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Abstract— This paper presents a novel framework that 

integrates eigenvalue sensitivity analysis with machine 

learning (ML) techniques to enhance the stability of 

power systems experiencing high photovoltaic (PV) 

penetration. The study focuses on the IEEE 9-bus test 

system, where one synchronous generator is replaced 

with an 85 MW PV inverter at Bus 3. The proposed 

methodology first linearizes the system under varying 

operating conditions to evaluate oscillatory modes and 

their sensitivities with respect to PV output and inverter 

control parameters such as phase-locked loop (PLL) and 

Q–V droop gains. Subsequently, a supervised ML 

surrogate model is trained to predict the critical mode’s 

damping ratio and frequency in real time, thereby 

enabling rapid control adjustments without requiring 

repeated online linearization. Results indicate that the 

introduction of PV generation reduces damping from 

6.5% to 3.2% as penetration rises to 85 MW. Sensitivity 

analysis reveals that increasing Q–V droop and PLL 

gains effectively shifts eigenvalues toward stability. 

When applied in conjunction with ML prediction, 

damping margins can be restored to nearly 8%, with 

prediction errors below 0.2 percentage points. These 

findings highlight the potential of combining analytical 

and data-driven approaches for maintaining small-signal 

stability in PV-rich networks. 
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I. INTRODUCTION 

The rapid deployment of photovoltaic (PV) generation 

into modern power networks has fundamentally 

altered the dynamic behavior of transmission systems. 

While PV plants provide clean and abundant energy, 

they do not inherently contribute to rotational inertia 

in the way synchronous machines do. As conventional 

units are displaced, the system’s ability to damp 

oscillations diminishes, leading to a higher risk of 

small-signal instability. Furthermore, inverter-based 

resources are governed by fast electronic controllers 

such as phase-locked loops (PLLs) and Q–V droop 

regulators, which directly interact with 

electromechanical oscillatory modes. 

Traditional approaches for small-signal stability 

assessment rely on eigenvalue analysis of the 

linearized system model. While accurate, this process 

is computationally intensive and impractical for real-

time operation. Sensitivity analysis partially alleviates 

this by identifying the parameters most effective in 

improving damping, yet it still depends on repeated 

linearization. Recent advances in machine learning 

(ML) provide a new avenue: surrogate models can 

learn from offline simulations and deliver rapid 

predictions of damping ratios and oscillation 

frequencies directly from operating conditions. 

This work proposes a hybrid methodology that 

integrates eigenvalue sensitivity analysis with ML 

regression. Using the IEEE 9-bus test system, one 

synchronous generator is replaced with a PV plant at 

Bus 3. The objective is to study how PV penetration 

and inverter control gains affect system modes and to 

design an ML surrogate capable of predicting the 

critical mode characteristics in real time. The 

combined framework enables both physical insight 

(through sensitivities) and computational efficiency 

(through ML), offering a practical tool for enhancing 

stability in PV-dominated networks. 

II. LITERATURE REVIEW 

The challenge of maintaining stability in renewable-

rich power networks has been widely discussed in 

recent years. Early studies primarily focused on 
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conventional small-signal eigenvalue analysis, where 

oscillatory modes were identified and stability 

margins were quantified under varying penetration of 

inverter-based resources. For instance, Kundur’s 

classical framework [1] established the mathematical 

foundation for eigenvalue-based assessments. Later, 

researchers extended these techniques to renewable-

dominated grids, emphasizing the importance of 

inverter controls such as PLL and Q–V droop on 

oscillatory damping [2], [3]. 

With the advent of high PV penetration, traditional 

methods have shown limitations in computational 

speed and real-time applicability. Huang et al. [4] 

emphasized that eigenvalue recalculations for each 

operating condition become computationally 

prohibitive in large-scale systems. To overcome this, 

several approaches have attempted to accelerate 

stability analysis, such as Krylov subspace methods 

and reduced-order modelling [5], though these often 

sacrifice accuracy in capturing inverter dynamics. 

In parallel, machine learning (ML) techniques have 

gained attention for power system stability prediction. 

Supervised learning methods, including random 

forests and gradient boosting, have been applied to 

map operating parameters to damping ratios with high 

accuracy [6]. Deep learning architectures, such as 

LSTM networks, have also been proposed to capture 

temporal dependencies in dynamic stability 

assessment [7]. These models, once trained, can 

provide rapid predictions without the need for repeated 

eigenvalue computations, making them suitable for 

online deployment. 

Recent hybrid approaches attempt to combine the 

interpretability of classical analysis with the predictive 

power of ML. Wu et al. [8] demonstrated that 

combining modal sensitivity analysis with regression 

models can yield accurate predictions of oscillatory 

behaviour under uncertain conditions. Similarly, 

Azzouz and DeBusschere [9] applied ML to 

approximate stability margins in PV-rich networks, 

showing that surrogate models can replicate 

eigenvalue trajectories with minimal error. 

Despite these developments, there remains a research 

gap in explicitly coupling eigenvalue sensitivity 

analysis with ML surrogates for online stability 

enhancement. Most existing works either focus solely 

on offline eigenvalue studies or on purely data-driven 

prediction. This paper addresses that gap by proposing 

a hybrid methodology that leverages the mathematical 

rigor of sensitivity analysis to generate datasets for 

ML training, thus combining physical interpretability 

with real-time applicability. 

 

III. METHODOLOGY 

The methodology consists of two main stages: (i) 

eigenvalue sensitivity analysis to quantify the effect of 

PV and control parameters on oscillatory modes, and 

(ii) training a machine learning surrogate to provide 

fast predictions of damping ratio and frequency. 

A. Eigenvalue Sensitivity Analysis 

The system is linearized around steady-state operating 

points to obtain the reduced state-space model:  

x˙=A(θ)x 

where x represents the system states (rotor angles and 

speeds, PLL angle and frequency, inverter reactive 

power control states), and A(θ) is the state matrix 

dependent on the parameter vector θ. The eigenvalues 

of A determine small-signal stability. 

For a parameter p, the sensitivity of eigenvalue λ is: 

𝑑𝜆

𝑑𝑝
=  ( 𝑤ᵀ (

𝑑𝐴

𝑑𝑝
) 𝑣) /  ( 𝑤ᵀ𝑣)  

Where 𝑣  and  𝑤 are the right and left eigenvectors of 

λ. 

The damping ratio ζ and frequency f of a mode λ = σ 

+ jω are given by: 

ζ = -σ / √(σ2 + ω2),   f = ω / (2π) 

This analysis identifies which parameters (PV output, 

PLL proportional gain, Q–V droop gain) most strongly 

influence critical modes. For example, a negative real 

sensitivity indicates that increasing the parameter 

moves the eigenvalue leftward, improving damping. 

B. Machine Learning Surrogate 

To avoid repeated eigenvalue computations, an ML 

regression model is trained on a dataset of simulated 

operating points. The features include PV output level, 

PLL proportional and integral gains, and Q–V droop 

gain. The labels are the critical mode damping ratio 

and frequency obtained from eigenvalue analysis. 

Gradient Boosted Trees are selected for their 

robustness and ability to capture nonlinear 

relationships. The model is trained on 80% of the 

dataset and validated on the remaining 20%. Once 

trained, the ML surrogate can provide near-

instantaneous predictions of stability metrics from 

real-time SCADA or PMU measurements. This 

enables online monitoring and proactive tuning of 

inverter parameters. 
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IV. RESULTS AND DISCUSSION 

The IEEE 9-bus system was simulated with PV 

replacing the generator at Bus 3. PV penetration levels 

of 0 MW, 40 MW, and 85 MW were tested. Default 

inverter parameters were Kp_PLL = 40, Ki_PLL = 

400, and Kq = 2. 

Baseline Results: At zero PV penetration, the critical 

electromechanical mode exhibited a frequency of 1.25 

Hz and a damping ratio of 6.5%, well above the 

planning threshold. As PV output increased to 40 MW, 

damping decreased to 4.6%, with the mode frequency 

shifting to 1.30 Hz. At 85 MW, damping fell to only 

3.2%, indicating a high risk of oscillatory instability. 

 

Table 4.1 Critical mode frequency and damping versus 

PV output  

PV 

Output 

(MW) 

Mode 

Frequency        

f (Hz) 

Real 

Part 

σ 

(1/s) 

Damping 

Ratio ζ 

(%) 

Comment 

0 1.25 -0.51 6.5 Classic EM 

mode; 

comfortable 

margin 

40 1.3 -0.38 4.6 Damping 

erodes as PV 

displaces 

inertia 

85 1.35 -0.25 3.2 Lowest 

margin; close 

to planning 

threshold 

 

 
Figure 4.1 Pole migration in s-plane 

 

Sensitivity Analysis: Eigenvalue sensitivities at 85 

MW revealed that PV power has a negative impact on 

damping, while PLL proportional gain and Q–V droop 

gain both improve stability. Among these, the Q–V 

droop gain had the strongest effect, with a sensitivity 

of approximately +0.014 per unit increase. 

Control Tuning: By increasing Kp_PLL from 40 to 60 

and from Kq 2 to 3, the damping ratio improved from 

3.2% to 7.8%. This shift moved the critical eigenvalue 

further into the left-half plane, restoring a healthy 

stability margin. 

 

Table 4.2 Eigenvalue and damping sensitivities at PV 

= 85 MW  

Parameter p 

(unit) 

Re{dλ/dp

}(1/s·unit⁻

¹) 

Im{dλ/dp

}(1/s·unit⁻

¹) 

dζ/dp (per 

unit⁻¹) 

Comment 

p_PV 

(MW) 

+0.0028 +0.0016 −0.00042 More PV → 

less 

damping, 

slightly 

higher freq 

Kp_PLL (–) −0.0065 −0.0030 +0.00115 Higher PLL 

Kp pulls 

pole left (↑ 

damping) 

Kq (p.u. 

Q/p.u. V) 

−0.085 −0.0025 +0.0140 Strong Q–V 

droop gives 

the largest 

damping 

gain 

 

 
Figure 4.2 Damping ratio vs PV penetration 

 

Machine Learning Predictions: The ML surrogate 

achieved high accuracy, with mean absolute errors of 

0.15 percentage points for damping ratio and 0.05 Hz 

for frequency. The model successfully reproduced the 

trends observed in eigenvalue analysis and generalized 

well to unseen operating points. 
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Table 4.3 ML regression accuracy (5-fold CV on 

synthetic sweep) 
Target MAE RMSE R² 

Damping ratio ζ_crit 

(percentage points) 

0.15 0.28 0.98 

Frequency f_crit (Hz) 0.05 0.08 0.99 

 

 
Figure 4.3 ML parity plot 

 

Discussion: These results demonstrate the 

complementary value of eigenvalue sensitivities and 

ML prediction. Sensitivities provide engineering 

insight into which parameters most influence modes, 

while ML delivers computational speed suitable for 

online applications. Together, they form a robust 

framework for real-time stability monitoring and 

control in PV-rich systems. 

V.  CONCLUSION 

This research demonstrates the combined use of 

eigenvalue sensitivity analysis and machine learning 

for enhancing power system stability under high PV 

penetration. Results on the IEEE 9-bus system show 

that increasing PV generation reduces damping of 

electromechanical modes, but appropriate tuning of 

PLL and Q–V droop gains can restore stability 

margins. The ML surrogate provides fast, accurate 

predictions of critical damping and frequency, 

enabling real-time stability assessment and control. 

Future work will extend this framework to larger test 

systems such as the IEEE 39-bus network and explore 

hardware-in-the-loop validation. 
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