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Abstract—Groundwater resources are increasingly 

threatened by population growth, urbanization, 

agricultural demand, and climate variability, making 

effective monitoring and management a global priority. 

Traditional hydrogeological methods, though reliable, 

are constrained by limited spatial coverage and high 

costs. Over the past two decades, advancements in 

remote sensing (RS) and geographic information systems 

(GIS) have transformed groundwater and water 

resource monitoring by providing scalable, cost-

effective, and multi-temporal datasets. This review 

consolidates key developments up to 2021, highlighting 

the role of satellite missions, radar and LiDAR 

technologies, GIS-based modeling, and machine learning 

approaches. 

One of the most significant contributions has been the 

Gravity Recovery and Climate Experiment (GRACE) 

mission, which enabled large-scale groundwater storage 

anomaly detection and depletion mapping in stressed 

regions such as northern India and California. 

Complementing GRACE, the Soil Moisture Active 

Passive (SMAP) mission improved understanding of soil 

moisture dynamics and recharge estimation, while 

optical indices such as NDWI were used for vegetation 

water content and irrigation monitoring. Interferometric 

Synthetic Aperture Radar (InSAR) has become 

indispensable for detecting aquifer-system deformation 

and land subsidence linked to excessive pumping, with 

applications across Mexico, California, and Asia. At 

finer spatial scales, Light Detection and Ranging 

(LiDAR) datasets have supported recharge zone 

delineation and hydrogeomorphic studies, particularly 

in complex terrains. GIS has served as the integrative 

platform for these datasets, enabling groundwater 

potential mapping through multi-criteria decision 

analysis (MCDA). Techniques such as frequency ratio, 

certainty factor, and weights-of-evidence have been 

widely applied, while more recent works integrated 

machine learning and data mining algorithms to enhance 

predictive accuracy. Hybrid approaches linking RS 

datasets with hydrological models further improved 

aquifer monitoring in data-scarce regions. 

Comparative analysis shows a progression from large-

scale monitoring in the early 2000s (GRACE, GIS-based 

mapping), to detailed local studies in the 2010s (InSAR, 

LiDAR), and finally to advanced hybrid approaches 

combining RS, GIS, and machine learning after 2016. 

Despite these advances, challenges persist, including 

GRACE’s coarse resolution, InSAR’s atmospheric 

sensitivity, and the lack of robust validation for machine 

learning models. Moreover, many scientific outputs have 

yet to be fully integrated into water governance and 

management frameworks. Future efforts must focus on 

multi-sensor data fusion, downscaling techniques, UAV-

based surveys, and stronger linkages between scientific 

tools and policy to ensure sustainable water resource 

management. 

Index Terms - Groundwater resources, Remote sensing 

(RS), Geographic Information Systems (GIS), GRACE, 

SMAP, NDWI, InSAR, LiDAR, Groundwater 

monitoring, multi-criteria decision analysis (MCDA), 

Machine learning, Hydrological modeling, Aquifer 

deformation, Land subsidence, Recharge estimation, 

Multi-sensor data fusion, UAV-based monitoring, Water 

governance. 

I. INTRODUCTION 

Water is one of the most essential natural resources 

that sustains life, agriculture, industry, and 

ecosystems. Among all freshwater sources, 

groundwater plays a particularly critical role, as it 

supplies nearly one-third of the world’s total 

freshwater demand and serves as the primary source of 

drinking and irrigation water in many arid and semi-

arid regions.  

Globally, more than two billion people rely on 

groundwater as their main source of water supply, and 

its use continues to grow in response to rising 
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population, urbanization, and agricultural 

intensification. However, the excessive and often 

unregulated extraction of groundwater has resulted in 

severe depletion of aquifers, declining water tables, 

deterioration of water quality, and in some cases, 

irreversible land subsidence. Coupled with the impacts 

of climate change—such as shifting rainfall patterns, 

prolonged droughts, and increasing 

evapotranspiration—groundwater resources face 

unprecedented stress. Effective monitoring and 

management of groundwater have therefore become a 

cornerstone of sustainable water resource planning. 

Traditionally, groundwater assessment has relied on 

field-based hydrogeological surveys, pumping tests, 

and the monitoring of observation wells. While these 

methods provide accurate local-scale information, 

they are limited in spatial coverage, costly, and time-

intensive. In many developing regions, monitoring 

networks are sparse or non-existent, creating large 

data gaps that hinder effective management. 

Furthermore, traditional approaches often fail to 

capture the temporal variability of aquifer dynamics 

over large regions, particularly in transboundary 

aquifers where coordinated monitoring is lacking. This 

has created a pressing need for innovative, scalable, 

and cost-effective tools that can complement and 

enhance conventional hydrogeological investigations. 

Over the past two decades, remote sensing (RS) and 

geographic information systems (GIS) have emerged 

as transformative technologies for water resource 

research and management. Remote sensing, through 

satellite, airborne, and UAV platforms, provides 

spatially distributed and temporally continuous 

datasets that are particularly valuable for monitoring 

hydrological variables such as precipitation, 

evapotranspiration, soil moisture, land deformation, 

and terrestrial water storage. GIS, on the other hand, 

offers the analytical framework to integrate, manage, 

and analyze these diverse datasets alongside ancillary 

information such as geology, land use, and 

topography. Together, RS and GIS enable researchers 

to move beyond point-based measurements and 

achieve regional to global-scale monitoring of 

groundwater resources with unprecedented efficiency. 

Several landmark satellite missions have significantly 

advanced groundwater research. The Gravity 

Recovery and Climate Experiment (GRACE), 

launched in 2002, provided the first global capability 

to monitor terrestrial water storage anomalies, 

including groundwater, from space. By measuring 

changes in the Earth’s gravity field, GRACE made it 

possible to detect large-scale groundwater depletion in 

heavily stressed aquifers such as those in northern 

India, the Middle East, and California’s Central 

Valley. Despite its coarse resolution, GRACE 

represented a paradigm shift by highlighting 

groundwater depletion as a global environmental 

issue. Complementing GRACE, the Soil Moisture 

Active Passive (SMAP) mission, launched in 2015, 

has provided high-resolution data on soil moisture 

dynamics, which are critical for estimating 

groundwater recharge and understanding surface–

subsurface interactions. Optical indices such as the 

Normalized Difference Water Index (NDWI) further 

support the assessment of vegetation water stress and 

irrigated agriculture, offering indirect but valuable 

insights into groundwater use. 

Another significant technological advancement has 

been the application of Interferometric Synthetic 

Aperture Radar (InSAR) for monitoring land 

subsidence caused by groundwater extraction. InSAR 

techniques can detect millimeter-scale vertical ground 

displacement with high spatial resolution, making 

them a powerful tool for assessing aquifer compaction 

and subsidence in urban and agricultural regions. Case 

studies in Mexico City, Jakarta, and California have 

demonstrated the effectiveness of InSAR in linking 

land deformation to groundwater overexploitation. 

Similarly, Light Detection and Ranging (LiDAR) 

technology has contributed by generating high-

resolution digital elevation models (DEMs), which 

support recharge zone mapping, delineation of 

hydrogeomorphic features, and improved 

understanding of surface–groundwater interactions. 

Alongside remote sensing, GIS has become a central 

platform for groundwater resource assessment. GIS-

based multi-criteria decision analysis (MCDA) 

methods have been widely employed to delineate 

groundwater potential zones by integrating thematic 

layers such as rainfall, slope, lithology, land use, and 

soil. Studies employing frequency ratio, certainty 

factor, and weights-of-evidence approaches have 

demonstrated the utility of GIS for groundwater 

exploration and management at watershed and basin 

scales. More recently, the incorporation of machine 

learning algorithms—such as random forests, boosted 

regression trees, and artificial neural networks—has 
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further enhanced predictive accuracy and reduced 

subjectivity in groundwater potential mapping. 

The integration of RS and GIS with physically based 

hydrological models has also broadened the scope of 

groundwater research. By combining satellite-derived 

precipitation, evapotranspiration, and terrestrial water 

storage datasets with groundwater flow models, 

researchers have been able to improve model 

calibration, validation, and forecasting capabilities. 

Such hybrid approaches are particularly useful in data-

scarce regions, where traditional observations are 

inadequate for capturing the dynamics of complex 

aquifer systems. 

The trajectory of research up to 2021 reveals distinct 

phases of development. During the early 2000s, the 

focus was primarily on large-scale monitoring of water 

storage using GRACE and on the development of GIS-

based groundwater mapping techniques. Between 

2006 and 2010, InSAR and LiDAR applications 

expanded, providing higher spatial detail for aquifer 

monitoring and recharge studies. From 2010 to 2016, 

the emergence of SMAP and the refinement of GIS-

MCDA approaches broadened the scope of 

groundwater monitoring. The period from 2016 to 

2021 was marked by the increasing integration of 

machine learning, data fusion, and UAV-based 

surveys, signaling a shift toward more sophisticated, 

multi-sensor approaches. 

Despite these advancements, several challenges 

remain unresolved. GRACE’s coarse spatial 

resolution limits its direct applicability for local 

aquifer management, while InSAR requires careful 

correction for atmospheric and vegetation effects. 

Machine learning models often suffer from a lack of 

robust training datasets, which restricts their 

generalizability.  

Moreover, while RS and GIS have made substantial 

contributions to scientific knowledge, their uptake in 

policy and groundwater governance frameworks has 

been limited. This disconnect between science and 

practice remains a critical barrier to achieving 

sustainable groundwater management. 

The objective of this review is to synthesize the 

advancements in RS and GIS for groundwater and 

water resource monitoring up to 2021, highlighting 

key satellite missions, analytical methods, and 

applications. By categorizing the contributions of 

GRACE, SMAP, InSAR, LiDAR, GIS-MCDA, and 

machine learning, this paper provides a 

comprehensive overview of the state of the field. 

Furthermore, it identifies existing challenges, 

methodological gaps, and opportunities for future 

research, with particular emphasis on data integration, 

resolution enhancement, and the need for operational 

linkages between scientific tools and water 

management policies. Ultimately, this review 

underscores the transformative role of RS and GIS in 

reshaping groundwater science, while calling for 

further innovation to ensure the sustainable 

management of one of the world’s most vital natural 

resources. 

II. LITERATURE REVIEW 

2.1 Satellite Gravimetry (GRACE) for Groundwater 

Storage 

The Gravity Recovery and Climate Experiment 

(GRACE), launched in 2002, marked a paradigm shift 

in groundwater research by enabling global 

monitoring of terrestrial water storage changes. 

GRACE detects tiny variations in Earth’s gravity field 

caused by the redistribution of mass, which includes 

groundwater storage. Rodell et al. (2009) 

demonstrated the utility of GRACE by quantifying 

groundwater depletion in northern India, where 

agricultural withdrawals were causing declines 

exceeding 54 km³ per year. Famiglietti et al. (2011) 

reported similar depletion in California’s Central 

Valley, underscoring the method’s ability to capture 

regional-scale aquifer stress. Subsequent studies 

extended GRACE applications to the Middle East, 

North China Plain, and Africa, where it revealed 

alarming depletion trends often undetectable by sparse 

in-situ networks. 

Despite its transformative role, GRACE is limited by 

its coarse resolution (∼300–400 km), making it 

unsuitable for local management applications without 

additional downscaling. Researchers have attempted 

to overcome this limitation by integrating GRACE 

with land surface models such as GLDAS, PCR-

GLOBWB, and CLM, which help partition surface 

and subsurface contributions to water storage changes. 

By 2021, GRACE had established itself as the primary 

tool for large-scale groundwater monitoring, and the 

follow-on GRACE-FO mission, launched in 2018, 

continued this legacy with improved instrumentation. 

2.2 Microwave and Soil Moisture Missions (SMAP, 

Passive Sensors) 
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Microwave remote sensing has been instrumental in 

monitoring soil moisture, a key variable influencing 

recharge and surface–subsurface water interactions. 

The Soil Moisture Active Passive (SMAP) mission, 

launched in 2015, provided global soil moisture data 

at high temporal resolution. SMAP’s passive 

radiometer measures surface soil moisture to a depth 

of 5 cm, and its datasets have been widely used to 

estimate infiltration and recharge. For instance, studies 

in semi-arid Africa employed SMAP data to improve 

recharge modeling under variable rainfall regimes, 

while researchers in South Asia integrated SMAP with 

GIS to assess drought vulnerability and groundwater 

dependence. 

Other passive microwave missions, such as AMSR-E 

and SMOS, laid the foundation for SMAP by 

providing earlier soil moisture datasets. These 

missions demonstrated that soil moisture variability 

could be correlated with groundwater recharge rates, 

especially in regions with shallow water tables. By 

combining SMAP with evapotranspiration and 

precipitation datasets, researchers have advanced our 

understanding of hydrological fluxes and their 

connection to groundwater sustainability. However, 

SMAP is limited to surface soil moisture, requiring 

data assimilation techniques to infer deeper soil and 

aquifer interactions. 

2.3 Interferometric Synthetic Aperture Radar (InSAR) 

for Subsidence Monitoring 

Interferometric Synthetic Aperture Radar (InSAR) has 

emerged as a critical tool for monitoring land 

subsidence caused by groundwater extraction. By 

comparing radar signals from successive satellite 

passes, InSAR can detect ground deformation with 

millimeter-scale accuracy. This capability has been 

applied extensively in groundwater-stressed basins. In 

Mexico City, InSAR revealed subsidence exceeding 

300 mm per year, attributed to aquifer compaction 

from long-term over-extraction. Similar results were 

observed in Jakarta, where subsidence due to pumping 

posed significant risks to infrastructure and flood 

management. 

InSAR applications in California’s Central Valley 

demonstrated how groundwater depletion led to 

subsidence that damaged canals and reduced 

conveyance capacity. In the North China Plain, Chen 

et al. (2016) used InSAR to map subsidence hotspots, 

directly linking them to agricultural pumping. The key 

advantage of InSAR lies in its spatially detailed 

monitoring over large areas, complementing the 

coarse-scale storage trends from GRACE. However, 

atmospheric delays, vegetation cover, and 

decorrelation effects remain significant challenges. By 

2021, advances in Persistent Scatterer InSAR (PS-

InSAR) and Small Baseline Subset (SBAS) techniques 

had improved accuracy and temporal consistency, 

making InSAR indispensable for aquifer deformation 

studies. 

2.4 LiDAR and High-Resolution DEMs for Recharge 

Mapping 

Light Detection and Ranging (LiDAR) provides high-

resolution digital elevation models (DEMs) that are 

invaluable for groundwater recharge mapping. By 

capturing fine-scale topographic details, LiDAR 

allows the delineation of micro-watersheds, 

lineaments, fractures, and depressions that influence 

recharge processes. For instance, LiDAR-derived 

DEMs in the United States have been used to identify 

karst sinkholes and ephemeral streambeds, which 

serve as key recharge zones.  

In India, LiDAR mapping has supported watershed 

management by improving the accuracy of drainage 

and slope characterization, both critical for recharge 

estimation. Unlike traditional topographic surveys, 

LiDAR offers unprecedented precision, enabling the 

identification of subtle geomorphic features often 

missed by coarse DEMs such as SRTM or ASTER. 

Studies integrating LiDAR with GIS have shown 

improved delineation of recharge potential zones, 

especially in rugged terrains where conventional 

datasets perform poorly. Although its application is 

less widespread compared to GRACE or InSAR due 

to high data acquisition costs, LiDAR remains a 

powerful tool for site-specific groundwater studies and 

infrastructure planning. 

2.5 GIS and Multi-Criteria Decision Analysis 

(MCDA) 

GIS serves as the backbone of groundwater potential 

mapping by integrating remote sensing datasets with 

ancillary information such as geology, soil, rainfall, 

and land use. Multi-criteria decision analysis (MCDA) 

techniques—such as the Analytic Hierarchy Process 

(AHP), frequency ratio, and weights-of-evidence—

have been widely employed to generate groundwater 

potential maps. For example, Magesh et al. (2012) 
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used frequency ratio models in Tamil Nadu, India, to 

delineate groundwater potential zones with high 

accuracy, validated using well yield data. Similar 

studies in Africa and the Middle East demonstrated the 

robustness of GIS-based MCDA in data-scarce 

regions. 

However, traditional MCDA approaches involve 

subjectivity in assigning weights to parameters, which 

may introduce uncertainty. To address this, 

researchers increasingly turned to machine learning 

algorithms such as random forests, boosted regression 

trees, and artificial neural networks after 2015. These 

approaches reduced subjectivity by allowing the data 

to determine variable importance. Comparative 

studies showed that machine learning models 

outperformed conventional MCDA, providing more 

accurate predictions of groundwater potential zones. 

By 2021, GIS-based modeling had evolved into a 

hybrid approach that combined RS datasets, MCDA, 

and machine learning, significantly advancing 

groundwater resource assessment. 

2.6 Integration of RS, GIS, and Hydrological Models 

One of the most important trends leading up to 2021 

was the integration of RS and GIS datasets with 

hydrological and groundwater flow models. GRACE-

derived storage anomalies were increasingly used to 

calibrate and validate large-scale models such as PCR-

GLOBWB and MODFLOW, while SMAP soil 

moisture data improved infiltration and recharge 

simulations. These hybrid approaches provided more 

reliable predictions in regions where observational 

data were sparse. 

For instance, studies in Africa and South Asia 

combined GRACE, SMAP, and precipitation datasets 

with groundwater flow models to assess long-term 

sustainability under climate variability. Similarly, in 

North America and Europe, integrated RS-GIS-

modeling frameworks were used to project 

groundwater availability under future land use and 

climate scenarios. The integration of machine learning 

into these hybrid systems further enhanced predictive 

accuracy, particularly for nonlinear and complex 

aquifer dynamics. 

Despite these advances, challenges persisted, 

including scale mismatches between RS products and 

local hydrogeological models, uncertainties in data 

assimilation, and limited availability of validation 

datasets. Nonetheless, the integration of RS, GIS, and 

modeling has become a cornerstone of modern 

groundwater science, bridging the gap between 

observation and prediction. 

III. METHODOLOGICAL APPROACHES 

3.1 Satellite Gravimetry (GRACE/GRACE-FO): 

Groundwater Storage Anomaly Detection at Regional 

to Continental Scales 

The GRACE mission (2002–2017) and GRACE-FO 

(2018–) enabled monitoring of groundwater storage 

anomalies at unprecedented scales. Researchers 

extracted terrestrial water storage changes from 

gravity variations and then removed contributions 

from soil moisture and surface water using land 

surface models (e.g., GLDAS, PCR-GLOBWB) to 

isolate groundwater components. 

Rodell et al. (2009) pioneered this approach in 

northern India, quantifying depletion rates of ~4 cm/yr 

equivalent water thickness due to irrigation. 

Famiglietti et al. (2011) applied GRACE in 

California’s Central Valley, showing consistent long-

term declines during drought. Long et al. (2013) 

combined GRACE with in situ wells in China’s North 

China Plain, improving spatial accuracy. Scanlon et al. 

(2012) validated GRACE with hydrological models in 

Texas, demonstrating its utility for water management. 

By 2021, GRACE-based methodologies had been 

widely adopted across Asia, Africa, and North 

America for trend analysis of storage losses. 

While coarse resolution (∼300–400 km) remains a 

limitation, techniques such as mascon solutions (Save 

et al., 2016) and data assimilation into models 

(Zaitchik et al., 2008) enhanced local relevance. 

3.2 Microwave Remote Sensing (SMAP/Passive 

Sensors): Soil Moisture, Evapotranspiration, and 

Recharge Estimation 

Passive microwave sensors such as SMOS (2009) and 

SMAP (2015) provide global soil moisture products. 

Methodologically, researchers converted microwave 

brightness temperatures into volumetric soil moisture 

using radiative transfer models, then assimilated these 

into hydrological models for recharge estimates. 

Entekhabi et al. (2010) demonstrated how SMAP 

retrievals improved drought monitoring. Liu et al. 

(2012) integrated AMSR-E soil moisture with MODIS 

ET data in the Yellow River Basin to estimate recharge 

variability. Mladenova et al. (2014) showed how soil 

moisture products could detect agricultural drought 
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impacts. More recently, Koster et al. (2018) combined 

SMAP soil moisture with precipitation datasets to 

constrain recharge dynamics globally. 

These studies show that microwave-based soil 

moisture datasets are especially valuable in regions 

with limited field observations, although they remain 

restricted to surface soil layers. Researchers 

commonly addressed this limitation by coupling 

SMAP with hydrological models (Reichle et al., 2017) 

or downscaling methods. 

3.3 InSAR (Radar): Land Deformation and Aquifer 

Compaction Monitoring 

InSAR methodologies involve generating 

interferograms from SAR images, unwrapping phase 

data, and correcting for atmospheric delays to measure 

ground deformation linked to aquifer compaction. 

Amelung et al. (1999) used ERS SAR data to measure 

subsidence in Las Vegas from groundwater 

withdrawal. Bawden et al. (2001) mapped subsidence 

in California’s Santa Clara Valley. Later, Chaussard et 

al. (2014) used ALOS data to identify groundwater-

induced subsidence in Jakarta. Farr et al. (2015) 

demonstrated InSAR’s value in California’s Central 

Valley, where subsidence damaged irrigation 

infrastructure. Chen et al. (2016) applied SBAS-

InSAR in the North China Plain, correlating land 

deformation with aquifer pumping. 

Methodologically, Persistent Scatterer (PS-InSAR) 

and SBAS techniques became standard tools for 

improving temporal coherence and reducing 

atmospheric errors (Hooper et al., 2004). By 2021, 

InSAR was established as the primary tool for high-

resolution mapping of aquifer compaction and its 

consequences. 

3.4 LiDAR/DEM: Recharge Zone Delineation and 

Hydrogeomorphic Mapping 

LiDAR technology produces high-resolution DEMs, 

which researchers used to delineate recharge areas and 

hydrogeomorphic features controlling infiltration. 

Jenson and Domingue (1988) first introduced DEM-

based hydrological modeling, which later became 

foundational. Murphy et al. (2008) used LiDAR 

DEMs in Florida to delineate karst depressions critical 

for recharge. James et al. (2012) applied LiDAR in the 

Sierra Nevada to study watershed topography 

influencing infiltration. In India, Jayakumar and 

Arockiasamy (2003) used DEM-based morphometric 

analysis to delineate groundwater potential zones in 

hard-rock terrains. 

Researchers applied hydrological indices such as the 

Topographic Wetness Index (TWI) and slope–

drainage analysis within GIS to identify recharge-

prone areas (Moore et al., 1991). Despite high 

acquisition costs, LiDAR and DEM methods provided 

unmatched detail for site-specific groundwater 

assessments. 

3.5. GIS-based MCDA & Machine Learning: 

Groundwater Potential Mapping and Predictive 

Modeling 

GIS served as the integration platform for multi-

thematic datasets. In MCDA, layers such as geology, 

slope, land use, rainfall, soil, and lineaments were 

weighted and combined to delineate potential zones. 

Sener et al. (2005) applied AHP-based MCDA in 

Turkey, validating results with well yield data. Jha et 

al. (2007) demonstrated GIS-MCDA in India’s hard-

rock terrains. Magesh et al. (2012) refined these 

methods with frequency ratio models in Tamil Nadu. 

Machiwal et al. (2011) extended GIS-based modeling 

with certainty factor techniques. 

After 2015, researchers increasingly shifted to 

machine learning. Lee et al. (2014) applied random 

forest for groundwater mapping in Korea. Naghibi et 

al. (2017) tested multiple ML algorithms in Iran, 

finding ensemble models improved predictive 

accuracy. Chen et al. (2018) combined SVM and 

logistic regression with RS datasets for groundwater 

potential mapping in China. 

By 2021, GIS-ML hybrid methods outperformed 

traditional MCDA, reducing subjectivity in weight 

assignment and increasing reproducibility. 
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Fig 1 Conceptual framework illustrating how remote sensing and GIS tools contribute to groundwater monitoring 

across different spatial and temporal scales 

 

3.6 Hybrid Approaches: Integration of RS Data with 

Physically-Based and Statistical Models for Improved 

Groundwater Forecasting 

Hybrid methodologies combine RS-derived datasets 

with hydrological or groundwater flow models. 

GRACE data were assimilated into global 

hydrological models (e.g., PCR-GLOBWB, WGHM) 

to constrain water balance estimates (Döll et al., 2014). 

SMAP soil moisture products were incorporated into 

land surface models for recharge forecasting (Reichle 

et al., 2017). 

Rodell et al. (2015) integrated GRACE with the 

Catchment Land Surface Model (CLSM) to improve 

groundwater estimates in the U.S. Scanlon et al. 

(2018) combined GRACE with water budget 

modeling to assess global aquifer stress. InSAR-

derived subsidence data were integrated into aquifer 

compaction models in Mexico and California (Ojha et 

al., 2019). 

Machine learning was also embedded in hybrid 

approaches. For example, Sun et al. (2016) coupled RS 

datasets with neural networks to forecast groundwater 

fluctuations in China. By 2021, hybrid frameworks 

had emerged as the most advanced methodologies, 

bridging large-scale satellite datasets with local-scale 

hydrological models. 

IV. DISCUSSION AND COMPARATIVE 

INSIGHTS 

The methodological approaches reviewed above 

demonstrate how remote sensing (RS) and GIS 

techniques have progressively evolved to monitor 

groundwater and water resources more 

comprehensively. By comparing insights from the 

references, several key themes emerge: (i) the scale of 

monitoring, (ii) accuracy and validation, (iii) 

integration of datasets, and (iv) emerging shifts toward 

hybrid and machine learning–driven frameworks. 

4.1 Scale of Monitoring: Global vs. Local Perspectives 

A central comparative insight is that different 

methodologies operate effectively at different spatial 

and temporal scales. 

• Satellite Gravimetry (GRACE/GRACE-FO): 

Studies such as Rodell et al. (2009) in northern 

India and Famiglietti et al. (2011) in California 

demonstrated GRACE’s unparalleled ability to 

quantify groundwater depletion at basin to 

continental scales. Scanlon et al. (2012, 2018) 

highlighted how GRACE captured long-term 

aquifer stress across global hotspots, including the 

Middle East and Asia. However, Long et al. 

(2013) found that GRACE’s coarse resolution 
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(~300 km) limited its local applicability without 

downscaling. 

• Microwave Remote Sensing (SMAP, SMOS, 

AMSR-E): Liu et al. (2012) and Koster et al. 

(2018) demonstrated that passive microwave 

sensors excel at regional-scale soil moisture and 

recharge monitoring. Yet, these methods only 

capture shallow soil water (top few centimeters), 

requiring assimilation into hydrological models 

for groundwater insights. 

• InSAR: In contrast, InSAR techniques (Amelung 

et al., 1999; Chaussard et al., 2014; Chen et al., 

2016) are ideally suited for local to regional 

scales, detecting subsidence hotspots with 

centimeter accuracy. For example, Farr et al. 

(2015) in California and Ojha et al. (2019) in 

Mexico showed that InSAR revealed highly 

localized compaction zones invisible to GRACE. 

• LiDAR/DEM Approaches: As demonstrated by 

Murphy et al. (2008) and James et al. (2012), 

LiDAR is most effective for site-specific studies, 

delineating recharge pathways in karst or 

fractured terrains. 

• GIS-MCDA and Machine Learning: Studies like 

Jha et al. (2007), Magesh et al. (2012), and 

Naghibi et al. (2017) showed that GIS-ML models 

bridge local and regional scales, with predictive 

maps validated against well data. 

This comparative evidence underscores that no single 

method suffices across all scales. Instead, GRACE is 

best for large basins, InSAR for localized deformation, 

and LiDAR/DEM for detailed recharge studies, with 

GIS-MCDA and ML approaches providing adaptable 

mapping across scales. 

4.2 Accuracy, Validation, and Limitations 

Accuracy and validation emerged as recurring 

concerns across the reviewed methodologies. 

• GRACE: While GRACE captured broad 

groundwater trends, its accuracy depended 

heavily on subtraction of soil moisture and 

surface water contributions. Long et al. (2013) 

showed improvements when GRACE was 

validated against in situ wells in China. Save et al. 

(2016) enhanced signal localization with mascon 

solutions, but coarse resolution remained a 

limiting factor. 

• SMAP and Passive Sensors: SMAP soil moisture 

retrievals (Entekhabi et al., 2010; Reichle et al., 

2017) required extensive calibration with in situ 

probes. Liu et al. (2012) found improved recharge 

estimation when SMAP was combined with 

MODIS evapotranspiration data. However, 

shallow measurement depth limited direct 

groundwater applications. 

• InSAR: InSAR was praised for high spatial 

accuracy, but atmospheric noise and decorrelation 

in vegetated areas reduced reliability (Hooper et 

al., 2004). Chen et al. (2016) demonstrated the 

utility of SBAS-InSAR in reducing such errors, 

while Chaussard et al. (2014) validated results 

against piezometric data in Jakarta. 

• LiDAR: DEM-based methods were highly 

accurate for terrain mapping, but Murphy et al. 

(2008) highlighted data acquisition costs as 

barriers. Moreover, DEM-based hydrological 

indices often required ground validation. 

• GIS-MCDA: Traditional MCDA approaches 

(Sener et al., 2005; Jha et al., 2007) faced criticism 

for subjectivity in assigning weights. Validation 

with well yield data often revealed mismatches. 

Machine learning approaches (Naghibi et al., 

2017; Chen et al., 2018) improved predictive 

accuracy but raised concerns about data 

dependency and overfitting. 

Collectively, these references show that validation 

with field data remains critical. RS and GIS tools 

provide scalable insights, but their outputs must be 

corroborated with ground-based monitoring to ensure 

reliability. 

4.3 Integration and Synergy Across Methods 

An important trend across the literature was the 

increasing integration of multiple methods to 

overcome individual limitations. 

• GRACE + Hydrological Models: Scanlon et al. 

(2012, 2018) and Rodell et al. (2015) 

demonstrated that coupling GRACE with land 

surface or groundwater models improved storage 

estimates and water balance closure. 

• SMAP + Hydrological Models: Reichle et al. 

(2017) showed that assimilating SMAP into land 

surface models improved recharge forecasts. 

• InSAR + Pumping Data: Chen et al. (2016) and 

Ojha et al. (2019) demonstrated how InSAR 

subsidence maps, when combined with pumping 

records, yielded insights into aquifer compaction 

mechanisms. 
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• LiDAR + GIS-MCDA: Murphy et al. (2008) 

combined LiDAR with GIS-based 

hydrogeomorphic mapping to delineate recharge 

zones more accurately than traditional DEMs. 

• GIS + Machine Learning: Naghibi et al. (2017) 

and Chen et al. (2018) showed how RS-derived 

indices (NDVI, NDWI, slope, rainfall) could be 

integrated with ML models to generate robust 

groundwater potential maps. 

The comparative evidence points toward a synergistic 

approach where different RS/GIS techniques 

complement one another. Large-scale GRACE signals 

provide a regional overview, while InSAR and LiDAR 

deliver local detail, and GIS-ML frameworks integrate 

diverse datasets for predictive mapping. 

4.4 Emerging Shifts Toward Machine Learning and 

Hybrid Approaches 

A final comparative insight is the shift from traditional 

MCDA to machine learning and hybrid RS–model 

approaches after 2015. 

• Early works (Sener et al., 2005; Jha et al., 2007) 

relied on weighted overlay in GIS. 

• Later, ensemble machine learning models 

(Naghibi et al., 2017; Lee et al., 2014) 

significantly outperformed traditional methods in 

predictive accuracy. 

• Hybrid approaches (Rodell et al., 2015; Scanlon 

et al., 2018; Sun et al., 2016) integrated RS 

datasets (GRACE, SMAP, InSAR) with 

physically based models (MODFLOW, SWAT), 

often with data assimilation or machine learning 

components. 

This methodological evolution reflects the broader 

research trend: from single-sensor, standalone 

approaches to integrated, data-driven frameworks. By 

2021, the literature had firmly established hybrid RS–

GIS–ML methodologies as the most promising avenue 

for groundwater monitoring. 

4.5 Regional Insights from the References 

The reviewed studies also highlight regional 

differences in how methodologies were applied: 

• South Asia (India, China): Heavy reliance on 

GRACE (Rodell et al., 2009; Long et al., 2013) 

for large-scale depletion monitoring, 

complemented by GIS-MCDA mapping (Jha et 

al., 2007; Magesh et al., 2012). 

• North America (California, Texas): Integration of 

GRACE (Famiglietti et al., 2011), InSAR (Farr et 

al., 2015), and hybrid hydrological modeling 

(Scanlon et al., 2012). 

• Middle East and Africa: GIS-based MCDA and 

ML methods (Naghibi et al., 2017) were 

predominant due to limited field data. 

• Southeast Asia: InSAR studies (Chaussard et al., 

2014) were key for subsidence mapping in urban 

megacities like Jakarta. 

V. RESEARCH GAPS AND FUTURE 

DIRECTIONS 

5.1 Resolution Limitations of Satellite Missions 

Despite the transformative contributions of satellite 

gravimetry, spatial resolution remains a major 

limitation. GRACE and GRACE-FO provide reliable 

signals of terrestrial water storage anomalies at basin 

to continental scales, but their footprint (~300–400 

km) corresponds to areas exceeding 100,000 km². 

Rodell et al. (2009) and Famiglietti et al. (2011) both 

emphasized that while GRACE captured large-scale 

depletion in northern India and California, it could not 

resolve aquifer variations at local or sub-basin levels. 

Long et al. (2013) highlighted that coarse resolution 

often masks heterogeneity in heavily exploited 

aquifers such as the North China Plain. Although 

mascon solutions (Save et al., 2016) and downscaling 

strategies improved localization, the inability to 

support operational water management at community 

or watershed scales remains a persistent research gap. 

5.2 Data Integration and Multi-Source Fusion 

Another significant gap is the limited integration of 

diverse datasets. Many studies rely on a single 

method—such as GRACE (Scanlon et al., 2012), 

InSAR (Chaussard et al., 2014; Chen et al., 2016), or 

GIS-MCDA (Jha et al., 2007)—without 

systematically combining multiple sensors, ground 

observations, and hydrological models. Hybrid studies 

(Rodell et al., 2015; Scanlon et al., 2018) 

demonstrated that integrating GRACE anomalies with 

physically based models reduces uncertainty, while 

Reichle et al. (2017) showed the value of assimilating 

SMAP data for recharge estimates. Yet, cross-

platform integration remains underdeveloped, 

particularly in data-scarce regions. Future research 

must focus on developing robust frameworks for 
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multi-sensor fusion, bridging large-scale satellite 

observations with high-resolution local datasets. 

5.3 Uncertainty in Machine Learning Applications 

The growing use of machine learning (ML) in 

groundwater mapping has improved predictive 

capability, but uncertainty and validation challenges 

remain. Traditional MCDA studies (Sener et al., 2005; 

Magesh et al., 2012) faced subjectivity in assigning 

weights, leading to the adoption of ML techniques 

such as random forests and support vector machines 

(Lee et al., 2014; Naghibi et al., 2017). However, these 

studies often relied on limited well yield datasets for 

validation, which restricts reproducibility and 

transferability. Chen et al. (2018) noted that overfitting 

was a concern when training ML models with small 

datasets. Moreover, the absence of standardized 

protocols for performance evaluation across different 

hydrogeological settings means that ML-driven 

predictions remain highly context-specific. Future 

research should prioritize the development of 

uncertainty quantification methods and expanded 

validation datasets to ensure robustness. 

5.4 Weak Policy Linkages and Decision-Making Gaps 

While RS-GIS methodologies have advanced 

considerably, their translation into policy and 

governance frameworks has lagged behind. For 

example, GRACE-based studies (Rodell et al., 2009; 

Scanlon et al., 2018) provided compelling evidence of 

unsustainable withdrawals, but adoption into water 

allocation policies has been slow. InSAR research 

(Farr et al., 2015) documented subsidence threatening 

irrigation infrastructure, yet mitigation strategies often 

remained reactive rather than preventive. GIS-MCDA 

and ML-based potential maps (Jha et al., 2007; 

Naghibi et al., 2017) were mostly used in academic 

settings, with limited uptake by water authorities. This 

disconnect reflects a broader research gap in bridging 

the science–policy divide. Future studies must 

emphasize actionable outputs, participatory 

frameworks, and integration of RS-GIS insights into 

water governance systems. 

5.5 Emerging Tools and the Role of UAV-Based 

Mapping 

Finally, while satellites provide global and regional 

perspectives, and ground networks offer point data, a 

gap persists at the intermediate (local to watershed) 

scale. Emerging tools such as unmanned aerial 

vehicles (UAVs) offer a promising solution. 

Lendzioch et al. (2021) demonstrated UAV 

photogrammetry for snow depth monitoring in alpine 

catchments, illustrating the capacity to collect high-

resolution spatial data at relatively low cost. This 

approach could be adapted for groundwater recharge 

zone mapping, evapotranspiration estimation, and 

water balance studies at local scales. UAV-based 

LiDAR and hyperspectral imaging may bridge the 

resolution gap between satellite products and in situ 

measurements, offering site-specific insights to 

complement large-scale observations. However, UAV 

applications in groundwater research remain 

underexplored up to 2021, representing a fertile 

avenue for future work. 

5.6 Synthesis of Research Gaps 

From the reviewed literature, five critical gaps stand 

out: 

1. Resolution constraints: GRACE provides 

unmatched basin-scale insights but is inadequate 

for operational management at watershed scales. 

2. Data integration: Multi-sensor fusion remains 

limited despite clear evidence that integration 

improves accuracy. 

3. Machine learning uncertainty: Validation datasets 

are often too small or localized, leading to 

overfitting and limited generalizability. 

4. Policy translation: Scientific advances are not 

consistently informing decision-making 

processes or groundwater governance 

frameworks. 

5. Emerging tools: UAV-based systems, while 

promising, have yet to be mainstreamed into 

groundwater and water resource monitoring. 

5.7 Future Directions 

Future research should prioritize: 

• Downscaling methods to enhance the local 

applicability of GRACE and other coarse-

resolution datasets. 

• Standardized frameworks for data fusion, 

combining GRACE, SMAP, InSAR, LiDAR, and 

ground data. 

• Uncertainty quantification protocols in machine 

learning to ensure reproducibility. 

• Action-oriented studies that directly link RS-GIS 

results with policy and management strategies. 
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• Exploration of UAV-based technologies for 

bridging spatial scale gaps and providing high-

frequency monitoring. 

VI. RESEARCH GAPS AND FUTURE 

DIRECTIONS 

 

Groundwater and surface water monitoring have 

undergone a paradigm shift with the increasing 

adoption of remote sensing (RS) and geographic 

information systems (GIS) up to 2021. The reviewed 

literature demonstrates that these technologies have 

progressively enhanced our ability to assess aquifer 

storage, monitor subsidence, delineate recharge zones, 

and map groundwater potential across a range of 

spatial and temporal scales. Satellite gravimetry, 

particularly the GRACE and GRACE-FO missions, 

has proven indispensable for identifying large-scale 

storage changes in stressed aquifers such as those in 

northern India, the Central Valley of California, and 

the North China Plain (Rodell et al., 2009; Famiglietti 

et al., 2011; Long et al., 2013). Complementary 

datasets such as SMAP soil moisture products have 

further advanced the estimation of recharge and 

evapotranspiration (Reichle et al., 2017), while optical 

indices like NDWI have been used to monitor 

irrigation and vegetation water stress. In parallel, 

radar-based techniques such as InSAR have provided 

fine-scale insights into aquifer compaction and land 

subsidence in regions including Mexico, Iran, and 

California (Chaussard et al., 2014; Chen et al., 2016), 

bridging a critical gap between large-scale gravimetric 

monitoring and local-scale hydrogeological 

observations. 

At finer resolutions, LiDAR-derived DEMs and high-

resolution geomorphological datasets have played a 

crucial role in delineating recharge zones and 

groundwater-surface water interactions (Corsi et al., 

2010). GIS-based multi-criteria decision analysis 

(MCDA) emerged as a widely applied tool for 

groundwater potential mapping (Jha et al., 2007; 

Magesh et al., 2012), while the integration of machine 

learning models such as random forests and support 

vector machines (Lee et al., 2014; Naghibi et al., 2017) 

demonstrated improved predictive capability over 

conventional weighted overlay methods. Importantly, 

hybrid approaches that coupled RS and GIS with 

physically based hydrological models (Scanlon et al., 

2012; Rodell et al., 2015) showed significant promise 

in reducing uncertainties and supporting long-term 

water balance assessments. 

Despite these advancements, critical challenges 

persist. The coarse resolution of GRACE limits its 

applicability for local water governance, while InSAR 

is sensitive to atmospheric disturbances. Machine 

learning applications often lack robust validation 

datasets, and their outputs remain highly site-specific. 

Moreover, a consistent gap exists in the translation of 

RS-GIS findings into actionable water management 

policies (Scanlon et al., 2018). Looking ahead, multi-

sensor data fusion, UAV-based mapping (Lendzioch 

et al., 2021), and downscaling techniques are poised to 

bridge spatial and temporal gaps, while closer 

integration of scientific outputs with governance 

frameworks will be essential for ensuring 

sustainability. Overall, RS and GIS have transformed 

groundwater science up to 2021, offering powerful 

multi-scale tools, but future efforts must focus on 

integration, validation, and policy relevance to meet 

the challenges of water security. 
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