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Abstract - More than half of all aircraft operation 

accidents could have been prevented by executing a go-

around. Making timely decision to execute a go-around 

manoeuvre can potentially reduce overall aviation 

industry accident rate. In this paper, we describe a 

cockpit-deployable machine learning system to support 

flight crew go-around decision-making based on the 

Forecasting of a Harsh landing event. 

This work presents a hybrid approach for Harsh landing 

Forecasting that uses features modelling temporal 

dependencies of aircraft variables as inputs to a neural 

network. It follows that our approach is a cockpit-

deployable recommendation system that outperforms 

existing approach. 

Index Terms: Machine Learning, Forecasting, Harsh 

landing, Hybrid approach, Cockpit-deployable. 

1.INTRODUCTION 

The AeroPilot System Forecasting Technique for 

Harsh Landing Areas is an advanced machine 

learning–based solution designed to enhance aviation 

safety by providing real-time recommendations for 

go-around maneuvers during aircraft landings. Harsh 

Landings (HL) occur when an aircraft experiences 

excessive vertical acceleration upon touchdown, often 

exceeding the manufacturer’s safety thresholds (e.g., 

>2G for Airbus aircraft). Such events can cause 

structural stress, trigger mandatory maintenance 

inspections, and pose safety risks for passengers and 

crew. Traditional Harsh Landing detection and 

forecasting systems are primarily limited to post-flight 

analysis, making them ineffective for real-time 

decision-making in the cockpit. Furthermore, existing 

machine learning and deep learning–based 

approaches, such as Long Short-Term Memory 

(LSTM) networks, have shown promise but remain 

constrained by factors such as limited operational 

altitude ranges, unbalanced datasets, and insufficient 

modeling of temporal dependencies. 

The proposed system addresses these limitations by 

introducing a hybrid forecasting model that leverages 

features modeling temporal dependencies of aircraft 

variables—categorized into physical, actuator, pilot 

operation, and combined types—as inputs to an 

optimized neural network architecture. The system 

processes Flight Management System (FMS) recorded 

data from multiple aircraft models (A319, A320, 

A321) to accurately predict potential HL events well 

before the decision height, thus enabling pilots to 

make informed go-around decisions. 

A key strength of the AeroPilot system lies in its 

exhaustive evaluation on a large-scale dataset of 

58,177 flights, which ensures robustness and 

adaptability across varying operational contexts. By 

integrating hybrid classification and regression 

models, the system achieves high sensitivity (85%) 

and specificity (75%) in detecting HL events—

outperforming traditional LSTM models. It also 

conducts detailed error analysis, altitude range 

optimization, and aircraft type bias assessment, 

ensuring greater reliability in real-time operational 

environments. 

In addition to predictive accuracy, the system’s 

architecture is optimized for cockpit deployment, with 

a lightweight Python and Django-based backend, 

HTML/CSS/JavaScript frontend, and MySQL 

database integration for efficient data storage and 
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retrieval. The AeroPilot system thus offers airlines and 

aviation authorities a practical, scalable, and safety-

enhancing tool that bridges the gap between offline 

flight analytics and real-time decision support 

systems. 

By providing timely, data-driven go-around 

recommendations, the AeroPilot system not only 

minimizes the risk of structural damage and costly 

repairs but also enhances passenger safety, improves 

operational reliability, and reduces the aviation 

industry’s overall accident rates. 

2. LITRATURE REVIEW 

Boeing et al. (1) this expression generally refers to the 

number of accidents per million departures. The basis 

for determining rates is departures (or flight cycles), as 

there is a more robust statistical relationship between 

accidents and departures compared to the number of 

airplanes in operation, the number of accidents and 

flight hours, or the number of accidents and passenger 

or freight miles. As new information and estimation 

techniques become available, aircraft departure data is 

continuously updated and revised. Because these serve 

as the baseline for calculating accident rates, rates may 

differ between this publication's editions. Aircraft 

Collisions When two or more airplanes are involved, 

each event is counted as a separate event.  
European Aviation Safety Agency et al. (2) Before 

beginning the process of programming and 

implementing any such standardized FDM-based 

indicators, it is imperative to verify and comprehend 

the performance of the pertinent aircraft flight 

parameters. A meaningful indicator can only be 

produced by flight parameters that are legitimate, 

accurate, and properly sampled. Furthermore, some of 

the suggested standardized FDM-based indicators 

might not be feasible due to the Not enough sampling 

rate, accuracy, or recording resolution are used to 

capture the necessary flight parameters.  

Federal aviation Administration et al. (3) This report 

details the October 17, 2019, incident at Unalaska 

Airport in Unalaska, Alaska, where a Saab SA2000 

aircraft, operated by Peninsula Aviation Services Inc. 

d.b.a. PenAir flight 3296, overran the end of runway 

13. The runway overrun caused significant damage to 

the aircraft; consequently, of the three 39 passengers 

and crew members were on board, and one passenger 

died and another was seriously injured.  

Michael Coker Pilot et al. (4) More than half of all 

commercial aircraft operation accidents could have 

been prevented by executing a go-around. Making 

timely decision to execute a go-around manoeuvre can 

potentially reduce overall aviation industry accident 

rate. In this paper, we describe a cockpit-deployable 

machine learning system to support flight crew go-

around decision-making based on the prediction of a 

hard landing event.  

Tzvetomir Blajev et al. (5) introduces about 65% of all 

aviation accidents occur during approach and landing, 

making it the most frequent flight phase. An 

investigation by the Flight Safety Foundation of After 

16 years of runway excursions, it was found that 

choosing to go around could have prevented 83% of 

them. Put another way, going around could potentially 

prevent 54% of all accidents. 

Eurocontrol et al. (6) Reports of runway incursions are 

consistent in both number and rate.  

According to the data and reports received, there are 

still at least two runway incursions per year.  day in the 

European region. Accidents continue to take place on 

runways. Findings from those incident and accident 

reports have been used to determine the new 

recommendations and associated guidance materials 

contained in this update to the European Action Plan 

for the Prevention of Runway Incursions (EAPPRI). 

The European Aviation Safety Agency et al. (EASA) 

(7) released its eagerly awaited "Roadmap for 

Artificial Intelligence in Aviation" at the beginning of 

2020. The concept of "trustworthiness" is incorporated 

as a fundamental tenet and a prerequisite for creating 

and implementing AI technologies in earlier European 

initiatives, such as the High-Level Expert Group's 

Ethical Guidelines on Artificial Intelligence (or "AI"). 

This document expands on those efforts. The roadmap 

evaluates the potential ethical, safety, and regulatory 

issues that could come up when AI applications are 

implemented and used in the aviation industry.  

European Union Aviation Safety Agency et al.(8) 

Important features of the EPAS consist of: Strategic 

Priorities: To increase aviation safety, EPAS outlines 

the main areas of concentration. Actions: To mitigate 

hazards and advance safety, the plan outlines 

particular steps. Stakeholder Involvement: To create 

and carry out the plan, EASA works with 

representatives from the industry and member states. 

Topics Covered: EPAS covers a range of topics related 
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to aviation safety, such as research, safety promotion, 

and rulemaking. Alignment: The plan seeks to be in 

line with other pertinent aviation programs and plans. 

 

3. PROPOSED METHOD 

This paper presents an analysis of approaches for early 

Forecastingof Harsh -landing events in flights. Unlike 

previous works, experiments are designed to analyze 

to what extend methods can be deployable in the 

cockpit as go-around recommendation systems. With 

this final goal, we contribute to the following aspects: 

Hybrid model with optimized net architecture. We 

propose a hybrid approach that uses features modeling 

temporal dependencies of aircraft variables as input 

toa neural network with an optimized architecture. In 

order to avoid any bias caused by a lack of 

convergence of complex models (like LSTM), we use 

a standard network and model potential temporal 

dependencies associated with unstable approaches as 

the variability of different types of aircraft variables at 

a selected set of altitudes. The concatenation of such 

variability for variables categorized into 4 main types 

(physical, actuator, pilot operations and all of them) 

are the input features of different architectures in order 

to determine the optimal subset. 

Exhaustive comparison to SoA in a large database of 

flights. A main contribution compared to existing 

works is that our models have been tested and 

compared to SoA methods on a large database of 

Flight Management System (FMS) recorded data of an 

airline no longer in operation that includes 3 different 

aircraft models (A319, A320, A321). Results show 

that the optimal classification network when all 

variable types are considered achieves an average 

recall of HL events of 85% with a specificity of 75% 

in average, which outperforms current LSTM methods 

found in the literature. Regarding regression networks, 

our hybrid model performs similarly to LSMT 

methods with an average MSE of the order of 10􀀀3 in 

accelerations estimated at TD. 

Analysis of the performance of classifiers and 

regressors. With the final goal of developing a cockpit 

deployable recommendation system we have 

conducted a study of the performance of classification 

and regression models in terms of the flight height and 

different aircraft variables including the impact of 

automation and pilot manoeuvres. Results on our large 

dataset of flights, show that although our regression 

networks performs similarly to SoA methods (with 

MSE of 10􀀀3 in estimations at TD), the accuracy for 

detecting HL is very poor (46% of sensitivity). This 

indicates that regression models might not be the most 

appropriate for the detection of HL events in a cockpit 

deployable support system. 

Sources of errors and capability for go-around 

recommendation. Unlike previous approaches, we 

analyze the capability of networks for the detection of 

HL before the decision height, as well as, the influence 

of the operational context. We have also performed an 

analysis of the sources of errors, including selection of 

the best variable type, optimal altitude range used for 

Forecasting, biases due to aircraft type and capability 

of regressors for HL Forecasting. 

 

3.1 PROBLEM STATEMENT 

Despite advancements in aviation safety, harsh 

landings remain a significant cause of aircraft 

incidents, often resulting from delayed or missed 

decisions to execute a go-around maneuver. Pilots 

currently lack effective, real-time forecasting tools to 

accurately predict harsh landing events during critical 

phases of flight. Existing approaches either fail to 

capture the temporal dependencies in flight data or 

lack practical deployment readiness in cockpit 

environments. This gap increases the risk of accidents 

and compromises overall flight safety. Therefore, 

there is a pressing need for a reliable, cockpit-

deployable system that can forecast harsh landings 

early enough to support timely go-around decisions 

and enhance aviation safety. 

3.2 OBJECTIVES 

• To develop a reliable machine learning system to 

forecast harsh landing events in real-time. 

• To Analyze temporal dependencies of aircraft 

flight data to improve prediction accuracy. 

• To Provide early and actionable go-around 

recommendations to flight crews. 

• To Design the system to be deployable and 

practical for cockpit environments. 

• To Enhance overall flight safety by supporting 

timely decision-making during landing. 

• To Reduce the rate of landing-related aviation 

accidents through predictive support. 

 

3.3 EXISTING METHOD 
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A Harsh Landing (HL) is a phenomenon in which the 

airplane has an excessive impact on the ground at the 

moment of landing. This impact is directly related to 

the vertical (or normal) acceleration, therefore, HL can 

be defined as flights where the vertical acceleration 

exceeds the limited value of the aircraft type during 

the landing phase. A threshold on such normal 

acceleration (Airbus uses vertical acceleration >2G at 

Touch Down, TD) triggers maintenance requirement, 

so that can be considered as a criterion for HL 

detection. 

Under the former definition of HL, existing 

approaches for HL Forecasting can be split into two 

groups: those based on a classifier to discriminate 

flights with normal acceleration at TD above a given 

threshold from other flights and those based on a 

regressor that Forecasting the normal acceleration 

with the aim of using this Forecasting value as the HL 

detector. 

Classifiers can be categorized into machine learning 

and deep learning approaches. Machine learning 

methods apply a classifier to UAV flight data recorded 

using the Quick Access Recorder (QAR) sampled at a 

discrete set of heights that define the feature space. 

Most methods use the values of variables describing 

aircraft dynamics sampled between 9 and 2 meters 

before TD. Others, like, use statistical descriptors 

(panel data) of such variables also sampled at the very 

last meters before TD.  

3.4 IMPLEMENTATION  

The implementation of the AeroPilot System 

Forecasting Technique for Harsh Landing Areas 

follows a structured and data-driven methodology 

aimed at developing a robust, cockpit-deployable 

prediction system for early detection of potential 

Harsh Landing (HL) events. The process begins with 

the acquisition of large-scale, real-world flight 

datasets obtained from the Flight Management System 

(FMS) and Quick Access Recorder (QAR) of multiple 

Airbus aircraft models. This dataset, consisting of over 

58,000 recorded flights, contains a wide range of 

operational parameters including physical aircraft 

dynamics, actuator positions, pilot operation inputs, 

and environmental factors during the landing phase. 

The initial stage of implementation involves data 

preprocessing, where raw flight parameters are 

cleaned, synchronized, and normalized to ensure 

consistency across different aircraft types and flight 

conditions. Missing values are handled through 

interpolation or imputation methods, and redundant 

data points are removed. Temporal segmentation is 

applied to extract relevant time windows for 

analysis—focusing particularly on the approach phase 

before the decision height (approximately 100 ft 

AGL), where go-around decisions are most critical. 

The predictive model is implemented as a hybrid 

neural network architecture that combines standard 

feed-forward layers with mechanisms to handle 

temporal variability, ensuring the system can capture 

both short-term fluctuations and cumulative landing 

patterns. 

3.4.1 DATA FLOW DIAGRAM 

 
Fig. 1. Data flow diagram 

The diagram illustrates the workflow of an airfare 

price prediction system involving two main users: the 

Service Provider and the Remote User. Remote users 

can register and log in to the system to view predicted 

airfare price types and access their profile. The service 

provider logs in to access advanced features such as 

viewing prediction results, price type ratios, 

downloading predicted datasets, and monitoring all 

remote users. The core System handles user 

authentication, prediction services, and model training 

and testing. It allows browsing of training data, testing 

accuracy, and viewing accuracy results in bar chart 

format. Overall, the system enables effective 

interaction between users and machine learning 

models to predict and analyze airfare prices. 
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3.4.2 USE CASE DIAGRAM 

 

Fig. 2. Use Case Diagram 

This use case diagram illustrates the interaction 

between two types of users—Service Provider and 

Remote User—with an airfare price prediction system. 

Both users can register and log in, view their profiles, 

and access the prediction of airfare price types and 

assessment types. Remote users mainly focus on 

viewing predictions and their accuracy results. In 

contrast, service providers have additional privileges, 

such as browsing and training/testing the model, 

viewing trained and tested accuracy (including bar 

charts), downloading predicted datasets, and accessing 

all remote user data and price type ratio results. The 

system supports both user types by offering prediction 

services and accuracy insights through a structured 

interface. 

3.4.3 SYSTEM ARCHITECTURE 

 

Fig. 3. System Architecture 

The architecture of the AeroPilot System Forecasting 

Technique for Harsh Landing Areas is designed to 

provide a seamless, real-time flow of data from aircraft 

sensors to cockpit decision-making, ensuring that 

pilots receive accurate go-around recommendations 

before reaching the decision height. It follows a three-

layer architecture comprising the Data Acquisition 

Layer, Prediction and Processing Layer, and Cockpit 

Decision Support Layer, with integrated modules for 

post-flight analytics and continuous model 

improvement. 

At the Data Acquisition Layer, live flight parameters 

are captured from the aircraft’s Flight Management 

System (FMS) and Quick Access Recorder (QAR). 

These inputs include altitude, vertical speed, 

calibrated airspeed, thrust settings, flap 

configurations, landing gear position, control surface 

deflections, and environmental factors such as wind 

speed and direction. This layer ensures data is 

collected in real time, cleaned of noise, synchronized, 

and transmitted securely to the processing unit without 

latency that could hinder timely decision-making. 

 

3.4.4 OUTPUT SCREEN SHOTS 
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Fig. 4. Login Page Form 

In the fig 4. It displays the login interface of the 

Aeropilot system forecasting techniques for harsh 

landing Areas and where user and service provider can 

login. 

Fig. 5. User Login Form 

In the fig 5 of the Aeropilot system Forecasting 

Techniques for Harsh landing Areas only user can 

login by using the correct User ID and Password. 

 
Fig. 6. Admin Login Form 

In the fig. 6 of the Aeropilot System Forecasting 

techniques for Harsh landing areas only Admin can 

login by using correct ID and Password. 

 
Fig. 7. Register Form 

In the fig 7 of the Aeropilot System forecasting 

techniques for harsh landing areas user have to full fill 

their personal details then only user can login. 

CONCLUSION 

The AeroPilot System Forecasting Technique for 

Harsh Landing Areas project successfully 

demonstrates the feasibility and effectiveness of 

applying advanced machine learning techniques to 

enhance aviation safety during the critical landing 

phase. Harsh Landing (HL) events, though relatively 

rare, pose significant risks to aircraft structural 

integrity, passenger safety, and operational efficiency. 

By developing a cockpit-deployable forecasting 

system, this project bridges the gap between offline 

post-flight analytics and real-time decision support, 

empowering pilots to make timely go-around 

decisions when unsafe landing conditions are 

predicted. 

The proposed hybrid neural network architecture, 

leveraging both temporal variability analysis and 

optimized feature engineering, has proven capable of 

outperforming conventional LSTM-based approaches 

in detecting HL events. Through exhaustive training 

and evaluation on a large dataset of over 58,000 flights 

from multiple Airbus aircraft models, the system 

achieved an average sensitivity of 85% and specificity 

of 75%. This level of accuracy ensures that most 

potential harsh landings are detected well before the 

decision height, providing the flight crew with the 

crucial time required to execute corrective actions. 

From a functional perspective, the system is designed 

to be user-friendly, role-based, and efficient. Remote 

Users can easily input flight data and receive an 

immediate classification of HL risk (High or Low), 

while Service Providers have access to comprehensive 

tools for dataset management, performance analysis, 

and result monitoring.  

FUTURE WORK 

While the AeroPilot System Forecasting Technique 

for Harsh Landing Areas has achieved significant 

accuracy and operational readiness, there remain 

several opportunities for further enhancement to 

expand its capabilities, improve its performance, and 

ensure broader adoption within the aviation industry. 
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This hybridization could improve the system’s ability 

to detect subtle instability patterns earlier in the 

approach phase, thereby increasing predictive 

accuracy beyond the current 85% sensitivity. 

Another area of enhancement involves real-time data 

streaming integration with aircraft avionics, enabling 

the system to process live sensor data directly from 

onboard systems without requiring pre-recorded 

datasets. 

This would transform the AeroPilot system from a 

near real-time tool into a fully real-time operational 

decision support system, capable of issuing instant 

recommendations during rapidly evolving landing 

scenarios. 
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