
© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184295 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 715

Implementation of SPI Protocol with Adaptive Baud

Rate

Archana B S1, Dr. Kiran Bailey2
1PG Scholar, Department of ECE, BMS College of Engineering, Bengaluru-560004, India

2Assistant Professor, Department of ECE, BMS College of Engineering, Bengaluru-560004, India

Abstract— The Serial Peripheral Interface (SPI)

protocol is a widely used synchronous communication

protocol that enables high-speed data exchange between

microcontrollers and peripheral devices. This project

focuses on the implementation of the SPI protocol with

an adaptive baud rate using Verilog. The adaptive baud

rate functionality ensures flexibility by dynamically

adjusting the communication speed based on the

requirements of the connected devices, enhancing

performance and compatibility. The Verilog-based SPI

implementation includes modules for Master-Slave

configuration, clock generation, data transmission, and

reception, as well as an adaptive baud rate controller.

The adaptive baud rate module dynamically adjusts the

SPI clock frequency using programmable settings,

ensuring seamless communication across devices with

different speed requirements.

Index Terms— SPI protocol, Adaptive baud rate,

Master-slave, clock generation, Verilog, data

transmission.

I. INTRODUCTION

The Serial Peripheral Interface (SPI) protocol is one of

the most common communication methods used in

embedded systems, especially for quickly moving data

between a main device and one or more connected

devices. This protocol works in full-duplex mode,

which means data can be sent and received at the same

time. That makes it great for real-time uses where fast

and dependable communication is needed. Usually,

SPI uses a fixed speed for sending data, but changing

the speed depending on what the system needs can

greatly improve how well the system works and how

flexible it is.

Using SPI with a speed that can change on the fly has

some big benefits.

It helps when the system needs to adjust its

communication speed based on what's required, like

saving power or sending more data faster. By letting

the speed change during communication, the system

can run better without needing new hardware or

someone to manually change settings. This is

especially helpful in systems with many devices that

need different speeds or for apps that switch between

fast and slow modes while they're running.

In this setup, the SPI master creates the clock (SCLK)

signal using a control module that changes the baud

rate by adjusting the clock speed based on specific

conditions. The baud rate can be changed either

through signals from outside the system or based on

what the system needs, which lets the system switch

between different data speeds smoothly without

stopping communication. The system also has ways to

keep the data accurate, making sure the clock and data

lines stay in sync all the time. The design includes a

detailed control system that handles when data is sent

and received, keeping the master and slave devices

properly connected. It also allows for multiple slave

devices to be connected, making the system flexible

and able to be used in many different embedded

applications.

An adaptive baud rate system helps make data transfer

more efficient. In many embedded systems, there are

situations where the system can use a slower baud rate

when it's not busy or when fast data transfer isn't

needed. However, when quick communication is

necessary, the system can change to a faster baud rate,

which makes sending data quicker and improves

overall performance.

The protocol also allows for customizable data order,

which means data can be sent either starting with the

most significant bit (MSB) or the least significant bit

(LSB). This makes the SPI more flexible for different

devices and data formats, helping engineers design

better embedded systems.

© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184295 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 716

In systems where using a lot of power is a big issue,

SPI is a good option because it uses very little power.

It only uses power when it's actually sending or

receiving data, which makes it great for devices that

run on batteries or have limited energy. SPI is also

simple to use, which makes it perfect for teaching and

testing new ideas. Because of this, engineers and

developers can easily set up and work with SPI

systems, making it a popular choice for learning and

building new projects.

II. BLOCK DIAGRAM

Fig.1.Block Diagram

The master module is the main control part for SPI

communication and has several important parts. It

includes a microcontroller that manages data sending

and receiving with the connected slave devices.

There's a clock generator (SCLK) that creates the SPI

clock signal and can change the speed to match

different data transfer rates. A data management part

handles sending and receiving data at the same time

through the MOSI and MISO lines. A slave select

control part turns on the needed slave by using the

SS0, SS1, or SS2 lines so only one slave is active at a

time. An adaptive baud rate controller changes the

clock speed by adjusting the clock division based on

certain conditions, allowing the system to change data

transfer speeds quickly for better performance and

lower power use. The system connects three SPI slave

devices, each with a unique address and different data

transfer speed needs.

Slave 1 (LCD, Address 00) works at a slow speed of

9600 bps for basic display updates. Slave 2 (Monitor,

Address 01) runs at a medium speed of 19200 bps for

moderate data transfer. Slave 3 (Ultrasonic Sensor,

Address 10) uses a fast speed of 38400 bps for quick

sensing. Each slave listens for the master's clock signal

and only responds when its slave select line is active,

making data transfer reliable and in sync with the

clock.

The baud rate control part is important because it

creates clock signals that control the SCLK speed.

It uses counters and special logic to divide the main

clock, and it can adjust the data transfer speed as

needed depending on which slave is active or the

system’s power and speed needs. The clock

management part splits the main clock into different

speeds and picks the correct one based on signals from

the baud rate controller, allowing the system to switch

between transfer speeds without stopping

communication.

When the master needs to talk to a slave, it activates

the right SS line, sets the clock speed to match the

slave's needs, and manages sending and receiving data

through the MOSI and MISO lines.

Once communication is done, the SS line is turned off,

letting the master choose another slave with a different

speed if needed. This setup allows the system to handle

various data transfer needs efficiently and flexibly.

III. ADAPTIVE BAUD RATE CONTROLLER

Fig.2.Adaptive baud rate controller.

The system starts with an Address Decoder that takes

the slave device address (slave_addr) as input. This

address input helps choose which connected slave

device will communicate. The decoder checks the

incoming address against set codes to find out which

slave is active. It then sends this decoded address to

the Device Speed Database block.

The Device Speed Database connects each slave

address to its needed communication speed. For

instance, address 000 uses 9600 bps, 001 uses 19200

bps, 010 uses 38400 bps, and 011 uses 57600 bps. This

setup lets the system pick the right speed for each

slave.

© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184295 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 717

Once the speed is set, the information goes to the Baud

Rate Generator block. This block uses the system

clock (clk_band) and the set baud rate to create the

correct SPI clock (sclk). It changes the base clock to

match the required speed for the selected slave. The

output from the Baud Rate Generator is the sclk_out

signal used for SPI communication. This ensures each

slave talks at its best speed without needing manual

clock setup.

By using an address-based lookup and automatic clock

generation, the system can change baud rates

automatically. This design makes the system more

efficient and flexible for multi-slave SPI setups. It also

allows smooth switching between devices that use

different speeds. This method is all hardware-based

and doesn't need software changes while the system is

running. This type of setup is helpful in embedded

systems where various peripherals need different

communication speeds.

IV. STATE DIAGRAM

Fig.3.SPI master module for adaptive baud rate.

This state diagram shows how an SPI master works

with a system that can change the speed of data

transfer. The system starts in the IDLE state, where all

the chip select lines are not active (CS_N = 111), the

clock signal (SCLK) is turned off, and no data is being

sent. When the master is told to start sending data

(start_tx = 1), it goes to the SELECT_SPEED state. In

this state, it reads the address of the slave device,

figures out the right speed for communication, and

turns on the correct chip select line.

Then the master moves to the START state, where it

turns on the SPI clock (SCLK) and gets ready to send

the first bit of data.

Next, it enters the TRANSMIT state, where it sends

out each bit one after the other and keeps a count of

how many bits have been sent. Once all eight bits are

sent (bit_count = 8), the master goes to the

COMPLETE state. Here, it turns off the chip select

line, marks the transmission as done (TX_DONE = 1),

and puts the received data into a register (rx_data).

Finally, the master goes back to the IDLE state, ready

for the next time it needs to send or receive data.

This process helps make SPI communication reliable

and allows the master to adjust the data speed based

on which slave device is being used, making data

transfer more efficient for devices that need different

speeds.

To create a baud rate of 9600 bps for SPI

communication, you need a clock divider that works

with a 50 MHz system clock.

The formula to calculate the baud rate is:

Baud Rate = System Clock / (2 × Clock Divider)

To get 9600 bps with a 50 MHz clock:

Clock Divider = 50,000,000 / (2 × 9600) = 2604

This means the 50 MHz system clock must be divided

by 5208 (which is 2 × 2604) to produce the correct SPI

clock frequency.

The actual baud rate is:

Actual Baud Rate = 50,000,000 / (2 × 2604) = 9600

bps

This shows the calculated clock divider gives the right

baud rate for reliable SPI communication.

This method can also be used to adjust the baud rate

for other speeds by simply changing the clock divider

value based on the slave device’s requirements.

V. SIMULATION RESULTS

Fig.4. if Baud_select=000,9600 bps, clk_divider=2604

© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184295 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 718

Fig.5. if Baud_select=001,19200bps,clk_divider=1302

Fig.6. if Baud_select=010,38400 bps, clk_divider=862

VI. CONCLUSION

In conclusion, using Verilog to implement the SPI

protocol with an adaptive baud rate shows how

effective Verilog is in creating efficient

communication systems. The system allows for

reliable full-duplex communication between one

master device and multiple slave devices, with

accurate synchronization and data transfer. The

adaptive baud rate feature makes the design more

flexible, letting the master change the communication

speed as needed, which improves performance and

saves power. The simulation results confirm that the

system works correctly and meets all timing

requirements, ensuring data is sent without errors even

when the baud rate changes. This design offers a

scalable and customizable SPI interface that can be

used in many different embedded system applications,

proving that Verilog is a good choice for building

high-performance and dependable communication

protocols.

VII. FUTURE SCOPE

The SPI protocol with an adaptive baud rate can be

made even better in different ways. Future

improvements might include adding multi-master

support to make communication more flexible and

dynamic slave detection to automatically set up

peripherals. Using error detection methods like CRC

can help keep data accurate. The adaptive baud rate

controller could get smarter with algorithms that look

at real-time traffic and power use. A power

management system can help save energy in devices

that run on batteries. Moving the design to low-power

FPGAs or ASICs can make it more practical. Testing

the hardware in real situations will make sure it works

well in actual use. These changes are meant to make

the protocol stronger, more flexible, and better suited

for today's embedded systems.

REFERENCE

[1] Shama, Ayman, Manar Lashin, and Ayman Nada.

"A State Machine-Based Approach for

Implementing SPI Communication on FPGAs."

Benha Journal of Applied Sciences, vol 9, issue 5,

2024, pp 127-134.

[2] Kumar, K. Charan, et al. "Design of Low Power

SPI Protocol using Clock Gating Techniques."

2024 International Conference on Emerging

Technologies in Computer Science for

Interdisciplinary Applications (ICETCS). IEEE,

2024.

[3] Naveen, R. S., S. Sanjay, and C. Mukuntharaj.

"Implementation Of SPI Protocol with Adaptive

Baud Rate Using Verilog.", 7th International

Conference on Devices, Circuits and Systems

(ICDCS), 2024.

[4] Mayank Trehan, Pradeep Kumar, Nidhi Gaur.

“Design and Analysis of Multi-Protocol

Conversion Unit for SPI, SPI and UART”. 2nd

International Conference on Device Intelligence,

Computing and Communication Technologies,

2024.

[5] A. H. Rahimi, A. K. Halim*, A. H. A. Razak, M.

F. M. Idros, F.N. Osman, S. A. M. A. Junid, S. L.

M. Hassan. “Design and Analysis of Single

Master Multiple Slave Serial Peripheral Interface

(SPI) on FPGA”. IEEE International Conference

Standard mode 9600b/s

Fast mode 19200b/s

High Speed mode 38400b/s

Ultra Speed mode 112500b/s

© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184295 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 719

on Applied Electronics and Engineering

(ICAEE), 2024.

[6] Nishant Sahay1, Sachin Gajjar2. “Design and

UVM based Verification of UART, SPI, and SPI

Protocols”. 5th International Conference on Smart

Electronics and Communication (ICOSEC 2024),

2024.

[7] Dr. S Sasikumar, B.Aravind Balaji, N.Jaya

Krishna, Sidda Reddy. “Design and

Implementation of a Protocol Conversion Unit for

SPI to SPI Communication”. Proceedings of the

8th International Conference on Electronics,

Communication and Aerospace Technology

(ICECA 2024), 2024.

[8] Patra, Aritra, and Lalit Mohan Saini. "Analysis of

Serial Peripheral Interface." 2023 Second IEEE

International Conference on Measurement,

Instrumentation, Control and Automation

(ICMICA). IEEE, 2024.

[9] Josip Zidar∗, Ivan Aleksi∗, Tomislav Matic∗

“Analysis of energy consumption for SPI and SPI

communications in ultra-low power embedded

systems”. MIPRO 2023, May 22 - 26, 2023,

Opatija, Croatia, 2023.

[10] Ionelia-Bianca Brezeanu, Cătălin Botezatu, Florin

Drăghici, Gheorghe Brezeanu. “Improved SPI

Controlled, Low-Voltage, High Speed, Multi-

Channel Switch”. 2022 14th International

Conference on Electronics, Computers and

Artificial Intelligence (ECAI), 2022.

[11] Bitty Jose, J.Samson Immanuel. “Design of BIST

(Built-In-Self- Test) Embedded Master-Slave

communication using SPI Protocol”. 2021 3rd

International Conference on Signal Processing

and Communication (ICPSC), 2021.

[12] Jiayi Qiang1, Yong Gu2 and Guochu Chen.

“FPGA Implementation of SPI Bus

Communication Based on State Machine

Method.” Journal of Physics: Conference

Series,2020.

[13] Jiang Yang, Yile Xiano, Dejian Li, Zheng Li,

Zhijie chen, Peiyuan wan. “A configurable SPI

interface based on APB bus”. IEEE 14th

International Conference on Anti-counterfeiting,

security, and identification (ASID), 2020.

[14] Mehmet Burak AYKENAR, Gökhan SOYSAL

Murat EFE. “Design and Implementation of a

Lightweight SPI Master IP for Low Cost FPGAs”.

28th signal processing and communications

Applications conferences (SIU), 2020.

[15] Dvijen Trivedi, Aniruddha Khade, Kashish Jain,

Ruchira Jadhav. “SPI to SPI Protocol Conversion

using Verilog”. Fourth international conference

on computing communication control and

automation(ICCUBEA), 2018.

