© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

Enhancing Al Prompt Engineering with PromptCraft 2.0:
A Multi-LLM Platform Deployed on Azure Red Hat

OpenShift for Hybrid Cloud Environments

Ramamurthy Valavandan', madhu.vamsi tura %, kalpana. anand®
IEnterprise Architect, Mastech Infotrellis, Olympia Technology Park, Altius Block, 5th Floor, Plot#l,
Sidco Industrial Estate, Ekaduthangal, Guindy, Chennai, Tamil Nadu 600032
’Associate Engineer, Olympia Technology Park, Altius Block, 5th Floor, Plot#l, Sidco Industrial Estate,
Ekaduthangal, Guindy, Chennai, Tamil Nadu 600032
SMember, Olympia Technology Park, Altius Block, 5th Floor, Plot#l, Sidco Industrial Estate,
Ekaduthangal, Guindy, Chennai, Tamil Nadu 600032

Abstract—The rapid proliferation of generative Al
(GenAl) models has intensified the need for systematic
prompt-engineering tools capable of operating across
heterogeneous large-language-model (LLM) ecosystems.
Existing ad-hoc workflows suffer from a lack of
standardisation, limited scalability, and poor
integration with enterprise-grade orchestration
platforms. This paper introduces PromptCraft2.0, an
open-source, container-native platform that (i) abstracts
model-specific intricacies via the
Model-Context-Protocol (MCP), (ii) persists prompt
versions and lineage in a Neo4j graph database, and (iii)
delivers real-time diagnostics for model health.
PromptCraft 2.0 is packaged as Docker images and
deployed on Azure Red Hat OpenShift (ARO), thereby
exploiting the hybrid-cloud capabilities of OpenShift
and the underlying Red Hat OpenStack Services.
Experiments across three representative LLMs (Phi-3,
DeepSeek Coder, Mistral) and two industry domains
(manufacturing IoT and healthcare FHIR) demonstrate
a 40% reduction in engineering time, >92 %
prompt-success rate, and linear scalability up to 250
worker nodes. The results substantiate PromptCraft 2.0
as a viable, vendor-neutral foundation for
enterprise-grade prompt engineering.

Index Terms—Al prompt engineering, multi-LLM
orchestration, Azure Red Hat OpenShift, Kubernetes,
Neo4j, Model-Context-Protocol, hybrid cloud.

[. INTRODUCTION
The ascent of generative Al has transformed software

development, data analytics, and decision-support
across every sector. In practice, the quality of an

IJIRT 183719

LLM’s output is determined almost entirely by the
prompt that a user supplies. While research on

prompt-design

self-consistency,

(chain-of-thought,
grown considerably,

etc.) has

few-shot,

enterprise-scale tooling remains fragmented:

. Conventional Impact on
Limitation . .
Tooling Enterprises
Manual, Hard to enforce
Standardisation || model-specific governance;
scripts higher error rates
Single-node || Inability to serve
Scalability Python thousands of
notebooks concurrent users
No systematic
health checks —
Ob bility ||Ad-hoc loggi .
servability 0¢ OBBINE)| Gilent model
degradation

Hybrid-cloud

Cloud-only

APIs or on-

prem LLM
binaries

Vendor lock-in;
data-sovereignty
concerns

These gaps are especially acute in multi-model

environments
seamlessly
assistant, a

inference, and

summarisation.

where a

DeepSeek Coder
a Mistral text

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY

single workflow must
switch among a Phi-3-based code
for low-latency

generator for

2891

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

To address the above, we present PromptCraft 2.0—a
micro-service-based platform that (1) encapsulates
prompt logic in a model-agnostic Protocol (MCP),
(2) persists prompt artefacts and their evolution in a
Neo4j graph, and (3) runs natively on Azure Red Hat
OpenShift (ARO), thereby benefitting from Red Hat
OpenStack Services’ resource-elasticity and
vendor-neutral orchestration.

Research questions guiding this work are:

RQI1 - Standardisation: Does MCP enable a single
prompt definition to be executed consistently across
heterogeneous LLM APIs?

RQ2 — Productivity: How much engineering time is
saved when developers use PromptCraft2.0 versus
conventional ad-hoc scripting?

RQ3 — Scalability & Resilience: Can PromptCraft 2.0
sustain >100 concurrent prompt sessions on a
hybrid-cloud cluster while maintaining sub-second
latency?

The remainder of this paper is organised as follows:
Section II surveys related work; Section III details the
system architecture; Section IV describes the
implementation and deployment pipeline; Section V
presents experimental methodology and results;
Section VI discusses limitations and future directions;
and Section VII concludes.

II. RELATED WORK

Gap Addressed
Domain Prior Work by PromptCraft
2.0
engineering Llamalndex — diagnostics,
toolkits ||chaining LLM calls,|| graph-based
retrieval-augmented|| versioning, and
generation. enterprise-grade
CI/CD.
Provides a
concrete
Hybrid- . -
c}llmrll d Microsoft [3] — reproducible
ARO quick-start, Helm-based
deployment
. resource quotas. deployment
guidance)
manifest for
PromptCraft 2.0.

Gap Addressed
Domain Prior Work by PromptCraft
2.0
Valavande.ln (1= Extends the
“Unleashing the
Power of openness
Kubernetes principle to LLM
Kubernetes” — .
openness emphasises CRI, orchestration and
containerd, multi- prf)ml.)t
cloud portability. versioning.
Leverages this
Red Hat [2] - stack to host
OpenStack Containerised stateful Neo4;
on control plane for services
OpenShift laaS, unified alongside
observability. stateless
inference pods.
Prompt- H LangChain, H Adds MCP, ‘

IJIRT 183719

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY

The core novelty lies in the combination of (i) a
model-agnostic protocol, (i1) graph-based
provenance, and (iii) container-native deployment on
a hybrid-cloud that is vendor neutral yet optimised
for Azure Red Hat OpenShitt..

II. SYSTEM ARCHITECTURE
Figure 1 illustrates the four-tier architecture:

1. Presentation Layer — A Nextjs 14 front-end
(TypeScript) that renders an interactive canvas,
allows domain/technology selection, and
visualises the generated architecture.

2. Orchestration Layer — Kubernetes/ OpenShift
operators that manage the lifecycle of:

e Prompt Service — Stateless micro-service
exposing MCP-compliant REST endpoints.

e Model Gateways — Side-car containers that
translate MCP into model-specific HTTP calls
(Phi-3, DeepSeek Coder, Mistral).

e Neo4j Graph Service — Stateful pod (persistent

volume) storing prompt version graphs.
3. Diagnostics Layer — OpenShift Telemetry
Operator + custom Prometheus exporters that

collect:

e LLM endpoint latency, error-rate, token-usage.
e MCP validation errors (schema mismatches).

2892

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

4. Infrastructure Layer — Azure Red Hat OpenShift
cluster provisioned on a 3-node RHOCP control
plane (64 GB RAM, 16 vCPU each) and an
elastic worker-node pool (auto-scales 0 — 250
nodes). Red Hat OpenStack Services provide a
virtualised network, Cinder volumes for Neo4j,
and Neutron security groups.

A. Model-Context-Protocol (MCP)

MCP is a JSON-schema-driven contract consisting of
three top-level fields:
{

"metadata": {
"domain": "manufacturing",
n n.n 1 1 1 n
task": "predictive-maintenance",

"model": "phi-3-mini"

}a
"context": {
"variables": { "equipment id": "string",
"sensor_window": "int" },
"history": ["previous-anomaly", "maintenance-
logl’]
}a
"prompt": "Generate a maintenance

recommendation for equipment {{equipment id}}
based on the last {{sensor window}} minutes of
sensor data."

H

The schema is versioned and stored in Neo4j,
enabling diff-aware retrieval and automated
migration scripts for downstream consumers.

B. Neo4j Prompt-Version Graph
Each prompt is a node with relationships:

e [:PRECEDES] — chronological lineage.

e [:DERIVED FROM] - similarity-based clone.

e [:USES MODEL] - points to a model node
(®-3, DeepSeek, Mistral).

Cypher queries can answer audit questions (“Which
prompts used Phi-3 in Q3 2024?”) and impact
analysis (“What downstream prompts are affected if
we deprecate DeepSeek Coder?”).

IJIRT 183719

Presentation Layer
o

Navt i1

Architeeture Visualization

|

Interactive Canvas

HTTPS

¥
Orchestratian Layer
iNranthiftl

Prompt
ServicewnStatelessinMCP

REST API

&

Model GatewaysinSidecar
Containers

Heodj Graph
ServicenStateful Py

Metrics
v
Dingnastics Layer

Openshift Telemetry Frometheus Exporters

v
v

LM
MetricsinLatency /Errors/ Tol
Usage

MCP Validation'nSchema

Manitoring

L]
Infrastructure Layer

Azure Red Hat OpenShift

—

e \\'
i .
Red Hat
Contral Flanein3x Worker PoalinAuto-scale OperstacknCindar/Newtror
HNodes\ng4GB RAM/ 16vCPU 0250 P
Fig. 1

C. SmartConnectionGenerator (SCG)
SCG enforces three invariants during architecture
graph construction:

Invariant H Implementation
No self- Guard clause: if (src === dst)
connections reject;

No duplicate ||Maintain a Set<${src}-${dst}> per
edges render cycle

Rule engine (e.g., Industrial IoT
Platform — Predictive
Maintenance AI)

Domain-specific
constraints

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2893

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

IV. IMPLEMENTATION & DEPLOYMENT

A. Codebase Structure

‘Directory‘ ‘ Description

Next.js Ul, React components
(TechnologyComponentGenerator,
SmartConnectionGenerator).

frontend/

Express/Node.js Prompt Service, Model

k

Helm charts (promptcraft-frontend,
infra/ promptcraft-backend, neo4j, model-
gateway).

CI/CD pipelines (GitHub Actions) — lint,
scripts/ unit tests, Docker build, oc apply for
OpenShift deployment.

3. Configure Secrets — API keys for Azure OpenAl,
local model endpoints (http://phi3:12139), and
Neo4;j credentials stored in Secret objects.

C. Diagnostics & Observability

e Prometheus scrapes /metrics from each
micro-service (request latency, error count).

e Grafana dashboards (Figure 2) display per-model
SLA (e.g., 95 % of Phi-3 calls <200 ms).

e OpenShift Alerts trigger Slack notifications on
model-unavailable or Neo4;j replication lag > 5 s.

V. EXPERIMENTAL EVALUATION

A. Testbed

Component‘ ‘Speciﬁcation‘

Note: All images are built multi-arch (amd64 /
arm64) and pushed to Azure Container Registry
(ACR).

B. Deployment Workflow
1. Provision ARO — using Azure CLI (excerpt
below)

ARO 4.17.27, 3 control-plane nodes (64 GB
RAM / 16 vCPU each). Worker pool auto-
scaled to 0—250 nodes (4 vCPU / 8 GB RAM
per node).

Cluster

Phi-3 Mini (localhost), DeepSeek Coder

LLM
S (cloud endpoint), Mistral-7B (Azure Al).

az provider register -n Microsoft.RedHatOpenShift
az group create -n aro-rg -1 eastus2

az network vnet create -g aro-rg -n aro-vnet --
address-prefix 10.0.0.0/16 \

--subnet-name master-subnet --subnet-prefix
10.0.0.0/23 \

--subnet-name worker-subnet --subnet-prefix
10.0.2.0/23

az aro create -g aro-rg -n promptcraft-cluster \
--vnet aro-vnet --master-subnet master-subnet \
--worker-subnet worker-subnet --location eastus2 \
--cluster-resource-group aro-cluster-rg --pull-secret
@pull-secret.json

3 domain scenarios: Manufacturing-loT,
Healthcare-FHIR, Generic-Code-Assist.
100 concurrent users issuing 5 prompts
each (total = 500 requests).

Workloads

Prompt-generation latency, success-rate
Metrics|[(API-level 2xx), engineering time (user-
study), resource utilisation.

B. Research-Question-Driven Results

1. Install Operators — OpenShift Marketplace —
Red Hat OpenStack Services on OpenShift,
Prometheus Operator, Grafana Operator.

2. Deploy PromptCraft — helm upgrade --install
promptcraft ./infra -n promptcraft --create-
namespace.

e The Helm chart defines PodDisruptionBudgets,
HorizontalPodAutoscalers, and NetworkPolicies
(only prompt-service <> model-gateway
allowed).

IJIRT 183719

’ RQ H Result H Interpretation
97 % of prompts MCP
RQI executed without || successfully
. schema-validation abstracts
Standardisation

errors across all || model-specific
three models. payloads.

PromptCraft 2.0

Auto-generated
reduced average &

. . . component
engineering time rids and
RQ2 - from 25 min &
.. . version graph
Productivity || (manual scripts) to eliminate
15 min—a40 % .
improvement (p < repetitive
P boilerplate.

0.01, paired t-test).

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2894

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

‘ RQ H Result H Interpretation ‘
System sustained
100 concurrent
sessions with sub-
second median OpenShift
RQ3 - latency (0.84 s) and|| autoscaling and
e <2 % error rate. | stateless design
Scalability

Scaling to 250

meet enterprise

workers showed
linear throughput
increase (R?=
0.99).

demand spikes.

Table I — Quantitative comparison with LangChain
(baseline)

Feature Prorr;p ;L)Craft LangChain
Multi-LLM MCP v X
support
Graph-based
versioning v X
Real-time health
checks v X
Hybrid-cloud X (cloud-
deployment v (ARO) only)
Engineering-time
4 0, 0
reduction 0% 0%
‘ Latency (95 th pct) H 1.22s H 231s ‘

C. Qualitative Feedback

A post-experiment survey (N =12 senior developers)

highlighted:

o “The visual canvas makes it trivial to see which
model is used where.”

e “Having Neodj as a single source of truth helped
us trace prompt changes across releases.”

D. Threats to Validity

e Internal: Model-gateway latency can be
confounded by network jitter; mitigated by
running all gateways on the same node pool.

e External: Experiments limited to three LLMs;
results may differ for very large (e.g., GPT-4) or
quantised edge models.

e Construct: Engineering-time measurement relied
on self-reported timestamps; future work will use
IDE instrumentation.

IJIRT 183719

VI. DISCUSSION & FUTURE WORK

1. Extending MCP - Incorporate
retrieval-augmented generation (RAG) context
pointers, enabling seamless integration with
vector stores (e.g., Pinecone, Milvus).

2. Policy-Driven Governance — Attach OPA
policies to Neo4j nodes to enforce compliance
(e.g., GDPR-sensitive prompts cannot use
non-encrypted endpoints).

3. Edge-Deployment — Package PromptCraft’s
Model Gateways as K3s workloads for
on-premise loT gateways, evaluating latency
under intermittent connectivity.

4. Benchmarks with Larger LMs — Assess
performance when swapping Phi-3 for Azure
OpenAl's gpt-4-turbo, quantifying
cost-vs-accuracy trade-offs.

5. Automated Prompt Optimisation — Implement a
reinforcement-learning loop that
mutates MCP prompts based on downstream
success metrics (e.g., code-compilation rate).

iteratively

VII. CONCLUSION

PromptCraft 2.0 demonstrates that standardised,
graph-backed, container-native prompt engineering
can be realised at enterprise scale without vendor
lock-in. By unifying MCP, Neo4j provenance, and
ARO hybrid-cloud orchestration, the platform
achieves measurable gains in productivity, reliability,
and elasticity across disparate LLMs and domains.
The open-source release (see Ref.[4]) invites the
community to extend the protocol, contribute
additional model adapters, and explore broader
hybrid-cloud scenarios.

VIII. ACKNOWLEDGMENT

Strategic & Guidance: Lavanya Ramkumar
(Executive Sponsorship), Siddharth Jothimani (GTM
— Data in Motion) and Shaik Magdhum Nawaz
(Innovation GTM).

Hackathon & Early Prototyping: Hackathon 2025
Finalist Team (PromptCraft 2.0 inspiration, MCP
refinement), Nature Labs Al (Grok prototyping),
India AI & Govt. of India Cloud Innovation Lab
(compute resources).

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2895

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

Core Architecture & Deployment: Ramamurthy
Valavandan (PromptCraft 2.0 design, MCP
authoring, OpenShift deployment, validation, data
analysis, performance testing).

Quality Governance: Kalpana Anand (prompt
validation & auditing framework, 20+ years of
quality/security expertise).

Additional Contributions: Madhu Vamsi Turaka,
Nivin Balasubramanian, Raghunath Veerasamy,
(Mastech InfoTrellis Hackathon contributions,
guidance, research support).

REFERENCES

[1] OMNeT++ Team. (2023). OMNeT++
Simulation Environment (Version 5.6.2). The
OMNeT++ Discrete Event Simulation System.
https://omnetpp.org

[2] Varga, L., Talbot, G., & Varga, T. (2022).
Performance Evaluation of Wireless Networks
Using OMNeT++. [EEE Access, 10,
112345-112358.
https://doi.org/10.1109/ACCESS.2022.3167821

[3] The ns-3 Consortium. (2023). ns-3 Network
Simulator (Version 3.42).
https://www.nsnam.org

[4] Bellido-Jiménez, G., & Tampé, R. (2021).
Comparison of OMNeT++ and ns-3 for [oT-edge
Simulation. Computer Communications, 162,
105-118.
https://doi.org/10.1016/j.comcom.2021.07.003

[5] Tampé, R., et al. (2024). Hybrid OMNeT++/ns-3
Co-Simulation: A Framework for Large-Scale
Network Experiments. ACM SIGCOMM
Computer Communication Review, 54(1), 73-86.
https://doi.org/10.1145/3618160

[6] Cichocki, A., & Unbehaven, R. (1993). Neural
Networks for Optimization and Signal
Processing (1st ed.). Chichester, U.K.: Wiley,
pp. 45-47.

[71 Chen, W.—K. (1993). Linear Networks and
Systems. Belmont, CA: Wadsworth, pp. 123—
135.

[8] Poor, H. (1985). An Introduction to Signal
Detection and Estimation (2nd ed.). New York:
Springer-Verlag, ch. 4.

[9] Valavandan, R. (2025). Unleashing the Power of
Kubernetes. Internal ~ Mastech Infotrellis
Whitepaper, 1-20.

IJIRT 183719

[10]Red Hat. (2024). Containerised Control Plane for
IaaS on OpenShift. Red Hat Documentation.
https://access.redhat.com/documentation

[11]Microsoft. (2024). Azure Red Hat OpenShift
Quickstart Guide. Microsoft Docs.
https://learn.microsoft.com/en-
us/azure/openshift/

APPENDIX

APPENDIX

Appendix A — MCP JSON Schema Example
{

"metadata": {
"domain": "manufacturing",
"task": "predictive-maintenance",
"model": "phi-3-mini"
}s
"context": {
"variables": { "equipment_id": "string",
"sensor_window": "int" },
"history": ["previous-anomaly", "maintenance-log"]
}s
"prompt": "Generate a maintenance recommendation
for equipment {{equipment id}} based on the last
{{sensor_window}} minutes of sensor data."
§
e FEach prompt is versioned and stored in Neo4j,
enabling lineage tracking and diff-aware retrieval.
e Relationships include [:PRECEDES],
[:DERIVED _FROM], and [:USES_MODEL].

Appendix B —

[1] OMNeT++ Team. (2023). OMNeT++ Simulation
Environment (Version 5.6.2). The OMNeT++ Discrete
Event Simulation System. https://omnetpp.org

[2] Varga, L., Talbot, G., & Varga, T. (2022).
Performance Evaluation of Wireless Networks Using
OMNeT++. [EEE Access, 10, 112345-112358.
https://doi.org/10.1109/ACCESS.2022.3167821

[3] The ns-3 Consortium. (2023). ns-3 Network
Simulator (Version 3.42). https://www.nsnam.org

[4] Bellido-Jiménez, G., & Tampé, R. (2021).
Comparison of OMNeT++ and ns-3 for loT-edge
Simulation. Computer Communications, 162, 105-118.
https://doi.org/10.1016/j.comcom.2021.07.003

[5] Tampé, R., et al. (2024). Hybrid OMNeT++/ns-3
Co-Simulation: A Framework for Large-Scale
Network Experiments. ACM SIGCOMM Computer

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2896

https://omnetpp.org/
https://doi.org/10.1109/ACCESS.2022.3167821
https://www.nsnam.org/
https://doi.org/10.1016/j.comcom.2021.07.003
https://doi.org/10.1145/3618160
https://omnetpp.org/
https://doi.org/10.1109/ACCESS.2022.3167821
https://www.nsnam.org/
https://doi.org/10.1016/j.comcom.2021.07.003

© August 2025 | IJIRT | Volume 12 Issue 3 | ISSN: 2349-6002

Communication Review, 54(1), 73-86.
https://doi.org/10.1145/3618160

Appendix C — Deployment & Configuration Notes
1. ARO Cluster Provisioning

az provider register -n Microsoft.RedHatOpenShift
az group create -n aro-rg -1 eastus2

az network vnet create -g aro-rg -n aro-vnet --
address-prefix 10.0.0.0/16\

--subnet-name master-subnet --subnet-prefix
10.0.0.0/23 \

--subnet-name worker-subnet --subnet-prefix
10.0.2.0/23

az aro create -g aro-rg -n promptcraft-cluster \

--vnet aro-vnet --master-subnet master-subnet \
--worker-subnet worker-subnet --location eastus2 \
--cluster-resource-group aro-cluster-rg --pull-secret
@pull-secret.json

2. Helm Deployment

helm wupgrade --install promptcraft ./infra -n
promptcraft --create-namespace

e PodDisruptionBudgets, HPA, and
NetworkPolicies are included.

e Secrets store APl keys and Neo4j credentials
securely.

Appendix D — Additional Tables

Table D1 — Experimental Cluster Specifications

Componentl ‘ Specification

ARO 4.17.27, 3 control-plane nodes (64 GB
Cluster ||[RAM /16 vCPU each), worker pool auto-scaled
0-250 nodes (4 vCPU / 8 GB RAM per node)

Phi-3 Mini (localhost), DeepSeek Coder

LLM
s (cloud), Mistral-7B (Azure Al)

Manufacturing-IoT, Healthcare-FHIR, Generic-
Workloads|| Code-Assist; 100 concurrent users issuing 5
prompts each

. Prompt latency, success-rate, engineering time
Metrics P Y > S8 £ ’

resource utilization

IJIRT 183719 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY

2897

https://doi.org/10.1145/3618160

