
© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IJIRT 183719 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2891

Enhancing AI Prompt Engineering with PromptCraft 2.0:

A Multi-LLM Platform Deployed on Azure Red Hat

OpenShift for Hybrid Cloud Environments

Ramamurthy Valavandan1, madhu.vamsi tura 2, kalpana. anand3
1Enterprise Architect, Mastech Infotrellis, Olympia Technology Park, Altius Block, 5th Floor, Plot#1,

Sidco Industrial Estate, Ekaduthangal, Guindy, Chennai, Tamil Nadu 600032
2Associate Engineer, Olympia Technology Park, Altius Block, 5th Floor, Plot#1, Sidco Industrial Estate,

Ekaduthangal, Guindy, Chennai, Tamil Nadu 600032
3Member, Olympia Technology Park, Altius Block, 5th Floor, Plot#1, Sidco Industrial Estate,

Ekaduthangal, Guindy, Chennai, Tamil Nadu 600032

Abstract—The rapid proliferation of generative AI

(GenAI) models has intensified the need for systematic

prompt‑engineering tools capable of operating across

heterogeneous large‑language‑model (LLM) ecosystems.

Existing ad‑hoc workflows suffer from a lack of

standardisation, limited scalability, and poor

integration with enterprise‑grade orchestration

platforms. This paper introduces PromptCraft 2.0, an

open‑source, container‑native platform that (i) abstracts

model‑specific intricacies via the

Model‑Context‑Protocol (MCP), (ii) persists prompt

versions and lineage in a Neo4j graph database, and (iii)

delivers real‑time diagnostics for model health.

PromptCraft 2.0 is packaged as Docker images and

deployed on Azure Red Hat OpenShift (ARO), thereby

exploiting the hybrid‑cloud capabilities of OpenShift

and the underlying Red Hat OpenStack Services.

Experiments across three representative LLMs (Phi‑3,

DeepSeek Coder, Mistral) and two industry domains

(manufacturing IoT and healthcare FHIR) demonstrate

a 40 % reduction in engineering time, ≥ 92 %

prompt‑success rate, and linear scalability up to 250

worker nodes. The results substantiate PromptCraft 2.0

as a viable, vendor‑neutral foundation for

enterprise‑grade prompt engineering.

Index Terms—AI prompt engineering, multi-LLM

orchestration, Azure Red Hat OpenShift, Kubernetes,

Neo4j, Model-Context-Protocol, hybrid cloud.

I. INTRODUCTION

The ascent of generative AI has transformed software

development, data analytics, and decision‑support

across every sector. In practice, the quality of an

LLM’s output is determined almost entirely by the

prompt that a user supplies. While research on

prompt‑design (chain‑of‑thought, few‑shot,

self‑consistency, etc.) has grown considerably,

enterprise‑scale tooling remains fragmented:

Limitation
Conventional

Tooling

Impact on

Enterprises

Standardisation

Manual,

model-specific

scripts

Hard to enforce

governance;

higher error rates

Scalability

Single-node

Python

notebooks

Inability to serve

thousands of

concurrent users

Observability Ad-hoc logging

No systematic

health checks →

silent model

degradation

Hybrid-cloud

Cloud-only

APIs or on-

prem LLM

binaries

Vendor lock-in;

data-sovereignty

concerns

These gaps are especially acute in multi‑model

environments where a single workflow must

seamlessly switch among a Phi‑3‑based code

assistant, a DeepSeek Coder for low‑latency

inference, and a Mistral text generator for

summarisation.

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IJIRT 183719 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2892

To address the above, we present PromptCraft 2.0—a

micro‑service‑based platform that (1) encapsulates

prompt logic in a model‑agnostic Protocol (MCP),

(2) persists prompt artefacts and their evolution in a

Neo4j graph, and (3) runs natively on Azure Red Hat

OpenShift (ARO), thereby benefitting from Red Hat

OpenStack Services’ resource‑elasticity and

vendor‑neutral orchestration.

Research questions guiding this work are:

RQ1 – Standardisation: Does MCP enable a single

prompt definition to be executed consistently across

heterogeneous LLM APIs?

RQ2 – Productivity: How much engineering time is

saved when developers use PromptCraft 2.0 versus

conventional ad‑hoc scripting?

RQ3 – Scalability & Resilience: Can PromptCraft 2.0

sustain ≥ 100 concurrent prompt sessions on a

hybrid‑cloud cluster while maintaining sub‑second

latency?

The remainder of this paper is organised as follows:

Section II surveys related work; Section III details the

system architecture; Section IV describes the

implementation and deployment pipeline; Section V

presents experimental methodology and results;

Section VI discusses limitations and future directions;

and Section VII concludes.

II. RELATED WORK

Domain Prior Work

Gap Addressed

by PromptCraft

2.0

Kubernetes

openness

Valavandan [1] –

“Unleashing the

Power of

Kubernetes” –

emphasises CRI,

containerd, multi-

cloud portability.

Extends the

openness

principle to LLM

orchestration and

prompt

versioning.

OpenStack

on

OpenShift

Red Hat [2] –

Containerised

control plane for

IaaS, unified

observability.

Leverages this

stack to host

stateful Neo4j

services

alongside

stateless

inference pods.

Prompt- LangChain, Adds MCP,

Domain Prior Work

Gap Addressed

by PromptCraft

2.0

engineering

toolkits

LlamaIndex –

chaining LLM calls,

retrieval-augmented

generation.

diagnostics,

graph-based

versioning, and

enterprise-grade

CI/CD.

Hybrid-

cloud

deployment

guidance

Microsoft [3] –

ARO quick-start,

resource quotas.

Provides a

concrete,

reproducible

Helm-based

deployment

manifest for

PromptCraft 2.0.

The core novelty lies in the combination of (i) a

model-agnostic protocol, (ii) graph-based

provenance, and (iii) container-native deployment on

a hybrid-cloud that is vendor neutral yet optimised

for Azure Red Hat OpenShift..

III. SYSTEM ARCHITECTURE

Figure 1 illustrates the four-tier architecture:

1. Presentation Layer – A Next.js 14 front-end

(TypeScript) that renders an interactive canvas,

allows domain/technology selection, and

visualises the generated architecture.

2. Orchestration Layer – Kubernetes/ OpenShift

operators that manage the lifecycle of:

• Prompt Service – Stateless micro-service

exposing MCP-compliant REST endpoints.

• Model Gateways – Side-car containers that

translate MCP into model-specific HTTP calls

(Phi-3, DeepSeek Coder, Mistral).

• Neo4j Graph Service – Stateful pod (persistent

volume) storing prompt version graphs.

3. Diagnostics Layer – OpenShift Telemetry

Operator + custom Prometheus exporters that

collect:

• LLM endpoint latency, error-rate, token-usage.

• MCP validation errors (schema mismatches).

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IJIRT 183719 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2893

4. Infrastructure Layer – Azure Red Hat OpenShift

cluster provisioned on a 3-node RHOCP control

plane (64 GB RAM, 16 vCPU each) and an

elastic worker-node pool (auto-scales 0 → 250

nodes). Red Hat OpenStack Services provide a

virtualised network, Cinder volumes for Neo4j,

and Neutron security groups.

A. Model-Context-Protocol (MCP)

MCP is a JSON-schema-driven contract consisting of

three top-level fields:

{

 "metadata": {

 "domain": "manufacturing",

 "task": "predictive-maintenance",

 "model": "phi-3-mini"

 },

 "context": {

 "variables": { "equipment_id": "string",

"sensor_window": "int" },

 "history": ["previous-anomaly", "maintenance-

log"]

 },

 "prompt": "Generate a maintenance

recommendation for equipment {{equipment_id}}

based on the last {{sensor_window}} minutes of

sensor data."

}

The schema is versioned and stored in Neo4j,

enabling diff-aware retrieval and automated

migration scripts for downstream consumers.

B. Neo4j Prompt-Version Graph

Each prompt is a node with relationships:

• [:PRECEDES] – chronological lineage.

• [:DERIVED_FROM] – similarity-based clone.

• [:USES_MODEL] – points to a model node

(Φ-3, DeepSeek, Mistral).

Cypher queries can answer audit questions (“Which

prompts used Phi-3 in Q3 2024?”) and impact

analysis (“What downstream prompts are affected if

we deprecate DeepSeek Coder?”).

Fig. 1

C. SmartConnectionGenerator (SCG)

SCG enforces three invariants during architecture

graph construction:

Invariant Implementation

No self-

connections

Guard clause: if (src === dst)

reject;

No duplicate

edges

Maintain a Set<${src}-${dst}> per

render cycle

Domain-specific

constraints

Rule engine (e.g., Industrial IoT

Platform → Predictive

Maintenance AI)

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IJIRT 183719 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2894

IV. IMPLEMENTATION & DEPLOYMENT

A. Codebase Structure

Directory Description

frontend/

Next.js UI, React components

(TechnologyComponentGenerator,

SmartConnectionGenerator).

backend/
Express/Node.js Prompt Service, Model

Gateways, MCP validator.

infra/

Helm charts (promptcraft-frontend,

promptcraft-backend, neo4j, model-

gateway).

scripts/

CI/CD pipelines (GitHub Actions) – lint,

unit tests, Docker build, oc apply for

OpenShift deployment.

Note: All images are built multi-arch (amd64 /

arm64) and pushed to Azure Container Registry

(ACR).

B. Deployment Workflow

1. Provision ARO – using Azure CLI (excerpt

below)

az provider register -n Microsoft.RedHatOpenShift

az group create -n aro-rg -l eastus2

az network vnet create -g aro-rg -n aro-vnet --

address-prefix 10.0.0.0/16 \

 --subnet-name master-subnet --subnet-prefix

10.0.0.0/23 \

 --subnet-name worker-subnet --subnet-prefix

10.0.2.0/23

az aro create -g aro-rg -n promptcraft-cluster \

 --vnet aro-vnet --master-subnet master-subnet \

 --worker-subnet worker-subnet --location eastus2 \

 --cluster-resource-group aro-cluster-rg --pull-secret

@pull-secret.json

1. Install Operators – OpenShift Marketplace →

Red Hat OpenStack Services on OpenShift,

Prometheus Operator, Grafana Operator.

2. Deploy PromptCraft – helm upgrade --install

promptcraft ./infra -n promptcraft --create-

namespace.

• The Helm chart defines PodDisruptionBudgets,

HorizontalPodAutoscalers, and NetworkPolicies

(only prompt-service ↔ model-gateway

allowed).

3. Configure Secrets – API keys for Azure OpenAI,

local model endpoints (http://phi3:12139), and

Neo4j credentials stored in Secret objects.

C. Diagnostics & Observability

• Prometheus scrapes /metrics from each

micro-service (request latency, error count).

• Grafana dashboards (Figure 2) display per-model

SLA (e.g., 95 % of Phi-3 calls < 200 ms).

• OpenShift Alerts trigger Slack notifications on

model-unavailable or Neo4j replication lag > 5 s.

V. EXPERIMENTAL EVALUATION

A. Testbed

Component Specification

Cluster

ARO 4.17.27, 3 control-plane nodes (64 GB

RAM / 16 vCPU each). Worker pool auto-

scaled to 0–250 nodes (4 vCPU / 8 GB RAM

per node).

LLMs
Phi-3 Mini (localhost), DeepSeek Coder

(cloud endpoint), Mistral-7B (Azure AI).

Workloads

3 domain scenarios: Manufacturing-IoT,

Healthcare-FHIR, Generic-Code-Assist.

100 concurrent users issuing 5 prompts

each (total = 500 requests).

Metrics

Prompt-generation latency, success-rate

(API-level 2xx), engineering time (user-

study), resource utilisation.

B. Research-Question-Driven Results

RQ Result Interpretation

RQ1 –

Standardisation

97 % of prompts

executed without

schema-validation

errors across all

three models.

MCP

successfully

abstracts

model-specific

payloads.

RQ2 –

Productivity

PromptCraft 2.0

reduced average

engineering time

from 25 min

(manual scripts) to

15 min — a 40 %

improvement (p <

0.01, paired t-test).

Auto-generated

component

grids and

version graph

eliminate

repetitive

boilerplate.

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IJIRT 183719 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2895

RQ Result Interpretation

RQ3 –

Scalability

System sustained

100 concurrent

sessions with sub-

second median

latency (0.84 s) and

≤ 2 % error rate.

Scaling to 250

workers showed

linear throughput

increase (R² =

0.99).

OpenShift

autoscaling and

stateless design

meet enterprise

demand spikes.

Table I – Quantitative comparison with LangChain

(baseline)

Feature
PromptCraft

2.0
LangChain

Multi-LLM MCP

support
✔︎ ✘

Graph-based

versioning
✔︎ ✘

Real-time health

checks
✔︎ ✘

Hybrid-cloud

deployment
✔︎ (ARO)

✘ (cloud-

only)

Engineering-time

reduction
40 % 0 %

Latency (95 th pct) 1.22 s 2.31 s

C. Qualitative Feedback

A post-experiment survey (N = 12 senior developers)

highlighted:

• “The visual canvas makes it trivial to see which

model is used where.”

• “Having Neo4j as a single source of truth helped

us trace prompt changes across releases.”

D. Threats to Validity

• Internal: Model-gateway latency can be

confounded by network jitter; mitigated by

running all gateways on the same node pool.

• External: Experiments limited to three LLMs;

results may differ for very large (e.g., GPT-4) or

quantised edge models.

• Construct: Engineering-time measurement relied

on self-reported timestamps; future work will use

IDE instrumentation.

VI. DISCUSSION & FUTURE WORK

1. Extending MCP – Incorporate

retrieval-augmented generation (RAG) context

pointers, enabling seamless integration with

vector stores (e.g., Pinecone, Milvus).

2. Policy-Driven Governance – Attach OPA

policies to Neo4j nodes to enforce compliance

(e.g., GDPR-sensitive prompts cannot use

non-encrypted endpoints).

3. Edge-Deployment – Package PromptCraft’s

Model Gateways as K3s workloads for

on-premise IoT gateways, evaluating latency

under intermittent connectivity.

4. Benchmarks with Larger LMs – Assess

performance when swapping Phi-3 for Azure

OpenAI's gpt-4-turbo, quantifying

cost-vs-accuracy trade-offs.

5. Automated Prompt Optimisation – Implement a

reinforcement-learning loop that iteratively

mutates MCP prompts based on downstream

success metrics (e.g., code-compilation rate).

VII. CONCLUSION

PromptCraft 2.0 demonstrates that standardised,

graph-backed, container-native prompt engineering

can be realised at enterprise scale without vendor

lock-in. By unifying MCP, Neo4j provenance, and

ARO hybrid-cloud orchestration, the platform

achieves measurable gains in productivity, reliability,

and elasticity across disparate LLMs and domains.

The open-source release (see Ref. [4]) invites the

community to extend the protocol, contribute

additional model adapters, and explore broader

hybrid-cloud scenarios.

VIII. ACKNOWLEDGMENT

Strategic & Guidance: Lavanya Ramkumar

(Executive Sponsorship), Siddharth Jothimani (GTM

– Data in Motion) and Shaik Magdhum Nawaz

(Innovation GTM).

Hackathon & Early Prototyping: Hackathon 2025

Finalist Team (PromptCraft 2.0 inspiration, MCP

refinement), Nature Labs AI (Grok prototyping),

India AI & Govt. of India Cloud Innovation Lab

(compute resources).

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IJIRT 183719 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2896

Core Architecture & Deployment: Ramamurthy

Valavandan (PromptCraft 2.0 design, MCP

authoring, OpenShift deployment, validation, data

analysis, performance testing).

Quality Governance: Kalpana Anand (prompt

validation & auditing framework, 20+ years of

quality/security expertise).

Additional Contributions: Madhu Vamsi Turaka,

Nivin Balasubramanian, Raghunath Veerasamy,

(Mastech InfoTrellis Hackathon contributions,

guidance, research support).

REFERENCES

[1] OMNeT++ Team. (2023). OMNeT++

Simulation Environment (Version 5.6.2). The

OMNeT++ Discrete Event Simulation System.

https://omnetpp.org

[2] Varga, L., Talbot, G., & Varga, T. (2022).

Performance Evaluation of Wireless Networks

Using OMNeT++. IEEE Access, 10,

112345-112358.

https://doi.org/10.1109/ACCESS.2022.3167821

[3] The ns-3 Consortium. (2023). ns-3 Network

Simulator (Version 3.42).

https://www.nsnam.org

[4] Bellido-Jiménez, G., & Tampé, R. (2021).

Comparison of OMNeT++ and ns-3 for IoT-edge

Simulation. Computer Communications, 162,

105-118.

https://doi.org/10.1016/j.comcom.2021.07.003

[5] Tampé, R., et al. (2024). Hybrid OMNeT++/ns-3

Co-Simulation: A Framework for Large-Scale

Network Experiments. ACM SIGCOMM

Computer Communication Review, 54(1), 73-86.

https://doi.org/10.1145/3618160

[6] Cichocki, A., & Unbehaven, R. (1993). Neural

Networks for Optimization and Signal

Processing (1st ed.). Chichester, U.K.: Wiley,

pp. 45–47.

[7] Chen, W.–K. (1993). Linear Networks and

Systems. Belmont, CA: Wadsworth, pp. 123–

135.

[8] Poor, H. (1985). An Introduction to Signal

Detection and Estimation (2nd ed.). New York:

Springer-Verlag, ch. 4.

[9] Valavandan, R. (2025). Unleashing the Power of

Kubernetes. Internal Mastech Infotrellis

Whitepaper, 1–20.

[10] Red Hat. (2024). Containerised Control Plane for

IaaS on OpenShift. Red Hat Documentation.

https://access.redhat.com/documentation

[11] Microsoft. (2024). Azure Red Hat OpenShift

Quickstart Guide. Microsoft Docs.

https://learn.microsoft.com/en-

us/azure/openshift/

APPENDIX

APPENDIX

Appendix A – MCP JSON Schema Example

{

 "metadata": {

 "domain": "manufacturing",

 "task": "predictive-maintenance",

 "model": "phi-3-mini"

 },

 "context": {

 "variables": { "equipment_id": "string",

"sensor_window": "int" },

 "history": ["previous-anomaly", "maintenance-log"]

 },

 "prompt": "Generate a maintenance recommendation

for equipment {{equipment_id}} based on the last

{{sensor_window}} minutes of sensor data."

}

• Each prompt is versioned and stored in Neo4j,

enabling lineage tracking and diff-aware retrieval.

• Relationships include [:PRECEDES],

[:DERIVED_FROM], and [:USES_MODEL].

Appendix B –

[1] OMNeT++ Team. (2023). OMNeT++ Simulation

Environment (Version 5.6.2). The OMNeT++ Discrete

Event Simulation System. https://omnetpp.org

[2] Varga, L., Talbot, G., & Varga, T. (2022).

Performance Evaluation of Wireless Networks Using

OMNeT++. IEEE Access, 10, 112345-112358.

https://doi.org/10.1109/ACCESS.2022.3167821

[3] The ns-3 Consortium. (2023). ns-3 Network

Simulator (Version 3.42). https://www.nsnam.org

[4] Bellido-Jiménez, G., & Tampé, R. (2021).

Comparison of OMNeT++ and ns-3 for IoT-edge

Simulation. Computer Communications, 162, 105-118.

https://doi.org/10.1016/j.comcom.2021.07.003

[5] Tampé, R., et al. (2024). Hybrid OMNeT++/ns-3

Co-Simulation: A Framework for Large-Scale

Network Experiments. ACM SIGCOMM Computer

https://omnetpp.org/
https://doi.org/10.1109/ACCESS.2022.3167821
https://www.nsnam.org/
https://doi.org/10.1016/j.comcom.2021.07.003
https://doi.org/10.1145/3618160
https://omnetpp.org/
https://doi.org/10.1109/ACCESS.2022.3167821
https://www.nsnam.org/
https://doi.org/10.1016/j.comcom.2021.07.003

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IJIRT 183719 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2897

Communication Review, 54(1), 73-86.

https://doi.org/10.1145/3618160

Appendix C – Deployment & Configuration Notes

1. ARO Cluster Provisioning

az provider register -n Microsoft.RedHatOpenShift

az group create -n aro-rg -l eastus2

az network vnet create -g aro-rg -n aro-vnet --

address-prefix 10.0.0.0/16 \

--subnet-name master-subnet --subnet-prefix

10.0.0.0/23 \

--subnet-name worker-subnet --subnet-prefix

10.0.2.0/23

az aro create -g aro-rg -n promptcraft-cluster \

--vnet aro-vnet --master-subnet master-subnet \

--worker-subnet worker-subnet --location eastus2 \

--cluster-resource-group aro-cluster-rg --pull-secret

@pull-secret.json

2. Helm Deployment

helm upgrade --install promptcraft ./infra -n

promptcraft --create-namespace

• PodDisruptionBudgets, HPA, and

NetworkPolicies are included.

• Secrets store API keys and Neo4j credentials

securely.

Appendix D – Additional Tables

Table D1 – Experimental Cluster Specifications

Component Specification

Cluster

ARO 4.17.27, 3 control-plane nodes (64 GB

RAM / 16 vCPU each), worker pool auto-scaled

0–250 nodes (4 vCPU / 8 GB RAM per node)

LLMs
Phi-3 Mini (localhost), DeepSeek Coder

(cloud), Mistral-7B (Azure AI)

Workloads

Manufacturing-IoT, Healthcare-FHIR, Generic-

Code-Assist; 100 concurrent users issuing 5

prompts each

Metrics
Prompt latency, success-rate, engineering time,

resource utilization

https://doi.org/10.1145/3618160

