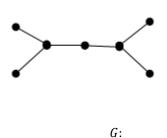
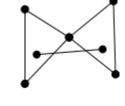
A Note on Max-Radial Subdivision Number of a Graph

M. Mathan¹, M. Bhuvaneshwari², Selvam Avadayappan³

¹Department of Mathematics Sri Vidhya College of Arts and Science, Virudhunagar, India ^{2,3}Research Department of Mathematics, VHN Senthikumara Nadar College (Autonomous), (Affiliated to Madurai Kamaraj University) Virudhunagar, India

Abstract: The Max-Radial Subdivision Number $sd_{\partial_R}(G)$ of a graph G is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the Max-Radial number. The Max-Radial subdivision number $sd_{\partial_R}(G) = \infty$, if the subdivision of edges, the Max-Radial number does not increase. In this paper, we determine the Max-Radial subdivision number of some standard graphs. Also we discuss existence theorems and realization theorems of this parameter.


Keywords: Radius, Max-Radial number, ∂_R -set, Max-Radial subdivision number.


AMS Subject Classification code: 05C (primary)

1 INTRODUCTION

Let G(V, E) be a simple connected graph of order |V(G)| = n. For other notation and terminology, we follow [2, 6]. The *distance* d(u, v) between two vertices u and v in G is the length of a shortest path joining them. The *eccentricity* e(v) of a vertex v in a

connected graph G is the maximum distance between the vertices v and u for all u in G. The radius rad(G)is the minimum eccentricity of the vertices. The diameterd(G) is the maximum eccentricity of the vertices. For further reference on distance in graphs, one can refer [3]. Two vertices of a graph are said to be radial to each other if the distance between them is equal to the radius of the graph. The radial graph of a graph G, denoted by R(G), has the vertex set as in Gand two vertices are adjacent in R(G) if and only if they are radial in G. If G is disconnected, then two vertices are adjacent in R(G) if they belong to different components of G. A graph G is called a radial graph if R(H) = G for some graph H. Further details on radial graph one can refer [1,8]. Let G(V, E) be a graph and let $V_i = \{v \in V \mid deg(v) = i\}$. The degree splitting graph DS(G) is obtained from G, by adding a new vertex w_i for each V_i such that $|V_i| \ge 2$ and joining w_i to each vertex of V_i . For example, a graph G and its radial graph R(G), degree splitting graph DS(G) are shown in Figure 1.1.

R(G):

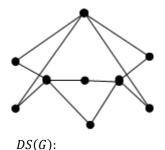


Figure 1.1

For further reading on max-radial number one can refer [9, 10] discussed. For a graph G(V, E), the S-radial set, $B_R(S)$, is defined for any set $S \subseteq V$, as the set of vertices $u \in V \setminus S$ which are at a distance of radius of G from some vertex $v \in S$. The Max-radial number of G, $\partial_R(G)$, is the parameter which is defined as $\max_{S}\{|B_R(S)| - |S|\}$. For any graph G, $\partial_R(G)$

varies between 0 and n - 2. In [10], the Max-Radial subdivision number for some special graphs has been determined.

In this paper we study the effect of subdividing an edge on the Max-Radial number of a graph. An edge $uv \in E$ is subdivided if the edge uv is deleted, but a new vertex x (called a subdivision vertex) is added, along

with two new edges: ux and xv. We restrict ourselves to subdivide an edge at most once, that is no edge incident to a subdivision vertex can be subdivided. The Max-Radial subdivision number $sd_{\partial_R}(G)$ is defined as the minimum number of edges that must be subdivided in order to create a graph G' for which $\partial_R(G') > \partial_R(G)$. The Max-Radial subdivision number $sd_{\partial_R}(G) = \infty$ does not rise in the event that there is an edge subdivision.

From the definition of Max-Radial number in graphs, the following observation and theorems have been proved in [9].

2 BASIC THEOREMS

Observation 2.1 For any connected graph G of order $n, 0 \le \partial_R(G) \le n - 2$.

Theorem 2.2 For any graph G, $\partial_R(G) = 0$ if and only if $R(G) \cong F$ where F is 1-factor.

Theorem 2.3 For any graph G of order n, $\partial_R(G) = n - 2$ if and only if G contains a full vertex.

Theorem 2.4 For any given natural number m, there exists a graph G such that $\partial_R(G) = |Cen(G)| = m$.

Theorem 2.5 For any positive integer m, there exists a graph G such that $\partial_R(G) = \chi(G) = m$.

Lemma 2.6 [7] For any graph G, $B_R(X) = \mathbb{B}_{R(G)}(X)$ for all $X \subseteq V(G)$, where $\mathbb{B}_{R(G)}(X)$ is the boundary of X in R(G), the radial graph G.

Theorem 2.7 [7] For any graph G, $\partial_R(G) = \partial(R(G))$.

3 MAIN RESULT

In this section, we determine the Max-radial subdivision number $sd_{\partial_R}(G)$ of some standard graphs and existence theorems.

Observation 3.1

The Max-Radial number, Max-Radial subdivision number of a graph G are not comparable. That is, $\partial_R(G)$ and $sd_{\partial_R}(G)$ are not comparable.

For example, (i) if $G \cong K_4$, $\partial_R(G) < sd_{\partial_R}(G)$, (ii) if $G \cong K_5$, $\partial_R(G) = sd_{\partial_R}(G)$, (iii) if $G \cong K_6$, $\partial_R(G) > sd_{\partial_R}(G)$.

Proposition 3.2 For any path $P_n (n \ge 2)$, $sd_{\partial_R}(P_n) = \begin{cases} 1 & \text{if } n \text{ is even} \\ \infty & \text{if } n \text{ is odd.} \end{cases}$

Proof Let $v_1, v_2 \dots v_n$ be the vertices of a path $P_n (n \ge 2)$.

Case(i) n is even

Since n is even. Then $\partial_R(P_n) = 0$. Now, we subdivide an edge v_1v_2 in P_n , we have an odd path P_{n+1} . Therefore, $\partial_R(P_{n+1}) = 1$. Thus $sd_{\partial_R}(P_n) = 1$.

Case(ii) n is odd

Since n is odd. Then $\partial_R(P_n)=1$. Now we subdivide an edge v_1v_2 in P_n , we have an even path P_{n+1} , $\partial_R(P_{n+1})=0$. Therefore, $\partial_R(P_n)>\partial_R(P_{n+1})$. Again, we subdivide the edges v_1v_2 and v_2v_3 in P_n , $\partial_R(P_{n+2})=1$. Therefore, $\partial_R(P_n)=\partial_R(P_{n+1})$. Therefore, we subdivide any edge in P_n , the Max-Radial number does not increase. Hence $sd_{\partial_R}(P_n)=\infty$.

Proposition 3.3 For any even cycle $C_n (n \ge 2)$, $sd_{\partial_R}(C_n) = 1$.

Proof Let $v_1, v_2 \dots v_n$ be the vertices of an even cycle $C_n (n \ge 2)$. Then $\partial_R (C_n) = 0$. Now, we subdivide an edge $v_1 v_2$ in C_n , the resulting graph C_{n+1} is an odd cycle. Therefore, $\partial_R (G') = \left\lfloor \frac{n+1}{3} \right\rfloor$, $\partial_R (C_n) < \partial_R (C_{n+1})$. Thus $sd_{\partial_R} (C_n) = 1$.

Proposition 3.4 For any odd cycle $C_n(n > 3)$,

$$sd_{\partial_R}(C_n) = \begin{cases} 2 & \text{if } n \equiv 1,2 \text{ (mod 3)} \\ 4 & \text{if } n \equiv 0 \text{ (mod 3)}. \end{cases}$$

Proof Let $v_1v_2, ..., v_{n-1}v_n$ be the vertices of odd cycle $C_n (n \ge 3)$, $\partial_R (C_n) = \left| \frac{n}{2} \right|$.

Case(i) $n \equiv 1,2 \pmod{3}$

Now we subdivide an edge v_1v_2 in C_n , the Max-Radial number of the resulting graph $G'\cong C_{n+1}$ as 0. Therefore, $\partial_R(C_n)>\partial_R(G')$. Next we subdivide the edges v_1v_2 , v_2v_3 in C_n , we get the Max-Radial number of the resulting graph $G^{''}\cong C_{n+2}$ as $\left\lfloor\frac{n+1}{3}\right\rfloor$. Therefore, $\partial_R(C_n)<\partial_R(G^{''})$. Hence $sd_{\partial_R}(G)=2$. Case(ii) $n\equiv 0\ (mod 3)$

Now we subdivide an edge v_1v_2 in C_n , the Max-Radial number of the resulting graph $G'\cong C_{n+1}$ as 0. Therefore, $\partial_R(C_n)>\partial_R(G')$. Next, we subdivide the edges v_1v_2 , v_2v_3 in C_n , we get the Max-Radial number of the resulting graph $G''\cong C_{n+2}$ as $\left\lfloor\frac{n+2}{3}\right\rfloor$ (=

 $\left|\frac{n}{3}\right|$). Therefore, $\partial_R(C_n) = \partial_R(G'')$. Again, we

subdivided the edges v_1v_2 , v_2v_3 , v_3v_4 in C_n , the Max-Radial number of the resulting graph $G^{'''}\cong C_{n+3}$ as $0,\partial_R(C_n)>\partial_R(G^{'''})$. Next, we subdivide the edges v_iv_{i+1} , i=1,2,3,4 in C_n , we get the Max-Radial number of the resulting graph $G^{iv}\cong C_{n+2}$ as $\left\lfloor\frac{n+4}{3}\right\rfloor$ (> $\left\lfloor\frac{n}{3}\right\rfloor$). Therefore, $\partial_R(C_n)<\partial_R(G^{iv})$. Hence $sd_{\partial_R}(G)=4$.

Proposition 3.5 For any complete bipartite graph $K_{m,n}(m, n \ge 2)$, $sd_{\partial_R}(K_{m,n}) = 1$.

Proof Let $V(K_{m,n})=\{u_1,u_2\dots u_m,v_1,v_2\dots v_n\}$. In [9], Fact 2.5, $\partial_R(K_{m,n})=m+n-4$. Now, we subdivide an edge u_1v_1 in G, the resulting graph as G' and $V(G')=\{u_1,u_2\dots u_m,v_1,v_2\dots v_n,w\}$. Let $X=\{w\}, \quad B_R(X)=\{u_2,u_3\dots u_m,v_2,v_3\dots v_n\}$. Then $\partial_R(X)=|B_R(X)|-|X|=m+n-3$. For any other subset S in $V(G'), \ \partial_R(S)\leq m+n-3$. Therefore, $\partial_R(G')=m+n-3$, we have $\partial_R(G)<\partial_R(G')$. Therefore, we subdivide an edge u_1v_1 in G, the Max-Radial number to be increase. Thus, $Sd_{\partial_R}(G)=1$.

From the definition of Max-Radial Subdivision number in graphs, the following propositions can be easily verified.

Proposition 3.6 For any connected graph G of order $n \ge 2$, $1 \le sd_{\partial_R}(G) \le 4$.

By the definition of Max-Radial subdivision number, the subdivision is at least one. Therefore, $sd_{\partial_R}(G) \ge 1$. If $G \not\equiv C_n (n \equiv 0 \pmod{3})$ and |V(G)| is high, the Max-Radial subdivision number is at most 3. In the odd cycle, the subdivision of edges is 2 or 4. Hence the Max-Radial subdivision number is at the most 4. Therefore, $sd_{\partial_R}(G) \le 4$.

Bound is sharp. (i) A graph $G\cong P_n$ (n is even), $sd_{\partial_R}(G)=1$. (ii) A graph $G\cong C_n$ ($n\equiv 0 \pmod 3$), $sd_{\partial_R}(G)=4$.

Proposition 3.7 For any graph G with radius 1 and $|V(G)| \ge 4$ if and only if $sd_{\partial_R}(G) = 3$. Proof

Let $v_1, v_2 \dots v_n$ be the vertices of a graph G with radius 1. Then by Theorem 2.3, we have $\partial_R(G) = n - 2$. Let v_1 be a full vertex in G. Now we subdivide an edge v_1v_2 in G, the new vertex as u_1 and existing graph as G' with r(G') = 2. Let $X = \{u_1\} \subseteq V(G), B_R(X) = \{v_3, v_4 \dots v_n\}$. Then $\partial_R(X) = |B_R(X)| - |X| = n - 3$.

For any subset $X \subseteq V(G')$, $\partial_R(X) \le n - 3$. Therefore, $\partial_R(G') = n - 3$. Hence $\partial_R(G) > \partial_R(G')$. Next we subdivide the edges v_1v_2 , v_1v_3 in G, the new vertices are u_1, u_2 respectively, then resulting graph as G'' with r(G'') = 2. Let $X' = \{u_1, v_1\} \subseteq V(G'')$, $B_R(X') =$ $\{u_2, v_2, v_3, \dots v_n\}$. Then $\partial_R(X') = |B_R(X')| - |X'| =$ n-2. Therefore, $\partial_R(G'')=n-2$. $\partial_R(G)>\partial_R(G'')$. Next we subdivide the edges v_1v_2 , v_1v_3 , v_1v_4 in G, the new vertices are u_1, u_2, u_3 respectively, then existing graph as G''' with r(G''') = 2. Let $X' = \{u_1, v_1\} \subseteq$ $V(G^{'''}),$ $B_R(X') = \{u_2, u_3, v_2, v_3, \dots v_n\}.$ $\partial_R(X') = |B_R(X')| - |X'| = (n+1) - 2 = n-1.$ $\partial_R(G^{""}) = n - 1, \ \partial_R(G) < \partial_R(G^{""}).$ Therefore three edges can be subdivide in such that increase the Max-Radial number. Thus, $sd_{\partial_R}(G) = 3$. Conversely we assume $sd_{\partial_R}(G) = 3$. We claim that r(G) = 1. Suppose $r(G) \neq 1$. Then G has no full vertex. Therefore, $\partial_R(G) < n - 2 = \partial_R(G''') - 1$. Implies $\partial_R(G) < \partial_R(G^{""}) - 1$ which is contradiction to $\partial_R(G) < \partial_R(G''')$. Thus, G has a full vertex. Hence r(G) = 1.

Proposition 3.8 If G_1 and G_2 be any two connected graphs, then $sd_{\partial_R}(G_1+G_2) \leq sd_{\partial_R}(G_1) + sd_{\partial_R}(G_2)$. Proof Given G_1 and G_2 are any two graphs. By Proposition 3.6, $sd_{\partial_R}(G_1+G_2) \leq 4$. Also $sd_{\partial_R}(G_1) \leq 4$ and $sd_{\partial_R}(G_2) \leq 4$. Hence the inequality holds. Bound is sharp. $sd_{\partial_R}(G_1+G_2) = sd_{\partial_R}(G_1) + sd_{\partial_R}(G_2)$ if $G_1 \cong K_5$ and $G_2 \cong C_4$.

Corollary 3.9 For any graph G and $v \in V(G)$, $sd_{\partial_R}(G+v) \leq sd_{\partial_R}(G)$.

Proof Let $v_1, v_2, ..., v_n$ be the vertices of a graph G. Case(i) G contains a full vertex v_1 .

Then by Proposition 3.7, we have $sd_{\partial_R}(G) = 3$.

Case(ii) G contains no full vertex.

Then $\partial_R(G) < n-2$.

Subcase(i) Subdivide one edge in G.

Suppose we subdivide an edge v_1v_2 in G, the resulting graph G' with $\partial_R(G) < \partial_R(G')$. Therefore, $sd_{\partial_R}(G) = 1$.

Subcase(ii) Subdivide two edges in G.

Suppose we subdivide two edges in G, the resulting graph G'' with $\partial_R(G) < \partial_R(G'')$. Therefore, $sd_{\partial_R}(G) = 2$.

Subcase(iii) Subdivide three edges in G.

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

Suppose we subdivide three edges in G, the resulting graph G''' with $\partial_R(G) < \partial_R(G''')$. Therefore, $sd_{\partial_R}(G) = 3$.

Subcase(iv) Subdivide four edges in G.

Suppose $G \cong C_n (n \equiv 0 \pmod{3})$, Now, we subdivide four edges in G, the resulting graph G'^v with $\partial_R(G) < \partial_R(G^{iv})$. Therefore, $sd_{\partial_R}(G) = 4$.

Subcase(v) There is no edges in G.

Now, we subdivide the edges in G, the resulting graph G^* with $\partial_R(G) \geq \partial_R(G^*)$. Therefore, $sd_{\partial_R}(G) = \infty$. Thus $sd_{\partial_R}(G) \leq 4$.

We construct a graph $G' \cong G + v$ with $V(G') = V(G) \cup \{v\}$ and rad(G') = 1. By Proposition 3.7, we have $sd_{\partial_R}(G') = 3$. Thus, $sd_{\partial_R}(G) \geq sd_{\partial_R}(G + v)$.

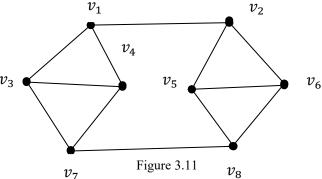
Proposition 3.10 Any graph G with radius 1, $sd_{\partial_R}(G) = sd_{\partial_R}(R(G))$.

For consider a graph G with radius 1, $G \cong R(G)$. Therefore, $sd_{\partial_R}(G) = sd_{\partial_R}(R(G))$.

Proposition 3.11 For any connected k-regular graph G $(k \le 2)$, $1 \le sd_{\partial_R}(G) \le k + 2$.

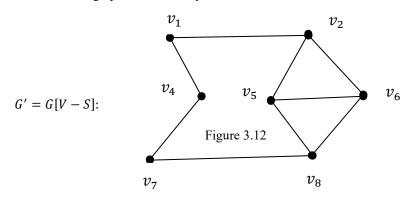
Proof By proposition 3.4.8, Since G is connected, $sd_{\partial_R}(G) \geq 1$. By proposition 3.4.6, $G \cong C_n(n \equiv 0 \pmod{3})$, $sd_{\partial_R}(G) = 4$. Since G is 2-regular graph. Hence $sd_{\partial_R}(G) \leq k+2$.

Proposition 3.12


For any graph $G \cong K_p(p > 4)(or)K_{m,n}(m, n > 2)$ having a minimum $\partial_R(G)$ -set S where the subgraph G' induced by V - S, $sd_{\partial_R}(G) = sd_{\partial_R}(G')$.

Proof

Case(i) $G \cong K_n$. Let $V(G) = \{v_1, v_2 \dots v_n\}$. By Proposition 3.7, $sd_{\partial_R}(G) = 3$. Let S be a minimum ∂_R -set of G. Construct a subgraph G' induced by V - S, which is a complete graph. Therefore, $sd_{\partial_R}(G') = 3$. Hence $sd_{\partial_R}(G) = sd_{\partial_R}(G')$.


Case(ii) $G \cong K_{m,n}$. Let $V(G) = \{u_1, u_2 \dots u_m, v_1, v_2 \dots v_n\}$. By Proposition 3.5, $sd_{\partial_R}(G) = 1$. Construct a subgraph G' induced by V - S, which is a bipartite complete graph. Therefore, $sd_{\partial_R}(G') = 1$. Hence $sd_{\partial_R}(G) = sd_{\partial_R}(G')$.

We note that the converse of the above proposition is not true. For example, consider the graph G as shown in Figure 3.11.

Here $S = \{v_3\}$ be the minimum ∂_R -set of G, $\partial_R(G) = 1$. Now we subdivide an edge v_1v_3 in G, the Max-Radial number of resulting graph G^* as 2. Therefore, $sd_{\partial_R}(G) = 1$.

Now we construct a subgraph G' induced by V - S.

Here $S = \{v_4\}$ be the minimum ∂_R -set of G, $\partial_R(G') = 1$. Now we subdivide an edge v_1v_4 in G', we get the Max-Radial number of resulting graph G^{**} as 2. Therefore, $sd_{\partial_R}(G') = 1$. Therefore, $sd_{\partial_R}(G) = sd_{\partial_R}(G')$. But $G \ncong K_n(or)K_{m,n}$.

Proposition 3.13 If $G \cong P_n(n \ge 3)$, S_n , $W_n(n \ge 4)$, $K_{m,n}(m \ge 2, n \ge 3)$, then $sd_{\partial_R}(DS(G))=1$ where DS(G) is the degree splitting graph of G.

Proof Let $G \cong P_n(n \geq 3)$, S_n , $W_n(n \geq 4)$, $K_{m,n}(m \geq 2, n \geq 3)$. Then, we subdivide exactly one edge in DS(G), the Max-Radial number of the resulting graph G' is increased. Therefore, $\partial_R \big(DS(G) \big) < \partial_R (G')$. Hence $sd_{\partial_B}(DS(G)) = 1$.

Proposition 3.14 For any k-regular graph G, $sd_{\partial_R}(DS(G))=3$.

Proof Let G be a k-regular graph. Then DS(G) contains a full vertex v. Therefore, by proposition 3.7, we have $sd_{\partial_R}(DS(G))=3$.

Theorem 3.15

For any given natural number n, there exists no graph G such that $\partial_R(G) = n - 3$.

Proof Suppose a graph G exists to contrary of the statement.

Let *X* be a ∂_R -set of *G*.

Case (i): X contains exactly one vertex, v

Subcase(i): v is a full vertex.

Then $\partial_R(G) = n - 2$ which is a contradiction.

Subcase(ii): v is not a full vertex.

Then v is adjacent to at most n-2 vertices in G, Therefore, $|B_R(X)| \le n-3$

 $\Rightarrow |B_R(X)| - |X| \le n - 4$. Implies $\partial_R(X) < \partial_R(G)$ which is contradiction to $\partial_R(G) = \partial_R(X)$.

Case (ii): X contains atleast two vertices.

That is, $|X| \ge 2$.

Now
$$\partial_R(G) = \partial_R(X)$$

$$\Rightarrow \partial_R(G) = |B_R(X)| - |X|$$

$$\Rightarrow \partial_R(G) + |X| = |B_R(X)|$$

$$\Rightarrow |B_R(X)| \ge (n-3) + 2 = n-1$$

$$\Rightarrow |B_R(X)| \ge n-1$$

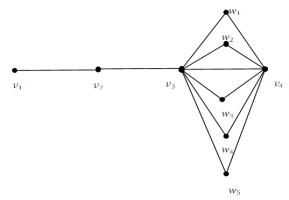
But $|V(G)| \ge |X \cup B_R(X)|$

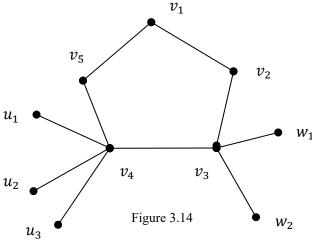
$$\Rightarrow n \ge |X| + |B_R(X)|$$

 $\Rightarrow n \ge n+1$ which is a contradiction. Our assumption is wrong. Therefore there exists no graph G with order n such that $\partial_R(G) = n-3$.

Theorem 3.16 For any given natural number $n \ge 5$, there exists a graph G such that $\partial_R(G) = n - 4$ and $sd_{\partial_R}(G) = 1$.

Proof Given natural number $n \ge 5$. We construct a V(G) =graph G with $\{v_1, v_2, v_3, v_4, w_1, w_2, w_3, \dots, w_{n-4}\}$ and E(G) = $\{v_1v_2, v_2v_3, v_3v_4, v_3w_i, v_4w_i: 1 \le i \le n-4\}.$ We claim that $\partial_R(G) = n - 4$. Let $X = \{v_2\} \subseteq V(G)$, then $B_R(X) = \{w_1, w_2, ..., w_{n-4}, v_4\}$. Therefore, $\partial_R(X) = |B_R(X)| - |X| = n - 4$. Thus, $\partial_R(G) \ge n - 4$ 4. It is enough to prove that $\partial_R(X) \leq n-4$. Suppose X contains at least two vertices, $B_R(X)$ contains at most n-2 vertices. Then $\partial_R(X) = |B_R(X)| - |X| \le$ n-4. Thus, $\partial_R(G) < n-4$. Therefore, $X = \{v_2\}$ is only ∂_R -set of G. Hence $\partial_R(G) = n - 4$. Next we claim that $sd_{\partial_R}(G) = 1$. Now, we subdivide an edge of v_1v_2 in G, the new vertex as u and existing graph as G' with radius r(G') = 2. Let $X = \{v_2\}$, then $B_R(X) = \{v_1, v_4, w_1, w_2, ..., w_{n-4}\}.$ Therefore, $\partial_R(X) = |B_R(X)| - |X| = n - 3$ which is minimum, $\partial_R(G') = n - 3$. Therefore, $\partial_R(G) \leq \partial_R(G')$. Thus $sd_{\partial_R}(G) = 1$. Example 3.17 When n = 9, m = 5 in Theorem 3.16, the constructed graph G is shown in Figure 3.13



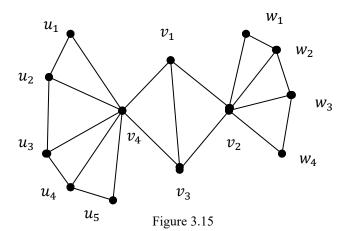

Figure 3.13

Here $S = \{v_2\}$ be the minimum ∂_R -set of G, $\partial_R(G) = 5$. Now we subdivide an edge v_1v_2 , the Max-Radial number of resultant graph as 6. Hence $sd_{\partial_R}(G) = 1$. Note that the other construction of a graph G with $\partial_R(G) = m - 4$ and $sd_{\partial_R}(G) = 1$ as given below. Given a natural number $m \ge 6$. Construct a graph G with $V(G) = \{v_1, v_2, v_3, v_4, v_5, w_1, w_2, \dots, w_k, u_1, u_2, \dots, u_{m-(k+5)}: 1 \le k \le m - 5$ and $E(G) = \{v_1v_2, v_2v_3, v_3v_4, v_4v_5, v_5v_1, v_3w_i, v_4u_i: 1 \le i \le m \le m \}$

k and $1 \le j \le m - (k + 5)$ with radius 2. Now, we claim that $\partial_R(G) = n - 4$. Let $X = \{v_3, v_4\}$, then $B_R(X) = \{v_1, v_2, v_5, w_1, w_2, ..., w_k, u_1, u_2, ..., u_{m-(k+5)}\}$. Therefore, $\partial_R(X) = |B_R(X)| - |X| = m - 4$. Thus $\partial_R(G) \ge m - 4$. It is enough to prove that $\partial_R(G) \le m - 4$. Let $S \subseteq V(G)$ containing at least two vertices, Then $B_R(S)$ contains at most m - 2 vertices. We have $\partial_R(S) \le m - 4$. Therefore, $\partial_R(G) = n - 4$. Next we claim that $sd_{\partial_R}(G) = 2$. Now we subdivide an edge in the cycle $C: v_1v_2v_3v_4v_5v_1$, the new vertex as x_1 and existing graph as G' with r(G') = 3. Let $X \subseteq V(G)$ be

 ∂_R -set with cardinality 2. Then $B_R(X)$ contains m-3 vertices. Therefore, $\partial_R(X) \leq m-5$, $\partial_R(G') = m-5$. Hence $\partial_R(G) > \partial_R(G'')$. Next we subdivide an edge $u_j v_4$ or $w_k v_3$ in G, the new vertex x_2 and resulting graph as G' with r(G'') = 2. Let $X' = \{v_3, v_4\} \subseteq V(G')$. Then $B_R(X') = \{v_1, v_2, v_5, x_1, w_1, w_2, \dots, w_k, u_1, u_2, \dots, u_{m-(k+5)}\}$. Therefore, $\partial_R(X') = |B_R(X')| - |X'| = m-3$. For any subset $X \subseteq V(G')$, we have $\partial_R(X) \leq m-3$. Therefore, $\partial_R(G'') = m-3$. Hence $\partial_R(G) < \partial_R(G'')$. Thus $sd_{\partial_R}(G) = 1$.

Example 3.18 When m = 10 in Theorem 3.16, the constructed graph is shown in Figure 3.14.


Here $S = \{v_3, v_4\}$ be the minimum o_R -set of G, $\partial_R(G) = 6$. Now we subdivide an edge u_1v_4 or w_1v_3 , the Max-Radial number of the resultant graph as 7. Hence $sd_{\partial_R}(G) = 1$.

Theorem 3.19 For given any natural number $m \ge 5$, there exists a graph G such that $\partial_R(G) = m - 5$ and $sd_{\partial_R}(G) = 1$.

Proof Given natural number $m \ge 5$. We construct a graph G with $V(G) = \{v_1, v_2, v_3, v_4; w_1, w_2, ..., w_k; u_1, u_2, ..., u_{m-(k+5)+1}\}$ where $1 \le k \le m-5$ and $E(G) = \{v_1v_2, v_1v_3, v_1v_4, v_2v_3, v_3v_4, v_2w_i, v_4u_j, w_iw_{i+1}, u_ju_{j+1}/1 \le i \le k$ and $1 \le j \le m-(k+5)\}$ with radius 2. Now, we claim that $\partial_R(G) = m-5$. Let $X = \{v_1\}$ or $\{v_3\}$, then $B_R(X) = \{w_1, w_2, ..., w_k, u_1, u_2, ..., u_{m-(k+5)+1}\}$. Therefore, $\partial_R(X) = |B_R(X)| - |X| = (m-4)-1 = m-5$. Thus $\partial_R(G) \ge m-5$. It is

enough we prove that $\partial_R(G) \leq m - 5$. Suppose a set S contains at least two vertices in G, then $B_R(S)$ contains at most m-3 vertices. Therefore, $\partial_R(S)$ m-5. For any subset $X' \subseteq V(G)$, $\partial_R(X') \le m-5$. Therefore, $X = \{v_1\}$ or $\{v_3\}$ is only ∂_R -set of G. Thus $\partial_R(G) = m - 5$. Next we claim that $sd_{\partial_R}(G) = 1$. Now, we subdivide an edge of v_1v_3 in G, the new vertex as x_1 and existing graph as G'. Then radius r(G') = 2. Let $X = \{v_3\} \subseteq V(G')$, then $B_R(X) =$ $\{v_1, w_1, w_2, \dots, w_k, u_1, u_2, \dots, u_{m-(k+4)}\}.$ Therefore, $\partial_R(X) = |B_R(X)| - |X| = (m-3) - 1 = m-4.$ Also, for any subset $X' \subseteq V(G')$, we have $\partial_R(X') \le$ m-4. Therefore, $X = \{v_3\} or \{v_1\}$ is a ∂_R -set of G, $\partial_R(G') = m - 4$. Hence $\partial_R(G) < \partial_R(G')$. Therefore, we subdivide only one edge in G, the Max-Radial number is increase. Thus $sd_{\partial_R}(G) = 1$.

Example 3.20 When m = 13 in Theorem 3.19, the constructed graph is shown in Figure 3.15.

Here $S = \{v_1\}$ or $\{v_3\}$ be the minimum ∂_R -set of G, $\partial_R(G) = 8$. Now we subdivide an edge v_1v_3 , we get Max-Radial number of resultant graph as 9. Hence $sd_{\partial_R}(G) = 1$.

REFERENCE

- [1] Selvam Avadayappan and M. Bhuvaneshwari, *A note on Radial graph*. Journal of Modern Science, Volume-7 (2015), 14-22.
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, The Macmillan press Ltd., Britain, 1976.
- [3] F. Buckley and F. Harary, *Distance in Graphs*, Addition Wesley Reading, 1990.
- [4] S. Bermudo, J. M. Rodriguez and J. M. Sigarreta. *On the differential in graphs*, Utilitas Mathematica 97(2015), pp. 257- 270.
- [5] T.W. Haynes, S. M. Hedetniemi and S.T. Hedetniemi, *Domination and Independence* subdivision number of graphs, Discussiones Mathematicae Graph Theory 20(2000) 271-280.
- [6] F. Harary, Graph Theory, Addison-Wesly, Reading Mass, 1972.
- [7] KM. Kathiresan and M. Mathan, *A study on R-differential in graphs*. Submitted 2016.
- [8] KM. Kathiresan and G. Marimuthu, *A Study on Radial Graphs*, Research Supported by Government of India, CSIR, New Delhi.
- [9] M. Mathan, M. Bhuvaneshwari, SelvamAvadayappan, An Application of Max-Radial Number of Graphs In Game Theory.

- International Journal of Aquatic Science ISSN: 2008-8019 Vol 12, Issue 02, 2021.
- [10] M. Mathan, M. Bhuvaneshwari, SelvamAvadayappan, THE MAX-RADIAL NUMBER IN SOME SPECIAL CLASSES OF GRAPHS. Advances and Applications in Mathematical Science, Volume 22, issue 1, November 2022, Page 91-103 @ 2022 Mili Publications, India.
- [11] P. RoushiniLeelyPushpam and D. Yokesh, *Differential in certain classes of graphs*, Tamkang Journal of Mathematics, 41(2), 129-138, 2010.