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Abstract—Although groundwater is crucial for 

residential, agricultural and industrial use but the water 

security is now under tremendous risk owing to over-

extraction, climate change and changes in land use. 

Traditional groundwater level prediction methods, such 

as manual monitoring and empirical models, struggle 

with automation, scaling and capturing complex non-

linear interaction between the influencing factors.  To 

solve these problems, this research proposes a prediction 

framework based on machine learning (ML) that 

increases efficiency, accuracy and adaptability.  The 

system integrates a range of information, including 

historical groundwater levels, rainfall, temperature, soil 

characteristics, land use and also handles missing data 

using imputation techniques. Long Short-Term Memory 

(LSTM) networks and Prophet are the examples of 

advanced ML models that are used to predict outcomes 

and capture complex patterns far better than the 

conventional statistical models. The robustness of the 

model is further improved by incorporating feature 

engineering and cross-validation. This suggested ML-

driven solution performs better as it is automated, 

scalable across contexts and accurate in prediction. 

These ML-based solutions address the shortcomings of 

the pre-existing methods and offers a pragmatic 

sustainable groundwater management. Thereby, aiding 

in better planning for water resources as well as the 

environmental preservation. 

 

Index Terms—Groundwater Storage (GWS), Machine 

Learning (ML), LSTM (Long-Short Term Memory), 

Prophet, Soil Moisture, Terrestrial Water Storage 

(TWS), GRACE/GRACE-OF 

 

I. INTRODUCTION 

 

Groundwater is a vital resource that sustains 

household, industrial and agricultural demands. [1], 

[2]. Groundwater provides 85% of the drinking water 

supply in the rural areas and more than 60% of 

irrigation supply in places like India [3]. The depletion 

of the groundwater due to irresponsible extraction, the 

shifting of land-use patterns as well as the climatic 

changes has led to a serious challenge in the 

environment sustainability and the water security 

[4],[5]. 

The pre-existing conventional methods that help 

predict the groundwater levels mostly rely on 

hydrological models, empirical calculations and 

manual observations [6], [7]. These methods may 

provide basic understanding, but their accuracy and 

their effectiveness however are frequently 

constrained. When it comes to dynamic settings where 

there are non-linear interactions between the affecting 

variables like the temperature, rain and the land use 

[8], [9], these models are not feasible for large-scale or 

real-time applications as they constantly face issues 

like inadequate data, low scalability and are known for 

their lack of adaptability [10], [11]. This study 

suggests that our ML-based predictive framework uses 

data-driven methods to increase the precision, 

automation and flexibility of the groundwater level 

prediction [12]-[14].   

This technology goes through intricate patterns and 

produces precise short-term as well as long-term 

forecasts taking groundwater levels as well as the 

environmental factors into account [15],[16].In order 

to address the drawbacks of the current methods, we 

present a hybrid prediction model in this work. This 

model combines Prophet as well as Long Short-Term 

Memory (LSTM) networks [12], [14]. Prophet was 

created for a scalable time-series analysis and is very 

good at detecting recurrent hydrological cycles like 

monsoon-driven variations in groundwater as it breaks 

data down into trends, seasonality as well as residual 

components [12], [16]. Prophet on its own, however, 

is not able to adjust to transient abnormalities or non-

linear aberrations [12], [14]. So, in addition, Prophet's 

residual errors are modeled using LSTM networks, 

which correct the discrepancies through the sequential 

learning [12], [16]. The system can identify trends in 
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the recent residuals and is able to enhance accuracy in 

the dynamic conditions due to the LTSM's ability to 

capture temporal dependencies [15], [16]. 

Prophet's baseline predictions have LTSM-predicted 

residuals added to it, this helps in the creation of a 

hybrid forecast, the forecast then yields output that are 

locally refined as well as structurally coherent [14], 

[16]. The methodology is further supported and is 

guaranteed a solid quantitative assessment by the 

evaluation measurements like Mean Absolute Error 

(MAE), Root mean Squared Error (RMSE) and R2 

[15], [17]. 

 This hybrid design has useful benefits, i.e., it embeds 

the flexibility of LSTM and maintains Prophet's 

interpretability as well as its computational efficiency 

simultaneously [12], [16]. This deems the model's 

dependability for a longer-term forecasting, making it 

adaptable for utilization with a variety of hydrological 

parameters, such as Soil Moisture, Groundwater 

Storage (GWS) and Terrestrial Water Storage (TWS) 

[14], [16]. This suggested methodology provides a 

reliable tool for sustainable water management under 

artificial and climatic stresses by filling the 

methodological voids as well as enhancing the 

prediction resilience [1]-[17]. 

 

II. LITERATURE REVIEW 

 

Groundwater Level (GWL) prediction is critical for 

water resource management especially in regions that 

face depletion due to the change in climate as well as 

the overexploitation of the resources. MODFLOW, 

one of the traditional empirical and physically based 

models struggles with nonlinear hydrological 

dynamics and it also requires extensive data deeming 

it not feasible for such regions. The ML as well as 

hybrid approaches have advanced significantly in 

terms of forecasting GWL, offering robust alternatives 

to the conventional methods over the past two decades. 

Due to their capability of representing intricate and 

non-linear interactions, the Artificial Neural Networks 

(ANNs) have been considered as a key component of 

GWL Prediction. Raj et al. [1] used the ANNs to 

estimate GWL in the coastal aquifers. By combining 

historical GWL, rainfall, and tide levels, they were 

able to produce reliable predictions; however, for 

longer lead times, support vector machines (SVMs) 

shown better generalization.  In semi-arid 

environments, Nayak et al. [2] showed that ANNs are 

superior, capturing recharge-discharge patterns with 

R2 values as high as 0.91. Kim et al. [3] compared 

ANNs with multiple linear regression (MLR) across 

17 Japanese sites, reporting better agreement (e.g., 

lower RMSE) for ANN-predicted GWL. 

By combining historical GWL, rainfall, and tide 

levels, they were able to produce reliable predictions; 

however, for longer lead times, support vector 

machines (SVMs) shown better generalization. Nayak 

et al. [2] showed that ANNs are superior as they 

captured the recharge-discharge patterns with R2 

values as high as 0.91, in the semi-arid environments. 

Several ANN architectures were investigated by 

Coulibaly et al. [5, 13] for monthly forecasting, and 

their adaptability to hydrometeorological inputs such 

as temperature and rainfall was confirmed. Although 

they noted issues with seasonality, Yoon et al. [8] 

showed that ANNs are effective in shallow systems. 

Coppola and associates. [6] and Uddameri [7] 

confirmed ANNs in unconfined aquifers under various 

pumping and climate conditions.  ANN applications 

were examined by Maier and Dandy [14] and 

Elsherbiny et al. [15], who emphasized their 

adaptability while warning against overfitting and 

limited interpretability. 

In terms of prediction accuracy, the Hybrid models 

outperform the standalone ANNs.  By optimizing 

ANN training with GA, Sharma et al. [4] proposed an 

ANN-Genetic Algorithm (GA) model in the Mahanadi 

River basin, achieving higher performance (e.g., 

RMSE decrease).  Similarly, wavelet-based hybrid 

models, such as Wavelet-ANN and Wavelet-ANFIS, 

enhanced forecasting by breaking down time series 

into elements that captured trends and seasonality. 

Wavelet-ANFIS [4] outperformed the standalone 

ANN by 8.8% in R2, especially in the forecasts made 

one to two months in advance.  The shortcomings of 

ANNs in managing non-stationary data, as highlighted 

by Adamowski and Chan [9], are addressed by these 

hybrid techniques. 

Alternative ML methods also have showed promising 

results. Shiri and Kisi [12] examined Support Vector 

Machines (SVM), ANNs, Gene Expression 

Programming (GEP) and Adaptive Neuro-Fuzzy 

Inference Systems  

(ANFIS) for the GWL forecasting in South Korea. 

Due to its capacity to create symbolic expressions, 

GEP fared better than the others, obtaining lower 

RMSE for predictions up to seven days. Yoon et al. [8] 
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discovered that SVMs seemed to have better 

generalization ability than the ANNs in coastal 

aquifers, especially for longer lead times.  

Unconventional approaches, such as 

dendrochronology, offer novel insights. Watson and 

Luckman [16] and Ferguson and St. George [17] used 

tree-ring chronologies to reconstruct hydroclimatic 

variables, K. Elsherbiny et al. [15] integrated 

dendrochronology with ANNs to simulate GWL 

fluctuations in Iran from 1912 to 2013. This approach 

achieved high accuracy by leveraging tree-ring 

diameter as a proxy for precipitation and GWL, 

demonstrating potential for historical reconstructions 

in data-scarce regions. Multisite cascading calibration 

techniques [16] further refined hydrological models 

like VIC, reducing negative Nash-Sutcliffe efficiency 

values from 69% to 3% in the Red River Basin. 

GWL prediction has been revolutionized by the 

Satellite Remote Sensing as it provides large-scale 

data. Missions such as NASA's GRACE and GRACE-

FO [10] monitor the Terrestrial Water Storage, 

enabling the global assessment as the Global Land 

Data Assimilation System (GLDAS) [11] provides 

soil as well as other parameters. These datasets help 

ML models capture enhanced spatiotemporal 

variability [3, 8], where GRACE data helped improve 

the prediction accuracy. 

The challenges in predictions still exist, despite all 

these advancements. The ANN as well as other ML 

models often struggle when it comes to long-term 

seasonality and abrupt shifts and their black box nature 

limits the interpretability [12, 15]. These issues are 

mitigated by the Hybrid models as well as the 

ensemble methods, but they require computational 

resources. To address these drawbacks, this study 

proposes a hybrid framework which integrates Long 

Short-Term Memory (LSTM) networks as well as 

Prophet. Prophet excels at decomposing seasonal as 

well as trend components while LSTM captures non-

linear temporal dependencies. Building on prior 

approaches, this model aims to deliver interpretable 

and accurate GWL forecasts, enhancing sustainable 

water management. 

 

III. DATA AND METHODS 

 

The subject of the study here is the coastal city of 

Visakhapatnam, located along the Bay of Bengal in 

Andhra Pradesh, India. The boundaries of the Region 

of Interest (ROI) were 83.0°–83.5° longitude and 

17.6°–18.5° latitude. Groundwater Storage (GWS), 

Root Zone Soil Moisture (SoilMoist_RZ), Surface 

Soil Moisture (SoilMoist_S) and Terrestrial Water 

Storage (TWS) are among the environmental 

characteristics that are examined. The datasets were 

acquired in NetCDF4 format from the GRACE-DA1 

V2.2, the Global Land Data Assimilation System 

(GLDAS) and Catchment Land Surface Model 

(CLSM), which are generated by NASA's Goddard 

Earth Sciences Data and Information Services Center 

(GES DISC). The GRACE (NASA/DLR) and 

GRACE-FO (NASA/GFZ) satellite missions' 

observations of TWS are incorporated into these. 

NASA's Panoply visualization tool was used to 

identify and validate the variables before they were 

preprocessed into a consistent daily period. Python 

and the netCDF4 library were used for data parsing, 

quality checks and metadata alignment. Geospatial 

distributions were visualized using Matplotlib and 

Cartopy. After the preprocessing, Microsoft Excel was 

used to export the daily averages of every parameter 

into a CSV format for further analysis. The line plots 

were created for each parameter in order to investigate 

the temporal fluctuations. Then the ML techniques 

were utilized in order to predict the data 365 days into 

the future. A hybrid framework was created using 

LTSM and Prophet. The LTSM adjusted the non-

linear residuals in order to increase the flexibility for 

the short-term variations, Prophet modeled the 

seasonality as well as the long-term patterns. The 

performance of the model was then evaluated with the 

use of the Coefficient of Determination (R2), Mean 

Absolute Error (MAE) and Root Mean Squared Error 

(RMSE) which were then displayed in the console. 

This strategy guaranteed the framework for evaluating 

groundwater that used predicted modeling with 

satellite-driven datasets. 

 

IV. RESULTS AND DISCUSSION 

 

The findings are broken down into two sections: a 

five-year analysis of observed hydrological 

parameters and a hybrid Prophet–LSTM framework 

forecast of future values.  In order to demonstrate the 

hybrid method's ability to capture seasonal swings, 

long-term patterns and forecast uncertainty across a 

variety of water-related indicators, this section 

compares historical variability with model forecasts.
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Fig. 1 Temporal Variation of Groundwater Storage in Visakhapatnam (17.6°–18.5°N, 83.0°–83.5°E), indicated by 

black rectangle on 12th August, 2020–2025. 

 

Groundwater Storage (Gws) 

Significant fluctuations were observed in 

Visakhapatnam's Groundwater Storage (GWS) during 

August 2020 to August 2025, which reflected the 

seasonal cycles of recharge as well as depletion, a 

common occurrence for semi-humid coastal areas. The 

mean being roughly at 594 mm, the observed values 

varied between 474 to 811 mm. Although the monsoon 

months recharged the GWS levels quickly due to 

precipitation and decreased extractions, but still 

extended decreases were noted during the dry months, 

frequently resulting in the GWS reaching the minimal 

values. This suggested a significant reliance on the 

groundwater extractions for household and 

agricultural purposes during the times of lower 

rainfall. The predictive time series also reveals multi-

year oscillations, thereby indicating the interaction of 

climatic variables including land-use change and the 

variability during the rainy seasons. 

This pattern is carried over into the following year by 

the hybrid Prophet–LSTM forecast, which offers 

information on anticipated storage dynamics under 

comparable meteorological conditions.  GWS levels 

are predicted to climb first until late 2025, then 

gradually fall in early 2026 before leveling off in mid-

2026.  Crucially, the model displays recurrent 

fluctuations instead of the flat-line tendency of tree-

based regressors, maintaining seasonal periodicity.  

The inherent uncertainty in long-term hydrological 

prediction is highlighted by the widening of the 95% 

CI in the other half of the forecast, especially when 

these are subjected to uncontrollable external factors 

like harsh weather or policy-driven changes in water 

demand.  However, the hybrid model's ability to 

account for both short-term anomalies and long-term 

seasonal cycles clearly shows its usefulness in 

planning of water resources. These results confirm that 

in susceptible areas like Visakhapatnam, incorporating 

data-driven forecasting techniques can yield a more 

precise and accurate early warnings of possible 

groundwater stress. 
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Fig. 2 Hydrological Parameters on 18 August 2025 – Groundwater Storage, Root Zone Soil Moisture, Surface Soil 

Moisture, Terrestrial Water Storage and Profile Soil Moisture 

 

Root Zone Soil Moisture (Soilmoist_Rz) 

A significant number of variations could be observed 

during the five-year observation period for the Root 

Zone Soil Moisture. It was evident that the measured 

values were significantly influenced by the rain, with 

greater soil moisture levels during periods of heavy 

precipitation and a slow decline during the dry months 

when the water seeped into the deeper layers or drawn 

out by the vegetative uptake. The Root Zone Soil 

Moisture is known for directly supporting the plant 

growth both during the periods of peak rainfall and 

after dry spells, thereby highlighting these variations 

as the significance of this factor as a crucial regulator 

of crop yield. 

 

Across the subsequent years, the variability indicated 

that the region's soil water availability was shaped by 

the land-use changes and the interannual rainfall 

anomalies. The dynamics were then carried over into 

the annual cycle by the predicted values. The hybrid 

LSTM-Prophet model predicted and then produced the 

values. The Root Zone Soil Moisture, according to the 

prediction pattern, increased during the 2025 

monsoons before steadily declining during the 

beginning of the year 2026. What's crucial here is that 

the model doesn't flatten to the mean value, it 

preserves the seasonal periodicity instead and 

incorporates the anticipated recharge-depletion 

sequences. The seasonal cycles show the framework's 

resilience in the expected persistence and the growing 

prediction uncertainty is represented by the widening 

CI over time. This enhances the model's ability to 

direct the drought preparedness and agricultural 

planning 
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Fig. 3 Daily Trends of Hydrological Parameters from 13 July to 13 August 2025 – Groundwater Storage, Root Zone 

Soil Moisture, Surface Soil Moisture, Terrestrial Water Storage and Profile Soil Moisture 

 

Surface Soil Moisture (Soilmoist_S) 

Surface Soil Moisture reacts directly to precipitation, 

evaporation and land surface processes. It is a crucial 

metric for comprehending short-term hydrological 

dynamics.  During the course of the five-year sample, 

these values fluctuated quickly i.e., peaking during the 

monsoon rainfall events and declining sharply during 

dry months. The surface moisture levels fluctuated 

rapidly, frequently within days, highlighting their 

ephemeral character in contrast to root zone moisture, 

which represents longer-term water retention. With 

recurrent wetting phases during subsequent monsoons 

and gradual drying phases as rainfall decreased, 

seasonal cycles were clearly discernible. This 

fluctuation emphasizes how vulnerable surface layers 

are to changes in the climate and land use. 

According to the mean values for the observed period, 

the surface soil of Visakhapatnam underwent a fairly 

balanced alternation between saturation and depletion, 

which is in line with the semi-humid coastal climate. 

The hybrid Prophet–LSTM forecast predicts seasonal 

spikes during the 2025 monsoon and consistent 
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reductions through the 2026 dry season, indicating that 

these dynamics will persist into the upcoming year.  

The predictions show how the framework captures the 

sudden spikes and sharp drops characteristic of surface 

processes while maintaining periodicity.  Unlike the 

tree-based models that flatten the outcomes, this 

method provides CI that show uncertainty in long-

range projections while reflecting natural variability.  

 

 

 
Fig. 4 Observed and Forecasted Hydrological Parameters from 13 August 2020 to 13 August 2025 – Groundwater 

Storage, Root Zone Soil Moisture, Surface Soil Moisture, Terrestrial Water Storage and Profile Soil Moisture 

 

Terrestrial Water Storage (Tws) 

The Terrestrial Water Storage (TWS) is all the water 

components in the land system, such as the surface 

water, groundwater, vegetation etc. Under the five-

year period of observation, the combined effects of 

TWS were evident in Visakhapatnam. During the 

monsoon months, recurring peaks were found in the 

datasets due to predominant precipitation and rapid 

increase in terrestrial water stocks. However, during 

the dry seasons, notable decreases were noticed as the 

groundwater withdrawal increased, resulting in an 

increased depletion. These variations ranging from the 

lowest to the highest storage value, drew attention to 

this delicate balance between the human needs and the 

natural inputs. Thereby, indicating the broader 

climatic influences and the region's reliance on the 

monsoonal constancy for maintaining the water 

resources. 

Insights into anticipated terrestrial water behavior 

under ongoing climate patterns were provided by the 

hybrid Prophet–LSTM projections, which carried 

these dynamics beyond 2026.  In line with past 

recharge cycles, model projections showed that TWS 

would first increase during the 2025 monsoon before 

gradually declining throughout early 2026 as 

precipitation decreased and its use increased.  

Additionally, the model avoided the tendency of 

regression-based models to converge toward mean 

values in the long-range projections by maintaining 

the inherent periodicity of TWS.  Predicting integrated 

hydrological systems is difficult because of the 

increasing confidence ranges, which increases 

uncertainty over time due to several interacting 

variables.  The prediction's ability to capture both 

seasonal peaks and subsequent decreases, also shows 

how well the framework can replicate the behavior of 
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complex systems. From the standpoint of 

management, the anticipated trends indicate that rapid 

post-monsoon losses pose a threat to the long-term 

sustainability, even when seasonal recharge is still 

adequate to momentarily replenish water supplies. 

The region may experience stressful times due to the 

uncontrolled extraction rates, especially during the 

successful years when the monsoons have very less 

rainfall. Policymakers may foresee the future 

shortages and rank remedies by adopting better 

groundwater regulation, artificial recharge structures 

and effective irrigation techniques due to the hybrid 

LSTM-Prophet model's capabilities. The combination 

of ML predictions and historical data shows how 

sophisticated modeling may fill in the knowledge 

voids in Terrestrial Water Storage and provide useful 

insights for climate and sustainable resource 

governance. 

 

Profile Soil Moisture (SoilMoist_P) 

The Profile Soil Moisture (SoilMoist_P) is basically 

an assessment of Soil Moisture Content across the soil 

column. It integrates the surface as well as the 

dynamics of the root zone. The Profile Soil Moisture 

is shown to have both long-term storage behavior as 

well as high relationships with the seasonal rainfall 

cycles throughout the five-year observation period. 

Periodic wetting periods are showed in the datasets 

where prolonged precipitation restored deeper layers 

during the rainy seasons. Profile Soil Moisture, unlike 

the Surface Moisture, adjusts more gradually, offering 

a stable reflection of subsurface water availability, 

rather than acting as a short-term buffer during the dry 

spells. 

According to the predictions projected by the hybrid 

LSTM-Prophet model, the patterns of Profile Soil 

Moisture persist in 2026, predicting the seasonal 

increase during the 2025 monsoon and reductions 

during the dry months. Also, the persistence of water 

in the deeper soil layers were captured by the model. 

This showed that the moisture remained stable before 

gradually diminishing. Unlike the Surface and the 

Root Zone Soil Moisture that comparatively declined 

more rapidly. This demonstrated the capability of 

hybrid modeling over the traditional regressors which 

often tend to fail to retain the system-specific temporal 

dynamics. 

Since the crop sustainability, ecosystem services as 

well as the groundwater recharge are directly 

influenced by the Profile Soil Moisture, it can be 

implied that these findings have practical implications. 

In order to maintain a long-term soil-water balance, 

adaptive strategies such as efficient irrigation 

scheduling, soil conservation measures and artificial 

recharge initiatives are required. The hybrid approach 

offers early warning signals of potential stress by 

aligning the historical patterns with anticipated 

dynamics. This enables the policy makers to 

implement the water conservation as well as the 

agricultural adaptations. The LTSM-Prophet model 

also provides a reliable method for monitoring the soil 

moisture by balancing short-term fluctuations with 

long-term stability. The importance of incorporating 

ML-based projections into regional governance are 

reinforced by these insights, ensuring the soil-water 

interactions are effectively accounted for in the 

sustainable planning for Visakhapatnam. 

 

 
Table 1: Performance Metrics of the LSTM–Prophet 

Model for Groundwater and Soil Moisture Variables. 

 

V. CONCLUSION 

 

This study showed how a hybrid ML framework can 

be utilized for forecasting of hydrological parameters 

essential for Visakhapatnam's water resource 

management. The hybrid method predictions accuracy 

was pretty decent and structurally compatible with the 

observed variability by combining the LSTM and 

Prophet to identify sequential dependencies and 

rectifying non-linear residuals while simulating long-

term seasonal cycles. The model provided a solid 

foundation for analyzing regional water dynamics by 

accurately reproducing seasonal recharge–depletion 

patterns and extending them into future projections 

across five parameters: groundwater storage, root zone 

soil moisture, surface soil moisture, terrestrial water 

storage and profile soil moisture.  

After the comparison of the historical data as well as 

the expected trends, it is revealed that, while the 

seasonal monsoon recharge remains a vital source of 
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replenishment, the subsequent reductions offer long-

term hazards of water stress. The increasing 

confidence intervals highlighted the difficulties of 

long-term hydrological prediction while 

simultaneously enhancing the model's transparency by 

quantifying forecast uncertainties. These results are 

for critical decision-making as the model provides 

early warning signs of any potential vulnerabilities and 

lead to adaptive solutions for sustainable water 

governance.  

The need of data-driven forecasting methods in 

management of water resources under the climatic 

variability and the human pressure is highlighted by 

the findings. The methodological voids left by the 

conventional models are filled by the LSTM-Prophet 

framework while also improving the practical 

applicability by balancing the interpretability as well 

as the flexibility. The incorporation of these findings 

into policy and planning initiatives may boost 

resilience in semi-humid coastal regions, providing a 

long-term water security for agricultural as well as the 

urban needs in Visakhapatnam. 
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