]. Two vertices of a graph are said to 

be radial to each other if the distance between them is 

equal to the radius of the graph. The radial graph of a 

graph 𝐺, denoted by 𝑅(𝐺), has the vertex set as in 𝐺 

and two vertices are adjacent in 𝑅(𝐺) if and only if 

they are radial in 𝐺. If  𝐺 is disconnected, then two 

vertices are adjacent in 𝑅(𝐺) if they belong to different 

components of 𝐺. A graph 𝐺 is called a radial graph 

if 𝑅(𝐻) = 𝐺 for some graph 𝐻. Further details on 

radial graph one can refer [1,8]. Let 𝐺(𝑉, 𝐸) be a graph 

and let 𝑉𝑖 = {𝑣𝜖𝑉/ 𝑑𝑒𝑔(𝑣) = 𝑖} . The degree splitting 

graph 𝐷𝑆(𝐺) is obtained from 𝐺, by adding a new 

vertex 𝑤𝑖  for each 𝑉𝑖 such that |𝑉𝑖| ≥ 2 and joining 𝑤𝑖  

to each vertex of  𝑉𝑖. For example, a graph 𝐺 and its 

radial graph 𝑅(𝐺), degree splitting graph 𝐷𝑆(𝐺) are 

shown in Figure 1.1. 

 
𝐺:                                               𝑅(𝐺):                                      𝐷𝑆(𝐺): 

Figure 1.1 

For further reading on max-radial number one can 

refer [9, 10] discussed. For a graph 𝐺(𝑉, 𝐸), the 𝑆-

radial set, 𝐵𝑅(𝑆), is defined for any set 𝑆 ⊆ 𝑉, as the 

set of vertices 𝑢 ∈ 𝑉\𝑆 which are at a distance of 

radius of 𝐺 from some vertex 𝑣 ∈ 𝑆. The Max-radial 

number of 𝐺, ∂𝑅(𝐺), is the parameter which is defined 

as {|𝐵𝑅(𝑆)| − |𝑆|𝑆
𝑚𝑎𝑥 }. For any graph  𝐺,  ∂𝑅(𝐺) 

varies between 0 and n - 2. In [10], the Max-Radial 

subdivision number for some special graphs has been 

determined.  

In this paper we study the effect of subdividing an edge 

on the Max-Radial number of a graph. An edge 𝑢𝑣 ∈

𝐸 is subdivided if the edge 𝑢𝑣 is deleted, but a new 

vertex 𝑥 (called a subdivision vertex) is added, along 
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with two new edges: 𝑢𝑥 and 𝑥𝑣. We restrict ourselves 

to subdivide an edge at most once, that is no edge 

incident to a subdivision vertex can be subdivided. 

The Max-Radial subdivision number 𝑠𝑑𝜕𝑅
(𝐺) is 

defined as the minimum number of edges that must be 

subdivided in order to create a graph 𝐺 ′ for which 

𝜕𝑅(𝐺 ′ ) > 𝜕𝑅(𝐺). The Max-Radial subdivision 

number 𝑠𝑑∂𝑅
(𝐺) = ∞ does not rise in the event that 

there is an edge subdivision. 

From the definition of Max-Radial number in graphs, 

the following observation and theorems have been 

proved in [9]. 

2 BASIC THEOREMS 

Observation 2.1 For any connected graph G of order 

n, 0 ≤ 𝜕𝑅(𝐺) ≤ 𝑛 − 2. 

Theorem 2.2 For any graph 𝐺, 𝜕𝑅(𝐺) = 0 if and only 

if 𝑅(𝐺) ≅ 𝐹 where 𝐹 is 1-factor. 

Theorem 2.3 For any graph 𝐺 of order n, 𝜕𝑅(𝐺) = 𝑛 −

2 if and only if  𝐺 contains a full vertex. 

 

Theorem 2.4 For any given natural number 𝑚, there 

exists a graph 𝐺 such that 𝜕𝑅(𝐺) = |𝐶𝑒𝑛(𝐺)| = 𝑚. 

 

Theorem 2.5 For any positive integer 𝑚, there exists a 

graph 𝐺 such that 𝜕𝑅(𝐺) = 𝜒(𝐺) = 𝑚. 

Lemma 2.6 [7] For any graph G, 𝐵𝑅(𝑋) = Ɓ𝑅(𝐺)(𝑋) 

for all 𝑋 ⊆ 𝑉(𝐺), where Ɓ𝑅(𝐺)(𝑋) is the boundary of 

X in R(G), the radial graph G. 

Theorem 2.7 [7] For any graph G, 𝜕𝑅(𝐺) = 𝜕(𝑅(𝐺)). 

3 MAIN RESULT 

 

In this section, we determine the Max-radial 

subdivision number 𝑠𝑑𝜕𝑅
(𝐺) of some standard graphs 

and existence theorems. 

Observation 3.1 

The Max-Radial number, Max-Radial subdivision 

number of a graph 𝐺 are not comparable. That is, 

𝜕𝑅(𝐺) and 𝑠𝑑𝜕𝑅
(𝐺) are not comparable. 

For example, (i) if 𝐺 ≅ 𝐾4, 𝜕𝑅(𝐺) < 𝑠𝑑𝜕𝑅
(𝐺) ,(ii) if 

𝐺 ≅ 𝐾5, 𝜕𝑅(𝐺) = 𝑠𝑑𝜕𝑅
(𝐺), (iii) if 𝐺 ≅ 𝐾6, 𝜕𝑅(𝐺) > 

𝑠𝑑𝜕𝑅
(𝐺). 

Proposition 3.2 For any path 𝑃𝑛(𝑛 ≥ 2), 𝑠𝑑𝜕𝑅
(𝑃𝑛) =

{
1     𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
∞     𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

Proof Let 𝑣1, 𝑣2 … 𝑣𝑛 be the vertices of a path 𝑃𝑛(𝑛 ≥

2). 

Case(i)  𝑛 is even 

Since 𝑛 is even. Then 𝜕𝑅(𝑃𝑛) = 0. Now, we subdivide 

an edge 𝑣1𝑣2 in 𝑃𝑛, we have an odd path 𝑃𝑛+1. 

Therefore, 𝜕𝑅(𝑃𝑛+1) = 1. Thus  𝑠𝑑𝜕𝑅
(𝑃𝑛) = 1. 

Case(ii)  𝑛 is odd 

Since 𝑛 is odd. Then 𝜕𝑅(𝑃𝑛) = 1. Now we subdivide 

an edge 𝑣1𝑣2 in 𝑃𝑛, we have an even path 𝑃𝑛+1, 

𝜕𝑅(𝑃𝑛+1) = 0. Therefore, 𝜕𝑅(𝑃𝑛) > 𝜕𝑅(𝑃𝑛+1). Again, 

we subdivide the edges 𝑣1𝑣2 and 𝑣2𝑣3 in 𝑃𝑛, 

𝜕𝑅(𝑃𝑛+2) = 1. Therefore, 𝜕𝑅(𝑃𝑛) = 𝜕𝑅(𝑃𝑛+1). 

Therefore, we subdivide any edge in 𝑃𝑛, the Max-

Radial number does not increase. Hence 𝑠𝑑𝜕𝑅
(𝑃𝑛) =

∞.  

Proposition 3.3 For any even cycle 𝐶𝑛(𝑛 ≥ 2), 

𝑠𝑑𝜕𝑅
(𝐶𝑛) = 1. 

Proof Let 𝑣1, 𝑣2 … 𝑣𝑛 be the vertices of an even cycle 

𝐶𝑛(𝑛 ≥ 2). Then 𝜕𝑅(𝐶𝑛) = 0. Now, we subdivide an  

edge 𝑣1𝑣2 in 𝐶𝑛, the resulting graph 𝐶𝑛+1 is an odd 

cycle.Therefore, 𝜕𝑅(𝐺′) = ⌊
𝑛+1

3
⌋ , 𝜕𝑅(𝐶𝑛) <

𝜕𝑅(𝐶𝑛+1). Thus  𝑠𝑑𝜕𝑅
(𝐶𝑛) = 1. 

Proposition 3.4  For any odd cycle 𝐶𝑛(𝑛 > 3), 

𝑠𝑑𝜕𝑅
(𝐶𝑛) = { 

2     𝑖𝑓  𝑛 ≡ 1,2 (𝑚𝑜𝑑 3)             

4     𝑖𝑓  𝑛 ≡ 0 (𝑚𝑜𝑑 3).               
 

Proof  Let 𝑣1𝑣2, … , 𝑣𝑛−1𝑣𝑛 be the vertices of odd 

cycle 𝐶𝑛(𝑛 ≥ 3), 𝜕𝑅(𝐶𝑛) = ⌊
𝑛

3
⌋. 

Case(i)  𝑛 ≡ 1,2 (𝑚𝑜𝑑3)              

Now we subdivide an edge 𝑣1𝑣2 in 𝐶𝑛, the Max-Radial 

number of the resulting graph 𝐺′ ≅ 𝐶𝑛+1 as 0. 

Therefore, 𝜕𝑅(𝐶𝑛) > 𝜕𝑅(𝐺′ ). Next we subdivide the 

edges 𝑣1𝑣2, 𝑣2𝑣3 in 𝐶𝑛, we get the Max-Radial 

number of the resulting graph 𝐺 ′′ ≅ 𝐶𝑛+2 as ⌊
𝑛+1

3
⌋. 

Therefore, 𝜕𝑅(𝐶𝑛) < 𝜕𝑅(𝐺 ′′ ). Hence 𝑠𝑑𝜕𝑅
(𝐺) = 2.  

Case(ii)  𝑛 ≡ 0 (𝑚𝑜𝑑3) 

Now we subdivide an edge 𝑣1𝑣2 in 𝐶𝑛, the Max-Radial 

number of the resulting graph 𝐺′ ≅ 𝐶𝑛+1 as 0. 

Therefore, 𝜕𝑅(𝐶𝑛) > 𝜕𝑅(𝐺′ ). Next, we subdivide the 

edges 𝑣1𝑣2, 𝑣2𝑣3 in 𝐶𝑛, we get the Max-Radial 

number of the resulting graph 𝐺 ′′ ≅ 𝐶𝑛+2 as ⌊
𝑛+2

3
⌋ (=

⌊
𝑛

3
⌋). Therefore, 𝜕𝑅(𝐶𝑛) = 𝜕𝑅(𝐺 ′′ ). Again, we 



© August 2025| IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002 
 

IJIRT 183635 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2270 

subdivided the edges 𝑣1𝑣2, 𝑣2𝑣3 , 𝑣3𝑣4 in 𝐶𝑛, the 

Max-Radial number of the resulting graph 𝐺 ′′′ ≅ 𝐶𝑛+3 

as 0, 𝜕𝑅(𝐶𝑛) > 𝜕𝑅(𝐺 ′′′ ).  Next, we subdivide the edges 

 𝑣𝑖𝑣𝑖+1 , 𝑖 = 1,2,3,4 in 𝐶𝑛 , we get the Max-Radial 

number of the resulting graph 𝐺𝑖𝑣 ≅ 𝐶𝑛+2 as ⌊
𝑛+4

3
⌋ (>

⌊
𝑛

3
⌋). Therefore, 𝜕𝑅(𝐶𝑛) < 𝜕𝑅(𝐺𝑖𝑣  ). Hence 

𝑠𝑑𝜕𝑅
(𝐺) = 4.  

Proposition 3.5 For any complete bipartite graph 

𝐾𝑚,𝑛(𝑚, 𝑛 ≥ 2), 𝑠𝑑𝜕𝑅
(𝐾𝑚,𝑛) = 1. 

Proof Let 𝑉(𝐾𝑚,𝑛) = {𝑢1, 𝑢2 … 𝑢𝑚, 𝑣1, 𝑣2 … 𝑣𝑛}. In 

[9], Fact 2.5, 𝜕𝑅(𝐾𝑚,𝑛) = 𝑚 + 𝑛 − 4.   Now, 

we subdivide an edge 𝑢1𝑣1 in 𝐺, the resulting graph as 

𝐺′ and 𝑉(𝐺′) = {𝑢1, 𝑢2 … 𝑢𝑚,  𝑣1, 𝑣2 … 𝑣𝑛 , 𝑤}. Let 

𝑋 = {𝑤}, 𝐵𝑅(𝑋) = {𝑢2, 𝑢3 … 𝑢𝑚,  𝑣2, 𝑣3 … 𝑣𝑛}.Then 

𝜕𝑅(𝑋) = |𝐵𝑅(𝑋)| − |𝑋| = 𝑚 + 𝑛 − 3. For any other 

subset 𝑆 in 𝑉(𝐺′), 𝜕𝑅(𝑆) ≤ 𝑚 + 𝑛 − 3. Therefore, 

𝜕𝑅(𝐺′) = 𝑚 + 𝑛 − 3, we have 𝜕𝑅(𝐺) < 𝜕𝑅(𝐺′ ). 

Therefore, we subdivide an edge 𝑢1𝑣1 in 𝐺, the Max-

Radial number to be increase. Thus, 𝑠𝑑𝜕𝑅
(𝐺) = 1. 

From the definition of Max-Radial Subdivision 

number in graphs, the following propositions can be 

easily verified. 
 

Proposition 3.6 For any connected graph 𝐺 of order 

𝑛 ≥ 2, 1 ≤ 𝑠𝑑𝜕𝑅
(𝐺) ≤ 4. 

By the definition of Max-Radial subdivision number, 

the subdivision is atleast one. Therefore, 𝑠𝑑𝜕𝑅
(𝐺) ≥

1. If 𝐺 ≢ 𝐶𝑛(𝑛 ≡ 0(𝑚𝑜𝑑 3)) and |𝑉(𝐺)| is high, the 

Max-Radial subdivision number is at most 3. In the 

odd cycle, the subdivision of edges is 2 or 4. Hence the 

Max-Radial subdivision number is at the most 4. 

Therefore, 𝑠𝑑𝜕𝑅
(𝐺) ≤ 4.  

 

Bound is sharp. (i) A graph 𝐺 ≅ 𝑃𝑛 (𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛), 

𝑠𝑑𝜕𝑅
(𝐺) = 1. (ii) A graph 𝐺 ≅ 𝐶𝑛 (𝑛 ≡ 0(𝑚𝑜𝑑3), 

𝑠𝑑𝜕𝑅
(𝐺) = 4.   

 

Proposition 3.7 For any graph 𝐺 with radius 1and 

|𝑉(𝐺)| ≥ 4  if and only if  𝑠𝑑𝜕𝑅
(𝐺) = 3. 

Proof 

Let 𝑣1, 𝑣2 … 𝑣𝑛 be the vertices of a graph 𝐺 with radius 

1. Then by Theorem 2.3, we have 𝜕𝑅(𝐺) = 𝑛 − 2. Let 

𝑣1 be a full vertex in 𝐺. Now we subdivide an edge 

𝑣1𝑣2 in 𝐺, the new vertex as 𝑢1 and existing graph as 

𝐺 ′ with 𝑟(𝐺 ′) = 2. Let 𝑋 = {𝑢1} ⊆ 𝑉(𝐺), 𝐵𝑅(𝑋) =

{𝑣3, 𝑣4 … 𝑣𝑛}.Then 𝜕𝑅(𝑋) = |𝐵𝑅(𝑋)| − |𝑋| = 𝑛 − 3. 

For any subset 𝑋 ⊆ 𝑉(𝐺 ′), 𝜕𝑅(𝑋) ≤ 𝑛 − 3. Therefore, 

𝜕𝑅(𝐺 ′) = 𝑛 − 3. Hence 𝜕𝑅(𝐺) > 𝜕𝑅(𝐺 ′). Next we 

subdivide the edges 𝑣1𝑣2, 𝑣1𝑣3 in 𝐺, the new vertices 

are 𝑢1, 𝑢2 respectively, then resulting graph as 𝐺 ′′ with 

𝑟(𝐺 ′′) = 2. Let 𝑋 ′ = {𝑢1, 𝑣1} ⊆ 𝑉(𝐺 ′′), 𝐵𝑅(𝑋 ′) =

{𝑢2, 𝑣2, 𝑣3, … 𝑣𝑛}. Then 𝜕𝑅(𝑋 ′) = |𝐵𝑅(𝑋 ′)| − |𝑋 ′| =

𝑛 − 2. Therefore, 𝜕𝑅(𝐺 ′′) = 𝑛 − 2. 𝜕𝑅(𝐺) > 𝜕𝑅(𝐺 ′′). 

Next we subdivide the edges 𝑣1𝑣2, 𝑣1𝑣3, 𝑣1𝑣4 in 𝐺, the 

new vertices are 𝑢1, 𝑢2, 𝑢3 respectively, then existing 

graph as 𝐺 ′′′ with 𝑟(𝐺 ′′′) = 2. Let 𝑋 ′ = {𝑢1, 𝑣1} ⊆

𝑉(𝐺 ′′′), 𝐵𝑅(𝑋 ′) = {𝑢2, 𝑢3, 𝑣2, 𝑣3, … 𝑣𝑛}. Then 

𝜕𝑅(𝑋 ′) = |𝐵𝑅(𝑋 ′)| − |𝑋 ′| = (𝑛 + 1) − 2 = 𝑛 − 1. 

Therefore, 𝜕𝑅(𝐺 ′′′) = 𝑛 − 1, 𝜕𝑅(𝐺) < 𝜕𝑅(𝐺 ′′′). 

Therefore three edges can be subdivide in such that 

increase the Max-Radial number. Thus, 𝑠𝑑𝜕𝑅
(𝐺) = 3. 

Conversely we assume  𝑠𝑑𝜕𝑅
(𝐺) = 3. We claim that 

𝑟(𝐺) = 1. Suppose 𝑟(𝐺) ≠ 1.Then 𝐺 has no full 

vertex. Therefore, 𝜕𝑅(𝐺) < 𝑛 − 2 = 𝜕𝑅(𝐺 ′′′) − 1. 

Implies 𝜕𝑅(𝐺) < 𝜕𝑅(𝐺 ′′′) − 1 which is contradiction  

to 𝜕𝑅(𝐺) < 𝜕𝑅(𝐺 ′′′).  Thus, 𝐺 has a full vertex. Hence 

𝑟(𝐺) = 1.  
 

Proposition 3.8 If 𝐺1 and 𝐺2 be any two connected 

graphs, then 𝑠𝑑𝜕𝑅
(𝐺1 + 𝐺2) ≤ 𝑠𝑑𝜕𝑅

(𝐺1) + 𝑠𝑑𝜕𝑅
(𝐺2). 

Proof Given 𝐺1 and 𝐺2 are any two graphs. By 

Proposition 3.6, 𝑠𝑑𝜕𝑅
(𝐺1 + 𝐺2) ≤ 4. Also 

𝑠𝑑𝜕𝑅
(𝐺1) ≤ 4 and 𝑠𝑑𝜕𝑅

(𝐺2) ≤ 4. Hence the 

inequality holds. Bound is sharp. 𝑠𝑑𝜕𝑅
(𝐺1 + 𝐺2) =

𝑠𝑑𝜕𝑅
(𝐺1) + 𝑠𝑑𝜕𝑅

(𝐺2) if 𝐺1 ≅ 𝐾5 and 𝐺2 ≅ 𝐶4. 

 

Corollary 3.9 For any graph 𝐺 and 𝑣 ∈ 𝑉(𝐺),  

𝑠𝑑𝜕𝑅
(𝐺 + 𝑣) ≤ 𝑠𝑑𝜕𝑅

(𝐺). 

Proof Let 𝑣1, 𝑣2, … , 𝑣𝑛 be the vertices of a graph 𝐺.  

Case(i) 𝐺 contains a full vertex 𝑣1.  

Then by Proposition 3.7, we have 𝑠𝑑𝜕𝑅
(𝐺) = 3. 

Case(ii)  𝐺 contains no full vertex. 

Then 𝜕𝑅(𝐺) < 𝑛 − 2. 

Subcase(i) Subdivide one edge in 𝐺. 

Suppose we subdivide an edge 𝑣1𝑣2 in 𝐺, the resulting 

graph 𝐺′ with 𝜕𝑅(𝐺) < 𝜕𝑅(𝐺 ′). Therefore, 𝑠𝑑𝜕𝑅
(𝐺) =

1.   

Subcase(ii) Subdivide two edges in 𝐺. 

Suppose we subdivide two edges in 𝐺, the resulting 

graph 𝐺′′ with 𝜕𝑅(𝐺) < 𝜕𝑅(𝐺 ′′). Therefore, 

𝑠𝑑𝜕𝑅
(𝐺) = 2. 

Subcase(iii) Subdivide three edges in 𝐺. 
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Suppose we subdivide three edges in 𝐺, the resulting 

graph 𝐺′′′ with 𝜕𝑅(𝐺) < 𝜕𝑅(𝐺 ′′′). Therefore, 

𝑠𝑑𝜕𝑅
(𝐺) = 3. 

Subcase(iv) Subdivide four edges in 𝐺. 

Suppose 𝐺 ≅ 𝐶𝑛(𝑛 ≡ 0(𝑚𝑜𝑑 3), Now, we subdivide 

four edges in 𝐺, the resulting graph 𝐺′𝑣 with 𝜕𝑅(𝐺) <

𝜕𝑅(𝐺𝑖𝑣). Therefore, 𝑠𝑑𝜕𝑅
(𝐺) = 4. 

Subcase(v) There is no edges in 𝐺.    

Now, we subdivide the edges in 𝐺, the resulting graph 

𝐺∗ with 𝜕𝑅(𝐺) ≥ 𝜕𝑅(𝐺∗). Therefore, 𝑠𝑑𝜕𝑅
(𝐺) = ∞. 

Thus  𝑠𝑑𝜕𝑅
(𝐺) ≤ 4.                                      

We construct a graph  𝐺′ ≅ 𝐺 + 𝑣 with 𝑉(𝐺′) =

𝑉(𝐺) ∪ {𝑣} and 𝑟𝑎𝑑(𝐺′) = 1. By Proposition 3.7, we 

have 𝑠𝑑𝜕𝑅
(𝐺′) = 3. Thus, 𝑠𝑑𝜕𝑅

(𝐺) ≥ 𝑠𝑑𝜕𝑅
(𝐺 + 𝑣).  

 

Proposition 3.10 Any graph 𝐺 with radius 1, 

𝑠𝑑𝜕𝑅
(𝐺) = 𝑠𝑑𝜕𝑅

(𝑅(𝐺)). 

For consider a graph 𝐺 with radius 1, 𝐺 ≅ 𝑅(𝐺). 

Therefore, 𝑠𝑑𝜕𝑅
(𝐺) = 𝑠𝑑𝜕𝑅

(𝑅(𝐺)). 

Proposition 3.11 For any connected 𝑘-regular graph 𝐺 

(𝑘 ≤ 2), 1 ≤ 𝑠𝑑𝜕𝑅
(𝐺) ≤ 𝑘 + 2. 

Proof By proposition 3.4.8 , Since 𝐺 is connected, 

𝑠𝑑𝜕𝑅
(𝐺) ≥ 1. By proposition 3.4.6, 𝐺 ≅ 𝐶𝑛(𝑛 ≡

0(𝑚𝑜𝑑 3),  𝑠𝑑𝜕𝑅
(𝐺) = 4. Since 𝐺 is 2-regular graph. 

Hence 𝑠𝑑𝜕𝑅
(𝐺) ≤ 𝑘 + 2.  

 

Proposition 3.12 

For any graph 𝐺 ≅ 𝐾𝑝(𝑝 > 4)(𝑜𝑟)𝐾𝑚,𝑛(𝑚, 𝑛 > 2) 

having a minimum 𝜕𝑅(𝐺)-set 𝑆 where the subgraph  𝐺 ′ 

induced by  𝑉 − 𝑆,  𝑠𝑑𝜕𝑅
(𝐺) = 𝑠𝑑𝜕𝑅

(𝐺 ′). 

Proof   

Case(i) 𝐺 ≅ 𝐾𝑛. Let 𝑉(𝐺) = {𝑣1, 𝑣2 … 𝑣𝑛}. By 

Proposition 3.7, 𝑠𝑑𝜕𝑅
(𝐺) = 3. Let 𝑆 be a minimum 

𝜕𝑅-set of 𝐺. Construct a subgraph 𝐺′ induced by 𝑉 −

𝑆, which is a complete graph. Therefore,  𝑠𝑑𝜕𝑅
(𝐺 ′) =

3. Hence 𝑠𝑑𝜕𝑅
(𝐺) = 𝑠𝑑𝜕𝑅

(𝐺 ′). 

Case(ii) 𝐺 ≅ 𝐾𝑚,𝑛. Let 𝑉(𝐺) =

{𝑢1, 𝑢2 … 𝑢𝑚, 𝑣1, 𝑣2 … 𝑣𝑛}. By Proposition 3.5, 

𝑠𝑑𝜕𝑅
(𝐺) = 1. Construct a subgraph 𝐺′ induced by 

𝑉 − 𝑆, which is a bipartite complete graph. Therefore, 

𝑠𝑑𝜕𝑅
(𝐺 ′) = 1. Hence 𝑠𝑑𝜕𝑅

(𝐺) = 𝑠𝑑𝜕𝑅
(𝐺 ′).  

 

We note that the converse of the above proposition is not true. For example, consider the graph  𝐺 as shown in Figure 

3.11. 

 

 

 

 

  

 

 

Figure 3.11 

 

Here 𝑆 = {𝑣3} be the minimum 𝜕𝑅-set of  𝐺,  𝜕𝑅(𝐺) = 1. Now we subdivide an edge 𝑣1𝑣3 in 𝐺,  the Max-Radial 

number of resulting graph 𝐺∗ as 2. Therefore, 𝑠𝑑𝜕𝑅
(𝐺) = 1.           

 

Now we construct a subgraph 𝐺′ induced by 𝑉 − 𝑆. 
 

 

 

               𝐺′ = 𝐺[𝑉 − 𝑆]:  

Figure 3.12 
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Here 𝑆 = {𝑣4} be the minimum 𝜕𝑅-set of 𝐺, 𝜕𝑅(𝐺′) =

1. Now we subdivide an edge 𝑣1𝑣4 in 𝐺′, we get the 

Max-Radial number of resulting graph 𝐺∗∗ as 2. 

Therefore, 𝑠𝑑𝜕𝑅
(𝐺′) = 1. Therefore, 𝑠𝑑𝜕𝑅

(𝐺) =

𝑠𝑑𝜕𝑅
(𝐺′). But 𝐺 ≇ 𝐾𝑛(𝑜𝑟)𝐾𝑚,𝑛. 

 

Proposition 3.13 If 𝐺 ≅ 𝑃𝑛(𝑛 ≥ 3), 𝑆𝑛 , 𝑊𝑛(𝑛 ≥

4), 𝐾𝑚,𝑛(𝑚 ≥ 2, 𝑛 ≥ 3), then 𝑠𝑑𝜕𝑅
(𝐷𝑆(𝐺))=1 where 

𝐷𝑆(𝐺)is the degree splitting graph of 𝐺. 

Proof Let 𝐺 ≅ 𝑃𝑛(𝑛 ≥ 3), 𝑆𝑛, 𝑊𝑛(𝑛 ≥ 4), 𝐾𝑚,𝑛(𝑚 ≥

2, 𝑛 ≥ 3). Then, we subdivide exactly one edge in 

𝐷𝑆(𝐺), the Max-Radial number of the resulting graph 

𝐺′ is increased. Therefore, 𝜕𝑅(𝐷𝑆(𝐺)) < 𝜕𝑅(𝐺′). 

Hence 𝑠𝑑𝜕𝑅
(𝐷𝑆(𝐺))=1.   

 

Proposition 3.14 For any 𝑘-regular graph 𝐺, 

𝑠𝑑𝜕𝑅
(𝐷𝑆(𝐺))=3. 

Proof Let 𝐺 be a k-regular graph. Then 𝐷𝑆(𝐺) 

contains a full vertex 𝑣. Therefore, by proposition 3.7, 

we have 𝑠𝑑𝜕𝑅
(𝐷𝑆(𝐺))=3. 

 

Theorem 3.15  

For any given natural number 𝑛, there exists no graph 

𝐺 such that 𝜕𝑅(𝐺) = 𝑛 − 3. 

Proof Suppose a graph 𝐺 exists to contrary of the 

statement. 

Let 𝑋 be a  𝜕𝑅-set of 𝐺.  

Case (i): 𝑋 contains exactly one vertex, 𝑣 

Subcase(i): 𝑣 is a full vertex.  

Then 𝜕𝑅(𝐺) = 𝑛 − 2 which is a contradiction. 

Subcase(ii): 𝑣 is not a full vertex.  

Then 𝑣 is adjacent to at most 𝑛 − 2 vertices in 𝐺, 

Therefore, |𝐵𝑅(𝑋)| ≤ 𝑛 − 3 

⇒ |𝐵𝑅(𝑋)| − |𝑋| ≤ 𝑛 − 4. Implies 𝜕𝑅(𝑋) < 𝜕𝑅(𝐺) 

which is contradiction to 𝜕𝑅(𝐺) = 𝜕𝑅(𝑋). 

Case (ii): 𝑋 contains atleast two vertices. 

That is, |𝑋| ≥ 2. 

Now 𝜕𝑅(𝐺) = 𝜕𝑅(𝑋) 

     ⇒ 𝜕𝑅(𝐺) = |𝐵𝑅(𝑋)| − |𝑋| 

     ⇒ 𝜕𝑅(𝐺) + |𝑋| = |𝐵𝑅(𝑋)| 

     ⇒ |𝐵𝑅(𝑋)| ≥ (𝑛 − 3) + 2 = 𝑛 − 1 

     ⇒ |𝐵𝑅(𝑋)| ≥ 𝑛 − 1 

But |𝑉(𝐺)| ≥ |𝑋 ∪ 𝐵𝑅(𝑋)| 

    ⇒ 𝑛 ≥ |𝑋| + |𝐵𝑅(𝑋)| 

    ⇒ 𝑛 ≥ 𝑛 + 1 which is a contradiction. Our 

assumption is wrong. Therefore there exists no graph 

𝐺 with order 𝑛 such that 𝜕𝑅(𝐺) = 𝑛 − 3.  

 

Theorem 3.16   For any given natural number 𝑛 ≥ 5, 

there exists a graph 𝐺 such that 𝜕𝑅(𝐺) = 𝑛 − 4 and 

𝑠𝑑𝜕𝑅
(𝐺) = 1. 

Proof Given natural number 𝑛 ≥ 5. We construct a 

graph 𝐺 with 𝑉(𝐺) =

{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑤1, 𝑤2, 𝑤3, … . , 𝑤𝑛−4} and 𝐸(𝐺) =

{𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣3𝑤𝑖 , 𝑣4𝑤𝑖 ∶  1 ≤ 𝑖 ≤ 𝑛 − 4}. We 

claim that  𝜕𝑅(𝐺) = 𝑛 − 4. Let 𝑋 = {𝑣2} ⊆ 𝑉(𝐺), 

then 𝐵𝑅(𝑋) = {𝑤1, 𝑤2, … . , 𝑤𝑛−4, 𝑣4}. Therefore, 

𝜕𝑅(𝑋) = |𝐵𝑅(𝑋)| − |𝑋| = 𝑛 − 4. Thus, 𝜕𝑅(𝐺) ≥ 𝑛 −

4. It is enough to prove that 𝜕𝑅(𝑋) ≤ 𝑛 − 4. Suppose  

𝑋 contains at least two vertices, 𝐵𝑅(𝑋) contains at 

most 𝑛 − 2 vertices. Then 𝜕𝑅(𝑋) = |𝐵𝑅(𝑋)| − |𝑋| ≤

𝑛 − 4. Thus, 𝜕𝑅(𝐺) < 𝑛 − 4. Therefore, 𝑋 = {𝑣2} is 

only 𝜕𝑅-set of 𝐺. Hence 𝜕𝑅(𝐺) = 𝑛 − 4. Next we 

claim that 𝑠𝑑𝜕𝑅
(𝐺) = 1. Now, we subdivide an edge 

of 𝑣1𝑣2 in 𝐺, the new vertex as 𝑢 and existing graph 

as 𝐺′ with radius 𝑟(𝐺′) = 2. Let 𝑋 = {𝑣2}, then  

𝐵𝑅(𝑋) = {𝑣1, 𝑣4, 𝑤1, 𝑤2 … , 𝑤𝑛−4}. Therefore, 

𝜕𝑅(𝑋) = |𝐵𝑅(𝑋)| − |𝑋| = 𝑛 − 3 which is minimum, 

𝜕𝑅(𝐺′) = 𝑛 − 3.  Therefore, 𝜕𝑅(𝐺) ≤ 𝜕𝑅(𝐺′). Thus 

𝑠𝑑𝜕𝑅
(𝐺) = 1. Example 3.17 When 𝑛 = 9, 𝑚 = 5 in 

Theorem 3.16, the constructed graph 𝐺 is shown in 

Figure 3.13  

 
Figure 3.13 

Here 𝑆 = {𝑣2} be the minimum 𝜕𝑅-set of  𝐺,  𝜕𝑅(𝐺) =

5. Now we subdivide an edge 𝑣1𝑣2, the Max-Radial 

number of resultant graph as 6. Hence  𝑠𝑑𝜕𝑅
(𝐺) = 1.  

Note that the other construction of a graph 𝐺 with 

𝜕𝑅(𝐺) = 𝑚 − 4 and 𝑠𝑑𝜕𝑅
(𝐺) = 1 as given below. 

Given a natural number 𝑚 ≥ 6. Construct a graph 𝐺 

with 𝑉(𝐺) =

{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑤1, 𝑤2, … , 𝑤𝑘 , 𝑢1, 𝑢2, … , 𝑢𝑚−(𝑘+5) ∶

1 ≤ 𝑘 ≤ 𝑚 − 5 and 𝐸(𝐺) =

{𝑣1𝑣2, 𝑣2𝑣3, 𝑣3𝑣4, 𝑣4𝑣5, 𝑣5𝑣1, 𝑣3𝑤𝑖 , 𝑣4𝑢𝑗 ∶ 1 ≤ 𝑖 ≤
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𝑘 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑚 − (𝑘 + 5)} with radius 2. Now, we 

claim that 𝜕𝑅(𝐺) = 𝑛 − 4. Let 𝑋 = {𝑣3, 𝑣4}, then  

𝐵𝑅(𝑋) =

{𝑣1, 𝑣2, 𝑣5, 𝑤1, 𝑤2, … , 𝑤𝑘 , 𝑢1, 𝑢2, … , 𝑢𝑚−(𝑘+5)}. 

Therefore, 𝜕𝑅(𝑋) = |𝐵𝑅(𝑋)| − |𝑋| = 𝑚 − 4. Thus 

𝜕𝑅(𝐺) ≥ 𝑚 − 4. It is enough to prove that 𝜕𝑅(𝐺) ≤

𝑚 − 4. Let 𝑆 ⊆ 𝑉(𝐺) containing at least two vertices, 

Then 𝐵𝑅(𝑆) contains at most 𝑚 − 2 vertices. We  have 

𝜕𝑅(𝑆) ≤ 𝑚 − 4. Therefore, 𝜕𝑅(𝐺) = 𝑛 − 4. Next we 

claim that  𝑠𝑑𝜕𝑅
(𝐺) = 2. Now we subdivide an edge 

in the cycle 𝐶: 𝑣1𝑣2𝑣3𝑣4𝑣5𝑣1, the new vertex as 𝑥1 and 

existing graph as 𝐺 ′ with 𝑟(𝐺 ′) = 3. Let 𝑋 ⊆ 𝑉(𝐺) be 

𝜕𝑅-set with cardinality 2. Then 𝐵𝑅(𝑋) contains 𝑚 − 3 

vertices. Therefore, 𝜕𝑅(𝑋) ≤ 𝑚 − 5, 𝜕𝑅(𝐺 ′) = 𝑚 −

5. Hence  𝜕𝑅(𝐺) > 𝜕𝑅(𝐺 ′′). Next we subdivide an 

edge 𝑢𝑗𝑣4 𝑜𝑟 𝑤𝑘𝑣3 in 𝐺, the new vertex  𝑥2 and 

resulting graph as 𝐺 ′ with 𝑟(𝐺 ′′) = 2. Let  𝑋 ′ =

{𝑣3, 𝑣4} ⊆ 𝑉(𝐺 ′). Then 𝐵𝑅(𝑋 ′) =

{𝑣1, 𝑣2, 𝑣5, 𝑥1, 𝑤1 , 𝑤2, … , 𝑤𝑘 , 𝑢1, 𝑢2, … , 𝑢𝑚−(𝑘+5)}. 

Therefore, 𝜕𝑅(𝑋 ′) = |𝐵𝑅(𝑋 ′)| − |𝑋 ′| = 𝑚 − 3. For 

any subset 𝑋 ⊆ 𝑉(𝐺 ′), we have 𝜕𝑅(𝑋) ≤ 𝑚 − 3. 

Therefore, 𝜕𝑅(𝐺 ′′) = 𝑚 − 3. Hence 𝜕𝑅(𝐺) < 𝜕𝑅(𝐺 ′′). 

Thus  𝑠𝑑𝜕𝑅
(𝐺) = 1.  

 

Example 3.18 When 𝑚 = 10 in Theorem 3.16, the constructed graph is shown in Figure 3.14. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 

Here 𝑆 = {𝑣3, 𝑣4} be the minimum 𝜕𝑅-set of  𝐺,  

𝜕𝑅(𝐺) = 6. Now we subdivide an edge 𝑢1𝑣4 or 

𝑤1𝑣3, the Max-Radial number of the resultant graph 

as 7. Hence  𝑠𝑑𝜕𝑅
(𝐺) = 1. 

 

Theorem 3.19  For given any natural number 𝑚 ≥

5, there exists a graph 𝐺 such that 𝜕𝑅(𝐺) = 𝑚 − 5 and  

𝑠𝑑𝜕𝑅
(𝐺) = 1. 

Proof Given natural number 𝑚 ≥ 5. We construct a 

graph 𝐺 with 𝑉(𝐺) = {𝑣1, 𝑣2, 𝑣3, 𝑣4;  

𝑤1, 𝑤2, … , 𝑤𝑘;  𝑢1, 𝑢2, … , 𝑢𝑚−(𝑘+5)+1}where1 ≤ 𝑘 ≤

𝑚 − 5 and 𝐸(𝐺) = {𝑣1𝑣2, 𝑣1𝑣3, 𝑣1𝑣4, 𝑣2𝑣3, 

𝑣3𝑣4, 𝑣2𝑤𝑖 , 𝑣4𝑢𝑗, 𝑤𝑖𝑤𝑖+1, 𝑢𝑗𝑢𝑗+1/  1 ≤ 𝑖 ≤

𝑘 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑚 − (𝑘 + 5)} with radius 2. Now, we 

claim that 𝜕𝑅(𝐺) = 𝑚 − 5. Let 𝑋 = {𝑣1 } 𝑜𝑟 { 𝑣3}, 

then 𝐵𝑅(𝑋) = {𝑤1, 𝑤2, … , 𝑤𝑘 , 𝑢1, 𝑢2, …, 

𝑢𝑚−(𝑘+5)+1}. Therefore, 𝜕𝑅(𝑋) = |𝐵𝑅(𝑋)| − |𝑋| =

(𝑚 − 4) − 1 = 𝑚 − 5. Thus 𝜕𝑅(𝐺) ≥ 𝑚 − 5. It is 

enough we prove that 𝜕𝑅(𝐺) ≤ 𝑚 − 5. Suppose a set 

𝑆 contains at least two vertices in 𝐺, then 𝐵𝑅(𝑆) 

contains at most 𝑚 − 3 vertices. Therefore, 𝜕𝑅(𝑆) <

𝑚 − 5. For any subset 𝑋 ′ ⊆ 𝑉(𝐺), 𝜕𝑅(𝑋 ′) ≤ 𝑚 − 5. 

Therefore, 𝑋 = {𝑣1} or {𝑣3} is only  𝜕𝑅-set of 𝐺. Thus 

𝜕𝑅(𝐺) = 𝑚 − 5. Next we claim that  𝑠𝑑𝜕𝑅
(𝐺) = 1. 

Now, we subdivide an edge of 𝑣1𝑣3 in 𝐺, the new 

vertex as 𝑥1 and existing graph as 𝐺 ′. Then radius 

𝑟(𝐺 ′) = 2. Let 𝑋 = {𝑣3} ⊆ 𝑉(𝐺′), then  𝐵𝑅(𝑋) =

{𝑣1, 𝑤1, 𝑤2, … , 𝑤𝑘 , 𝑢1, 𝑢2, … , 𝑢𝑚−(𝑘+4)}. Therefore, 

𝜕𝑅(𝑋) = |𝐵𝑅(𝑋)| − |𝑋| = (𝑚 − 3) − 1 = 𝑚 − 4. 

Also, for any subset 𝑋 ′ ⊆ 𝑉(𝐺 ′), we have 𝜕𝑅(𝑋 ′) ≤

𝑚 − 4. Therefore, 𝑋 = {𝑣3}𝑜𝑟 {𝑣1}   is a 𝜕𝑅-set of 𝐺, 

𝜕𝑅(𝐺 ′) = 𝑚 − 4. Hence 𝜕𝑅(𝐺) < 𝜕𝑅(𝐺 ′). Therefore, 

we subdivide only one edge in 𝐺, the Max-Radial 

number is increase. Thus 𝑠𝑑𝜕𝑅
(𝐺) = 1.  
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Example 3.20 When 𝑚 = 13 in Theorem 3.19, the constructed graph is shown in Figure 3.15. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 

Here 𝑆 = {𝑣1} 𝑜𝑟 {𝑣3} be the minimum 𝜕𝑅-set of  𝐺,  

𝜕𝑅(𝐺) = 8. Now we subdivide an edge 𝑣1𝑣3, we get 

Max-Radial number of resultant graph as 9. Hence  

𝑠𝑑𝜕𝑅
(𝐺) = 1.  
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