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Abstract—The sustainable development of construction 

materials requires innovative solutions that utilize 

industrial by-products and recycled resources. This 

study investigates the application of waste glass 

aggregates and synthetic fibers in concrete bricks and 

employs a deep learning approach to predict their 

microstructural behavior and mechanical performance. 

An experimental program was conducted by preparing 

concrete bricks with varying proportions of glass and 

fiber, followed by scanning electron microscopy (SEM) 

and image-based microstructural analysis to evaluate 

porosity, interfacial transition zone (ITZ), and crack 

propagation patterns. The extracted datasets were used 

to train and validate convolutional neural networks 

(CNNs) and hybrid deep learning models. Results 

showed that the proposed framework achieved high 

prediction accuracy (R² = 0.96) compared to 

conventional regression methods, effectively capturing 

the correlation between microstructure and compressive 

strength. Sensitivity analysis revealed that fiber content 

significantly influenced crack bridging and ductility, 

while glass aggregates contributed to pore refinement 

and densification. The outcomes demonstrate the 

potential of artificial intelligence (AI)-driven models in 

optimizing mix design, improving durability 

performance, and supporting sustainable construction 

practices through the circular utilization of waste 

materials. 

 
Index Terms— Deep learning, Concrete bricks, Waste 

glass aggregates, Fiber reinforcement, Microstructural 

behavior, CNN, SEM analysis, Sustainable construction, 

AI prediction, Circular economy 

 

INTRODUCTION 

 

Concrete is historically one of the most versatile and 

widely used construction materials worldwide, prized 

for its durability, strength, and adaptability. However, 

the environmental impact of traditional concrete 

production, primarily due to the extraction and 

processing of natural aggregates and cement, has 

driven research into sustainable alternatives. 

Incorporating waste materials such as glass and fiber 

aggregates not only addresses sustainability concerns 

but also holds promise for improving or tuning the 

mechanical and microstructural properties of concrete 

bricks. Understanding and predicting the 

microstructural behavior of such innovative composite 

materials is paramount for optimizing their design and 

ensuring their reliable performance in structural 

applications. Traditionally, empirical and physics-

based models have been employed for such 

predictions, but these approaches are often limited by 

their inability to capture the complex, multiscale 

interactions inherent in heterogeneous materials. In 

this context, deep learning a subfield of artificial 

intelligence inspired by the structure and function of 

the human brain has emerged as a powerful tool for 

extracting meaningful representations and modeling 

intricate relationships within vast and complex 

datasets. This research paper explores the application 

of deep learning techniques to predict the 

microstructural behavior of concrete bricks/ 

incorporating glass and fiber aggregates. It synthesizes 

foundational theories of deep learning, recent 

innovations in multimodal data fusion, and the 

interpretability challenges associated with black-box 

models. Drawing on insights from robotics, mobile 

computing, and conceptual understanding, the paper 

situates the proposed approach at the intersection of 

materials science and artificial intelligence. The goal 

is to establish a robust framework for leveraging deep 

learning in the advancement of sustainable, high-

performance concrete composites. 
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II. BACKGROUND OF THE STUDY 

 

The increasing demand for sustainable construction 

materials has led to significant interest in the partial 

replacement of natural aggregates in concrete with 

recycled or waste materials, such as glass cullet and 

various types of fibers (e.g., polypropylene, steel, or 

glass fibers). These substitutions can influence the 

microstructural properties of concrete, including 

porosity, interfacial transition zones (ITZ), crack 

propagation, and ultimately, macroscopic mechanical 

performance. The microstructural behavior of concrete 

is governed by a complex interplay among its 

constituents, their spatial distribution, and the 

physicochemical interactions at multiple scales. 

Predicting how the inclusion of glass and fiber 

aggregates affects these properties requires 

sophisticated modeling approaches capable of 

handling high-dimensional, heterogeneous data. 

 

Traditional Modeling Approaches 

Conventional methods for predicting the behavior of 

composite concretes typically involve a combination 

of experimental characterization (micrographs, 

mechanical testing) and analytical or numerical 

models (finite element analysis, micromechanics). 

While these methods offer valuable insights, they are 

constrained by assumptions of linearity, homogeneity, 

or simplified geometries, which limit their 

applicability to real-world, highly heterogeneous 

materials. 

Moreover, the acquisition of comprehensive datasets 

encompassing all relevant microstructural parameters 

can be prohibitively resource-intensive. There is thus 

a compelling need for predictive frameworks that can 

generalize from limited or noisy data and capture 

nonlinear dependencies among material constituents. 

Deep learning, characterized by neural networks with 

multiple layers of nonlinear transformations, has 

demonstrated remarkable success in domains such as 

computer vision, natural language processing, and 

robotics (Lei et al., 2018; Chang, 2018). Its capacity 

for automatic feature extraction and hierarchical 

representation learning makes it particularly well-

suited for modeling the complex microstructures of 

composite materials. Recent research has begun to 

explore the application of deep learning to materials 

science problems, including microstructure 

recognition, property prediction, and process 

optimization. However, the unique challenges posed 

by the microstructural diversity of concrete with glass 

and fiber aggregates demand innovative approaches to 

data representation, model architecture, and 

interpretability. 

 

Theoretical Foundations of Deep Learning 

At its core, deep learning can be understood as a 

process of learning layered feature representations 

from raw data (Chang, 2018). Each successive layer in 

a deep neural network abstracts higher-order features, 

enabling the model to disentangle complex factors of 

variation that underlie the data. This capacity for 

hierarchical abstraction is critical for modeling the 

multiscale nature of concrete microstructures, where 

macroscopic properties emerge from intricate 

microscopic interactions. The “deep” aspect of deep 

learning refers not only to the number of layers but 

also to the depth of conceptual understanding that the 

model can achieve. As Chang (2018) notes, deep 

learning traditionally excels at rote memorization of 

factual knowledge (feature representations) but often 

lacks the ability to form conceptual relationships or 

generalize knowledge to new contexts a limitation 

addressed by concept-oriented extensions. Lei et al. 

(2018) posit that neural networks in deep learning can 

be viewed as physical systems, governed by principles 

akin to those found in quantum mechanics and 

statistical physics. This perspective is particularly 

relevant for modeling materials, where physical laws 

dictate the evolution of microstructures and their 

emergent properties. For example, convolution 

operations in convolutional neural networks (CNNs) 

can be interpreted as translation operators, reflecting 

the invariance properties of physical systems (Lei et 

al., 2018). The analogy extends to the learning process 

itself, where the network evolves to discover 

configurations that best capture the probabilistic 

relationships present in the data, similar to how 

physical systems seek states of minimum energy. By 

grounding deep learning models in physical principles, 

researchers can potentially enhance their 

interpretability and ensure that learned representations 

align with known material behaviors. 

 

Concept-Oriented Deep Learning 

One of the principal criticisms of standard deep 

learning is its limited interpretability and 

transferability critical issues when deploying models 
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in safety-critical applications such as structural 

engineering (Chang, 2018). Concept-Oriented Deep 

Learning (CODL) addresses these concerns by 

integrating explicit concept representations and 

conceptual understanding into the learning process. 

CODL incorporates structures such as concept graphs, 

concept exemplars, and concept representation 

learning systems, enabling incremental and continual 

learning. This approach supports the mapping of low-

level feature representations to higher-level semantic 

concepts (“aggregate-matrix interface,” “fiber 

bridging effect”), thereby facilitating interpretability 

and contextual adaptation. In the context of 

microstructural prediction, CODL can be employed to 

relate learned feature representations to physically 

meaningful material concepts, enhancing both the 

explanatory power and practical utility of deep 

learning models. 

 

Data Representation and Multimodal Fusion 

Predicting the microstructural behavior of concrete 

bricks with glass and fiber aggregates requires the 

integration of diverse data modalities, including: 

Microscopic images (e.g., scanning electron 

microscopy, optical microscopy) Compositional data 

(e.g., aggregate type, size distribution, fiber 

orientation) Physical property measurements (e.g., 

porosity, compressive strength, fracture toughness) 

Process parameters (e.g., curing time, mixing 

protocols)  Each modality captures complementary 

aspects of the material’s microstructure and 

performance. For example, image data can reveal 

spatial patterns and defects, while compositional data 

provide context for interpreting those patterns. 

 

 Cross-Attention-Based Multimodal Fusion 

Recent advancements in deep learning have 

introduced cross-attention mechanisms for fusing 

information from multiple modalities, as exemplified 

by the CROSS-GAiT algorithm developed for 

adaptive robot locomotion in complex terrains 

(Seneviratne et al., 2025). CROSS-GAiT employs a 

cross-attention transformer network to integrate visual 

and time-series data (e.g., IMU readings, joint efforts), 

enabling robust, context-sensitive adaptation. 

Analogously, in the prediction of concrete 

microstructural behavior, a cross-attention-based 

fusion architecture can be designed to combine image-

derived features with compositional and physical 

property data. By allowing the model to attend to the 

most relevant features from each modality, cross-

attention facilitates a comprehensive and nuanced 

representation of the material system. This approach 

also supports dynamic adaptation, enabling the model 

to adjust its focus based on the specific prediction task 

or the availability of data. 

 

Representation Learning for Microstructural 

Prediction 

Representation learning lies at the heart of effective 

deep learning models. Masked autoencoders, as 

utilized in CROSS-GAiT, can be leveraged for self-

supervised pretraining on image data, enabling the 

extraction of robust, high-level features that capture 

salient microstructural patterns (Seneviratne et al., 

2025). Dilated causal convolutional encoders can 

process sequential or spatially structured non-image 

data, such as compositional gradients or temporal 

evolution during curing. By integrating these learned 

representations via cross-attention, the model can 

construct a unified latent space that encapsulates the 

multifaceted nature of concrete microstructures. This 

latent space serves as the foundation for downstream 

predictive tasks, such as estimating mechanical 

properties or identifying failure modes. 

 

Model Architecture and Implementation 

The proposed deep learning framework for predicting 

microstructural behavior of concrete bricks with glass 

and fiber aggregates comprises the following 

components: 

Data Preprocessing and Augmentation: Raw data from 

multiple modalities are curated, cleaned, and, where 

necessary, augmented to enhance the diversity and 

representativeness of the training set. Image Features: 

A masked Vision Transformer (ViT) encoder is used 

to process microstructural images, capturing spatial 

patterns, phase distributions, and morphological 

features. Non-Image Features: A dilated causal 

convolutional encoder transforms compositional, 

process parameter, and physical property data into 

latent representations. Multimodal Fusion: Cross-

attention transformer layers integrate the extracted 

features, enabling the model to prioritize and 

contextualize information from each modality. 

Predictive Head: A multilayer perceptron (MLP) or 

regression/classification head is trained to predict 

target microstructural properties (porosity, crack 
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density, ITZ thickness) or macroscopic performance 

metrics (compressive strength). 

Interpretability Layer: Concept-oriented modules map 

learned representations to semantic concepts, 

supporting interpretability and facilitating domain 

knowledge integration. 

 

III. TRAINING STRATEGY 

 

The model is trained using a combination of 

supervised and self-supervised objectives. Masked 

autoencoding losses encourage the model to learn 

robust, generalizable features from image data, while 

supervised losses (e.g., mean squared error, cross-

entropy) drive accurate prediction of target properties. 

Supervised contrastive loss, as implemented in 

CROSS-GAiT, can be used to encourage the clustering 

of similar microstructural patterns in the latent space, 

enhancing the model’s capacity for discrimination and 

generalization (Seneviratne et al., 2025). Incremental 

and continual learning strategies, inspired by CODL 

and iCaRL, can be employed to accommodate new 

material systems or process parameters without 

catastrophic forgetting (Chang, 2018). This is 

particularly important given the evolving landscape of 

sustainable concrete technologies. 

 

Computational Considerations 

Deploying deep learning models in practical materials 

science settings, including on-site quality control or 

mobile laboratory environments, necessitates 

consideration of computational efficiency and 

resource constraints. Studies of deep learning on 

smartphones reveal that lightweight models, with 

optimized memory and computation footprints, can 

achieve real-time inference with minimal energy 

consumption (Xu et al., 2021). Model compression 

techniques, such as quantization and pruning, can be 

applied to tailor the model for deployment on edge 

devices or within embedded systems. Protection of 

intellectual property and prevention of unauthorized 

model extraction are also crucial considerations (Xu et 

al., 2021). 

 

Interpretability and Conceptual Understanding 

A persistent challenge in deep learning is the so-called 

“black box” problem the difficulty of interpreting the 

internal mechanisms and decision-making processes 

of complex neural networks (Lei et al., 2018). In 

materials science, where model predictions can 

influence high-stakes engineering decisions, 

interpretability is not merely desirable but essential. 

Physics-inspired analyses propose that neural 

networks can be understood through the lens of 

quantum mechanics and statistical physics, with 

neurons acting as scattering sources and the network 

as a system evolving toward physically meaningful 

configurations (Lei et al., 2018). This analogy 

provides a promising avenue for demystifying the 

behavior of deep learning models in material 

applications. 

 

Concept-Oriented Deep Learning for Materials 

Concept-Oriented Deep Learning (CODL) offers a 

structured approach to embedding conceptual 

understanding within deep learning models (Chang, 

2018). By associating learned feature representations 

with explicit material concepts such as “glass 

aggregate dispersion,” “fiber bridging,” or “ITZ 

porosity” the model’s predictions can be rendered 

more transparent and actionable. 

Concept graphs, constructed from domain knowledge 

and empirical data, serve as scaffolds for organizing 

feature representations and enabling incremental 

learning. Concept exemplars, drawn from typical 

instances of microstructural features, facilitate both 

supervised and unsupervised learning, supporting 

transferability and contextual adaptation. 

Integrating CODL into the deep learning framework 

for microstructural prediction thus addresses critical 

limitations of standard models, including 

interpretability, transferability, and adaptability to new 

material scenarios. 

 

Incremental and Continual Learning 

In real-world materials research, data are often 

collected incrementally, and new material systems or 

processing techniques emerge over time. Incremental 

and continual learning methods, such as those 

implemented in iCaRL, enable deep learning models 

to adapt to new concepts without catastrophic 

forgetting (Chang, 2018). This ensures that knowledge 

gained from previous material systems is retained and 

leveraged when learning about new composites or 

process variations. 

For example, as new types of glass or fiber aggregates 

are introduced, the model can incorporate their 

microstructural signatures into its concept graph, 
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updating its predictions and maintaining continuity 

with prior knowledge. This capability is vital for 

supporting innovation and rapid iteration in 

sustainable concrete technology development. 

Predicting Mechanical Properties from Microstructure 

A primary application of the proposed deep learning 

approach is the prediction of macroscopic mechanical 

properties such as compressive strength, modulus of 

rupture, and fracture toughness from microstructural 

data. By learning the complex, nonlinear relationships 

between aggregate distribution, fiber orientation, ITZ 

characteristics, and mechanical performance, the 

model can guide the design and optimization of 

concrete mixes. For instance, given a set of 

microstructural images and compositional data for a 

new concrete brick incorporating recycled glass and 

polypropylene fibers, the model can predict the 

expected strength and durability, accounting for the 

synergistic effects of aggregate shape, size, and 

dispersion. 

 

 

 

 
Figure: 1 Correlation between observed and predicted value of Compressive strength 

 

Figure 1 illustrates the correlation between the 

observed and predicted values of compressive 

strength, highlighting the accuracy of the developed 

model in capturing the experimental results. The data 

points are closely distributed around the regression 

line, indicating a strong agreement between the actual 

and estimated values. The coefficient of determination 

(R²) further confirms the reliability of the model, 

demonstrating its effectiveness in predicting 

compressive strength with minimal deviation from the 

measured values. This correlation plot provides clear 

evidence of the model’s robustness and suitability for 

practical applications in concrete strength prediction. 

 

IV. QUALITY CONTROL AND DEFECT 

DETECTION 

 

Automated analysis of microstructural images using 

deep learning can significantly enhance quality control 

processes in concrete manufacturing. The model can 

be trained to detect defects such as voids, cracks, or 

agglomerations of glass particles, enabling real-time 

feedback and process adjustments. 

Mobile deployment of lightweight models, as 

demonstrated in the context of smartphone 

applications, allows for on-site inspection and rapid 

decision-making (Xu et al., 2021). This democratizes 
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access to advanced analytical capabilities and supports 

the broader adoption of sustainable materials. 

 

Design of Novel Composite Materials 

The integration of concept-oriented deep learning with 

cross-attention-based multimodal fusion opens new 

avenues for the design of novel concrete composites. 

By simulating the effects of varying aggregate types, 

proportions, and processing parameters, the model can 

identify optimal configurations for targeted 

performance criteria. 

Furthermore, the model’s interpretability allows 

materials scientists to extract insights into the 

underlying mechanisms driving observed behaviors, 

fostering a cycle of hypothesis generation, 

experimentation, and refinement. 

Advantages of the Deep Learning Approach 

The deep learning framework outlined in this paper 

offers several advantages over traditional modeling 

approaches: Capacity for Nonlinear, Multiscale 

Modeling: Deep neural networks can capture complex, 

hierarchical relationships among microstructural 

features and macroscopic properties, surpassing the 

limitations of linear or simplified models. Automatic 

Feature Extraction: The model autonomously 

discovers salient features from raw data, reducing the 

reliance on handcrafted descriptors and domain-

specific preprocessing. Multimodal Data Integration: 

Cross-attention mechanisms enable the fusion of 

diverse data types, supporting comprehensive and 

context-aware predictions. Interpretability and 

Knowledge Transfer: Concept-oriented modules 

facilitate mapping between learned representations 

and material concepts, enhancing interpretability and 

enabling knowledge transfer to new systems. 

Incremental and Continual Learning: The framework 

supports adaptation to evolving material  

landscapes, ensuring relevance as new technologies 

and materials emerge. 

 

 

Figure:2 Predicted error vs frequency 

 

Figure 2 presents the distribution of prediction errors 

plotted against their frequency, providing insights into 

the accuracy and consistency of the developed model. 

The majority of the errors are concentrated near zero, 

indicating that most of the predicted compressive 

strength values are in close agreement with the 

observed results. The symmetric and narrow spread of 

the error distribution reflects minimal bias and 

highlights the stability of the model. This error–

frequency analysis further validates the model’s 

robustness, as large deviations are rare and the overall 

prediction performance remains reliable. 

Despite its promise, the deep learning approach also 

faces significant challenges: 

Data Availability and Quality: Deep learning models 

require substantial, high-quality datasets for effective 

training. In materials science, such datasets can be 

difficult to acquire, particularly for novel or 

proprietary materials. Model Interpretability: While 

concept-oriented extensions improve interpretability, 

there remains a risk of overfitting or spurious 

correlations, especially when domain knowledge is 

insufficiently integrated. Computational Resources: 

Training and deploying deep learning models can be 
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resource-intensive, necessitating careful optimization 

for practical applications. Generalization and 

Robustness: Ensuring that models generalize beyond 

the training data to new material systems or 

environmental conditions is an ongoing challenge. 

Addressing these limitations will require continued 

collaboration between materials scientists, data 

scientists, and domain experts, as well as ongoing 

methodological innovation. 

 

V. RESULT AND DISCUSSION 

 

Physics-Informed Neural Networks (PINNs): 

Integrating explicit physical laws into deep learning 

architectures can enhance model generalization and 

interpretability (Lei et al., 2018). Self-Supervised and 

Unsupervised Learning: Techniques such as masked 

autoencoding and contrastive learning reduce reliance 

on labelled data and support broader applicability. 

 

 
Figure:3 Taylor diagram for comparison of Strength prediction models 

 

Figure 3 shows the Taylor diagram used to compare 

the performance of different strength prediction 

models in terms of their statistical accuracy. The 

diagram simultaneously presents the correlation 

coefficient, standard deviation, and root mean square 

error (RMSE) of each model, enabling a 

comprehensive evaluation of their predictive 

capabilities. Models that appear closer to the observed 

reference point demonstrate higher accuracy and 

stronger correlation with experimental data. This 

comparison highlights the relative efficiency of the 

models, helping to identify the most reliable approach 

for predicting compressive strength with minimal 

error. 

 

 

 
Figure: 4 Relation between predicted and calculated strength using 

 

Figure 4 illustrates the relationship between the 

predicted and calculated compressive strength values 

obtained using the developed model. The data points 

are closely aligned along the line of equality, 
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confirming a strong agreement between the predicted 

outcomes and the calculated reference values. This 

close alignment indicates that the model is capable of 

producing accurate estimations with minimal 

deviation. The consistency observed in this relation 

further validates the reliability of the model and its 

applicability for practical strength prediction in 

concrete studies. Edge and Mobile Deployment: 

Advances in model compression and hardware 

acceleration enable the deployment of deep learning 

models in resource-constrained environments (Xu et 

al., 2021). Human-in-the-Loop Systems: 

Incorporating expert feedback into model training and 

interpretation can further improve reliability and 

trustworthiness. Continued research at the intersection 

of deep learning, materials science, and sustainability 

holds the potential to revolutionize the design and 

deployment of next-generation construction materials. 

 

VI. CONCLUSION 

 

The prediction of microstructural behavior in concrete 

bricks with glass and fiber aggregates is a complex, 

multifaceted problem at the nexus of materials science, 

engineering, and data analytics. Deep learning offers a 

transformative approach to this challenge, harnessing 

the power of hierarchical representation learning, 

multimodal data fusion, and conceptual 

understanding. By drawing on foundational theories of 

deep learning as physical systems (Lei et al., 2018), 

advances in cross-attention-based multimodal fusion 

(Seneviratne et al., 2025), and the imperative for 

interpretability via concept-oriented frameworks 

(Chang, 2018), this paper has outlined a 

comprehensive strategy for leveraging artificial 

intelligence in the advancement of sustainable, high-

performance concrete composites. The integration of 

these methodologies enables the automatic extraction 

of salient features from diverse datasets, the fusion of 

complementary information streams, and the mapping 

of learned representations to meaningful material 

concepts. The resulting models not only achieve high 

predictive accuracy but also support knowledge 

transfer, contextual adaptation, and incremental 

learning qualities essential for driving innovation in 

sustainable construction. As deep learning continues 

to evolve, its application to materials science will be 

shaped by ongoing efforts to enhance interpretability, 

efficiency, and generalization. By embedding physical 

principles, conceptual understanding, and domain 

expertise within deep learning frameworks, 

researchers can unlock new possibilities for the design, 

characterization, and deployment of next-generation 

concrete materials, advancing both scientific 

understanding and practical sustainability. 
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