
© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184557 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1833

Design and Implementation of Edge Detection Algorithm

for Image Processing

Pooja Kumari1, Dr. Vijaya Prakash A M2

1M.Tech, (VLSI Design & Embedded System) BIT, Bangalore

2Professor, BIT, Bangalore

Abstract—Digital image processing have become the

mostly explored areas of modern technology due to its

vast applications in medical imaging, surveillance,

robotics, and computer vision. Traditionally, in many of

the image edge detector algorithms are executed using

techniques like computer simulation, which make testing

and validation relatively simple. However, when

algorithms or architectures grow in complexity,

increases the time of simulation drastically. This makes

the computational cost high and also makes software-

based implementations unsuitable for real-time, high-

speed image and video applications. To overcome this

limitations, hardware-based solutions, particularly

FPGA architectures, are adopted because of parallel

processing capability, it is reconfigurable, and reduced

latency. This work presents an FPGA-based realization

of the Canny edge detection algorithm, incorporating

adaptive thresholding to improve the performance of

image processing applications. Unlike fixed thresholds,

adaptive thresholding dynamically adjusts to varying

illumination and noise conditions, thereby improving

edge localization accuracy and robustness. The proposed

architecture integrates Gaussian smoothing, gradient

computation, non-maximum suppression, and adaptive

thresholding, followed by edge tracking. The complete

design is modeled and programmed in Verilog,

simulated and synthesized using Xilinx Vivado tools.

Experimental results demonstrate that the modified

design reduces memory requirements and latency while

maintaining high throughput and strong edge detection

performance, outperforming conventional fixed-

threshold Canny implementations.

Keywords— Image Processing, HDL, MATLAB,

Thresholding.

I. INTRODUCTION

Detection of edges in image are significantly used in

many of the domains, it includes computer vision,

geological exploration, remote sensing through

satellite, medical fields, aircraft, and transportation.

Edge detection is characterized as a collection of

mathematical techniques used to identify the

boundaries within an image. At the edges, pixel

intensity values change abruptly, creating noticeable

discontinuities. These edges represent the outlines of

objects of the image, which are beneficial for

recognizing and classifying them. Ideally, applying an

edge detector produces a set of connected edges that

form the outline of objects, capturing their structure.

Edge detection identifies edges in multiple

orientations and is mostly used for significant features

detection or events in image sequences. The

occurrence of edges depends on factors such as

irregularities in surface depth, changes in orientation,

variations in material properties, and differences in

illumination. Edge detection predominantly can be

categorized into gradient-based and Laplacian-based

approaches. The gradient-based method, also called

the first-order derivative approach, computes

gradients by differentiating the image. In contrast, the

Laplacian method uses the second-order derivative for

edge detection. Numerous researchers have created

different methods for detecting edges. Robert, Prewitt,

Sobel, Laplace of Gaussian and Canny edge detector

are examples of edge detection techniques. The

Roberts operator fails to capture finer edges, resulting

in incomplete edge maps. Among various edge

detection techniques, the Canny algorithm is

considered most effective and has long been regarded

as a benchmark method. The conventional

implementations of the Canny edge detection

technique, however employ the same fixed threshold

i.e. high threshold and low threshold values for every

input image, and the procedure is complicated. There

are two approaches that can be used for obtaining

threshold in hardware implementations: fixed

threshold and adaptive threshold. One crucial problem

with the Canny mask for edge detection is figuring out

the right threshold with the least amount of latency

© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184557 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1834

and computing expense. Although using a fixed

threshold helps simplify the process, performance

suffers as a result. With the aim of achieving low

latency and high throughput, a robust threshold

computation approach, i.e the Canny edge detector

using adaptive threshold is employed. By calculating

low and high thresholds, it helps to maintain important

edges in the high-detailed region while suppressing

excessive edges in the smooth zone. The most crucial

stage in edge detection is determining the object's

edges and the image's pixel information. Two

different kinds of masks one oriented horizontally and

the other vertically will be used in each edge detection

procedure. The convolution vector of the nxn matrix,

which is multiplied by the image's sub-window, is the

kernel or mask. These compute the rate of change of

image intensity function. Edges correspond to

locations where the gradient magnitude is high.

A. Edge detection Operator

1) Robert Cross operator:

 [
−1 0
0 1

] [
0 −1
1 0

]

2) Prewitt Operator:

 [
1 1 1
0 0 0

−1 −1 −1
] [

1 0 −1
 1 0 −1
1 0 −1

]

3) Sobel Operator :

 [
−1 −2 −1
0 0 0
1 2 1

] [
−1 0 1
−2 0 2
−1 0 1

]

A. Canny Edge Detection Algorithm

The approach for edge identification technique is

widely utilized in processing of digital images due to

its effectiveness. It follows the steps:

1. Input Pixel: The RGB image is first converted into

a grayscale format, and a coefficient file is generated

using MATLAB.

2. Smoothing: The grayscale image is then filtered

with a Gaussian filter to minimize noise and ensure

that random variations are not misinterpreted as edges.

3. Gradient Calculation: The gradient magnitude and

orientation are computed for each pixel position.

4. Thresholding: Edge pixel detection is facilitated by

utilizing a threshold generated from the gradient

magnitude of the image.

5. Hysteresis Thresholding: A refined edge map is

produced by comparing pixel gradient magnitudes

against both high and low threshold values, ensuring

edge continuity while eliminating false edges caused

by noise. Noise and illumination variation.

Figure1.1: Block Diagram Canny edge detection

II. LITERATURE REVIEW

In this section, the focus is on reviewing earlier

research related to edge detection algorithms. Edge

detection plays a crucial role in processing of images

and computer vision, as it identifies locations in an

image where intensity values change sharply. Among

the various approaches, the Canny Edge Detection

algorithm, proposed by John F. Canny in 1986,

remains widely used due to its strong detection

accuracy, precise localization, and reduced false

responses. Through the years, significant research

have been carried out to implement the Canny mask

for edge detection on VLSI platforms such as FPGAs

and ASICs, with the goal of achieving real-time

processing, lower power consumption, and efficient

hardware utilization. The computationally demanding

nature of Canny's multi-stage process like smoothing,

gradient calculation, non-maximum suppression, and

double thresholding presents both opportunities and

problems for hardware-based acceleration. Numerous

studies have used creative algorithmic and

architectural solutions to overcome these issues.

Changes have been suggested in later research to

boost the original Canny algorithm's effectiveness and

versatility. The real-time implementation of Canny

based edge detection on platforms such as FPGAs and

GPUs has been made possible by developments in

hardware acceleration. These advancements make it

possible to apply the Canny approach to time-

sensitive applications like robots, surveillance

systems. Real-Time FPGA build with VGA Interface

with input from a camera and output to VGA,

complete Canny processing chain on a Spartan 3E

FPGA, including the Gaussian filter, gradient, non-

max suppression, and hysteresis. This demonstrates

useful integration with vision systems. “Low Power

and High-Speed Image Edge Detection Algorithm

© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184557 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1835

Implementation on FPGA" by surveillance systems.

Real-Time FPGA build with VGA Interface with

input from a camera and output to VGA, complete

Canny processing chain on a Spartan 3E FPGA,

including the Gaussian filter, gradient, non-max

suppression, and hysteresis. This demonstrates useful

integration with vision systems. “Low Power and

High-Speed Image Edge Detection Algorithm

Implementation on FPGA" by Menaka, K.Deeba and

R. Janarthanan focuses on optimizing performance for

real-time applications by designing a fast, low-power

edge detection technique on Fugato attain real-time

processing performance, it focuses on hardware

resource optimization. The design's ability to increase

speed while decreasing power consumption makes it

ideal for embedded systems, portable electronics, and

applications that need quick and energy-efficient

image processing. An approximation and adaptive

Canny edge detector on an Intel Cyclone IV FPGA

was proposed in another note worthy contribution. It

employed Otsu's approach for adaptive thresholding

with logarithmic approximations and reduced gradient

computations. This solution reduced logic usage and

maintained edge precision across a range of lighting

situations, achieving a processing time of 1.231 ms

per image at a 50 MHz clock frequency. For FPGA

prototyping, the Canny edge detection approach with

MATLAB is frequently used in conjunction with

Simulink and HDL Coder. Scholars have investigated

hardware-software co-simulation, Fuad and Rizvi

used Spartan-6 FPGA to compare Sobel and Roberts

operators. Others, such as Lin Bai, created FPGA-

compatible models using MATLAB's Vision HDL

Toolbox. Classic Canny implementations, such as 2D

and 3D extensions, are also available in MATLAB

Central. These projects demonstrate MATLAB's

adaptability for both hardware deployment and

algorithm development, which makes it an effective

tool for real-time image processing applications and

quick prototyping. In conclusion, more flexible, low-

power, and real-time solutions are now the norm for

VLSI-based Canny implementations. Modern

embedded vision systems contain high-level

programming tools, adaptive thresholding, pipelining,

and approximation, which have made it possible for

these architectures to achieve their requirements.

III. PROPOSED METHODOLOGY

Figure 3.1: Adaptive threshold-based Canny edge

detection

A. Preprocessing:

At this stage, the input image, whether in color or RGB

format, is first resized and then converted into a

grayscale image using MATLAB. The pixel values of

the grayscale image are then extracted and stored in a

text file.

B. Window Generation:

The pixel values from the text file are given as input

for the pixel generator block and are converted into

3x3 image template having 9 values. The initial delay

is the time required to fill the two FIFOs and nine shift

registers.

Figure 3.2: Window architecture(3x3 kernel)

C. Gaussian Filtering:

The grayscale image contains some noise in it so for

removal of noise or unwanted signal from an image,

Gaussian filter is preferred. Gaussian filter with size

3x3 is used to filter out the unwanted edges or signal.

The filter is convolved with an image matrix to reduce

the effect of false detection. Gaussian function for 2D

is given below:

G(x,y)=
1

2πσ2
exp (−

x2+y2

2σ2) (1)

where x and y represents horizontal values and vertical

© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184557 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1836

values of a 2D image, sigma is the standard

deviation(σ) of the gaussian function increment of the

value of σ means more blurred image hence reduce

noise and provide smooth edge and G(x,y) represent

the smoothened image.

Convolution Operation: Gaussian filter of 3x3 kernel

matrix is convolved with sub matrix input pixel value.

Gaussian filter =
1

16
[

1 2 1

2 4 2

1 2 1

] * [

p0 p1 p2

 p3 p4 p5

p6 p7 p8

]

Figure 3.3: Convolution Operation

D. Gradient Calculation:

The next stage involves gradient computation, where

the results achieved from the Gaussian filtering unit

are passed to the gradient block. In this step, the Sobel

operator is employed for edge detection, utilizing two

distinct kernel masks to determine the horizontal

gradients and vertical gradients of the image.

(i) Horizontal sobel kernal: A kernel which

approximate the intensity of pixel change in the x-

direction.

(ii)Vertical sobel kernal: A kernel which approximate

the intensity of pixel change in the y-direction.

[
−1 −2 −1
0 0 0
1 2 1

] [
−1 0 1
−2 0 2
−1 0 1

] [

𝑔0 𝑔1 𝑔2
 𝑔3 𝑔4 𝑔5
𝑔6 𝑔7 𝑔8

]

(a) Horizontal kernel (b)Vertical kernel (c)filtered

pixel value

1. Horizontal and Vertical gradient Calculation:

Convolution of filtered input pixel value with

horizontal and vertical kernel respectively.

Horizontal gradient(Gx) = (g6 - g0) + 2(g7 - g1) + (g8

- g2)

Vertical gradient(Gy) = (g2 - g0) + 2(g5 - g3) + (g8 -

g6)

2. Magnitude and direction calculation:

Magnitude(G) = √𝐺𝑥2 + 𝐺𝑦2

Direction(𝜃) = 𝑡𝑎𝑛−1 (
𝐺𝑥

𝐺𝑦
)

Figure 3.4: Architecture for Gradient Calculation

E. Adaptive Thresholding :

Image thresholding is a method used to separate dark

and bright pixels according to their intensity levels. In

the simplest form, known as fixed thresholding, each

pixel value is compared against a predefined

threshold. If the pixel’s intensity exceeds the

threshold, it is considered part of the edge. However,

This approach tends to fail under varying intensity

conditions within the image. To overcome this

limitation, adaptive thresholding is applied, where the

threshold is dynamically calculated to improve edge

detection accuracy.

F. Edge mapping:

For each pixel look at the gradient direction. The pixel

with the maximum gradient magnitude in its direction

are only kept and other pixel gradient are suppressed

or set to 0.Now, apply double thresholding i.e. high

threshold(t_high) and low threshold(t_low) used to

classifying pixels based on their gradient magnitudes

as-

(i) Strong Edges: Pixel with gradient

magnitude ≥ t_high are considered as strong edges.

(ii) Weak Edges: Pixel where t_low ≤ gradient

magnitude < t_high are considered as weak edges.

(iii) Non Edges: Pixel with gradient

magnitude < t_low are considered as non edges.

During the time of edge mapping, strong edges are

always retained. Weak edges are only retained when

they are linked to a strong edge pixel i.e. if the weak

edge pixel is adjacent toward strong edge pixel, it is

also considered as edge and those Weak edges not

associated with strong edges are discarded as noise. It

ensures continuity of edges.

© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184557 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1837

IV. IMPLEMENTATION

Figure 4.1: Flow Chart of Proposed Methodology

1. Preprocessing of image using MATLAB

The flowchart of the proposed work is presented in

Figure 4.1. In this process, the input RGB image is first

converted into a grayscale image of resolution

256×256, with each pixel represented by 8 bits. The

pixel values are then extracted and stored in a file

using MATLAB, which is serving as a robust tool for

mathematical modeling and simulation.

Figure 4.2: Preprocessing of input image

2. Hardware Implementation

The modified edge detection design in Verilog

requires a text file containing grayscale pixel values,

generated using MATLAB, given as the input for

hardware implementation. This file act as the stimulus

for the design during simulation. The modified Canny

algorithm segmented into different stages, where each

stage implemented as an independent Verilog module.

In the testbench, the input text file is read, and the pixel

data stored in a memory array is supplied to the input

ports.

Figure 4.3: Block Diagram Hardware Implementation

3.

4. Post-processing in MATLAB

Write the processed edge map to another text file and

read this output text file to visualize the detected

edges. Edge detected text/pixel values in the form on

single column that will be converted into an image.

These edged values are taken from the input image.

The text/pixel values consist only two values, those are

255 it represent edge of an image and another value is

0 it represents the non edge of an image.

V. RESULT AND DISCUSSION

The proposed edge detection architecture for

processing of image is designed by Verilog HDL and

simulation and synthesis is performed in Vivado

2025.1 tool with target device Xczu7ev-ffvc11562e.

5.1 Pre-processing Phase

The RGB image on the left is transformed into the

corresponding grayscale, and the pixel values are

extracted using MATLAB, as depicted in Figure 5.1.1.

(a) (b)

(c)

Figure 5.1.1: (a) RGB Input Image (b) Greyscale

image (c) Pixel values of image

© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184557 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1838

5.2 Simulation Result of Adaptive Canny

After the preprocessing stage, the generated text file is

used as input stimulus for the design during

simulation. The text or pixel data is stored in memory,

and all accesses are carried out from there. The edge

detection architecture is described in Verilog HDL,

along with a testbench, and simulation is performed to

validate the functionality of the design. In VLSI

development, simulation plays a critical role in

verifying circuit behavior before fabrication. The

general flow involves designing the circuit in HDL,

creating the corresponding testbench, compiling both

using a simulation tool, and then executing the

simulation to analyze the output.

Figure 5.2.1: Simulation waveform

The edge detection with adaptive thresholding is

executed with clock period 10ns and frequency of

100MHz.The simulation result waveform is illustrated

in Figure 5.2.1.

Figure 5.2.2: RTL Schematic

In VLSI design, an RTL(register transfer level)

schematic represent circuit high level abstraction,

focusing on the transfer of data between registers and

the operation performed. It provide graphical

representation of system data paths and control

signals, illustrating how data is transferred and

processed through functional block Figure 5.2.2.

5.3 Synthesis result Adaptive Canny

In Vivado, synthesis results shows gate level

representation includes resource utilization (like count

of LUTs, flip-flops, DSPs, I/O) and timing analysis

(showing critical path, clock frequency).It suggest

potential optimizations to improve performance and

meet design constraints ensuring that the design is

efficient and meets the required specifications for

implementation.

 Figure 5.3.3: Technology Schematic

The synthesis results of the Verilog design present a

detailed report on the conversion of the HDL

description into its gate-level representation. The

generated technology schematic consists of 517 cells,

106 input/output ports, and 2101 nets, as illustrated in

Figure 5.3.3.

Figure 5.3.4: Power Report adaptive canny

The power report reveals total on-chip power

consumption of 3.338 watts, junction temperature of

25.7 degree Celsius. The report summary shows both

© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184557 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1839

static and dynamic power. Dynamic power is further

analyzed by signals, logic, BRAM, DSP and I/O of

board configuration, as shown in Figure 5.3.4.

5.4 Pre-processing Phase (MATLAB)

The output edged image obtained are shown in Figure

5.4.1 showing proposed methodology provide better

result then traditional edge detection techniques.

Figure5.4.1: (a) edged image canny (b) edged image

adaptive canny

Table1:Comparison Synthesis Result of edge detector

Edge detection

algorithm

Canny edge

detection

Canny edge detection

using adaptive

thresholding

Image size 256x256 256x256

Target device Xczu7ev-

ffvc11562e

Xczu7ev-ffvc11562e

Dynamic Power 183mW 151mW

Static Power 630mW 593mW

Figure 5.4.2: Power Analysis of edge detection

Table2:Comparison Reference paper with proposed

adaptive edge detection

Reference [2]

(Soble)

Proposed edge

detection

Target device Spartan3E ZCU104

Total number of 4 input

LUTs

2369 1730

Number of slice register 1404 523

Power ------ 744mW

VII. CONCLUSION

This work presents an FPGA-based implementation of

edge detection that applies an adaptive thresholding

approach to improve detection accuracy. The block-

level edge detector with adaptive thresholding

overcomes the drawbacks of conventional methods by

reducing power consumption, execution time, and

hardware area. The design is developed in Verilog

HDL and evaluated through simulation and synthesis

using the Xilinx Vivado tool. The proposed approach

achieves low power usage, minimal area requirements,

and reduced processing time, leading to lower latency

and improved throughput.

VIII. FUTURE SCOPE

The FPGA-based adaptive edge detection system

shows strong performance but offers scope for

enhancement. Future extensions include support for

high-resolution images and real-time video, enabling

broader use in medical, surveillance, and navigation

systems. Multi-scale detection can capture fine and

coarse details, while machine learning can adapt

thresholds under varying conditions. Energy-efficient

FPGA–SoC designs, scalable reconfigurable modules,

and integration into complete vision pipelines will

further strengthen real-time image analysis

applications.

REFERENCE

[1] Sanmugasundaram Ravichandran, Hui-Kai Su,

Jui-Pin Yang, Dileepan Dhanasekaran,

Manikandan Mahalingam, Wen-Kai Kuo

“Parallel Processing of Sobel Edge Detection on

FPGA: Enhancing Real-Time Image Analysis”,

Sensors 2025, Sensors 2025, Volume 25, Issue12,

3649. doi.org/10.3390/s25123649.

[2] Yaser Icer, Mustafa Turk “Implementation of

Mainly Used Edge Detection Algorithms on

FPGA”, International Journal of Applied

Mathematics, Electronics and Computers

2016,4,352-358.

[3] S.Neethu Raj, Alex.V “Parallel Block Based

Architecture for Improved Edge Detection in

Verilog” IJERT 2015, Volume 4,

doi:10.17577/IJERTV4IS070778.

[4] Dr. Aziz Makandar, Shilpa Kaman, Rekha

Biradar, Syeda Bibi Javeriya “Impact of Edge

© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184557 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1840

Detection Algorithms on Different Types of

Images using PSNR and MSE”, LC International

Journal of STEM 2023, Volume3, Issue4, pp. 1–

11.doi:10.5281/ zenodo.7607059.

[5] Gaikwad, Vijay.N. Patil, “Low complexity

illumination invariant motion Vector Detection

Based on Logarithmic Edge Detection and Edge

Difference”. Fourth International Conference of

Computing Communication Control and

Automation (ICCUBEA), 2020.

[6] Dr. R.Menaka, Dr. R.Janarthanan, Dr. K.Deeba,

“FPGA implementation of low power and high-

speed image edge detection algorithm,” Science

Direct, 2020.

[7] P. Gupta, J.S. Kumar, U.P. Singh and R.K. Singh,

‘’Histogram Based Image Enhancement: A

Survey”,International Journal of Computer

Sciences and Engineering, vol. 5, issue 6, (2017),

pp.-177-182.

[8] S. Das, “Comparison of various edge detection

technique”, International Journal of Signal

Processing, Image Processing and Pattern

Recognition, vol.9, no.2, (2016), pp.143-158.

[9] E. Nadernejad, S. Sharifzadeh and H.

Hassanpour, “Edge Detection Techniques

Evaluations and Comparisons”, Applied

Mathematical Sciences, vol. 2, no. 31, (2008), pp.

1507 – 1520.

[10] R. Maini and H. Agrawal, “Study and

Comparison of Various Image Edge Detection

Techniques”, International Journal of Image

Processing (IJIP), vol. 3, issue 1, pp.1-12.

[11] P. P. Acharjya, R. Das and D. Ghoshal, “Study

and Comparison of Different Edge Detectors for

Image Segmentation”, Global Journal of

Computer Science and Technology Graphics &

Vision, (2012), vol.12, issue 13, version 1.0.

[12] S. Kaur and I. Singh, “Comparison between Edge

Detection Techniques”, International Journal of

Computer Applications, vol. 145, no.15, (2016),

pp. 15-18.

[13] V. Saini and R. Garg, “A Comparative Analysis

on Edge Detection Techniques Used in Image

Processing”, IOSR Journal of Electronics and

Communication Engineering (IOSRJECE),

ISSN: 2278-2834, vol. 1, issue 2, (2012), pp. 56-

59.

[14] Ganesan, P.; Sajiv, G. A comprehensive study of

edge detection for image processing applications.

In Proceedings of the 2017 International

Conference on Innovations in Information,

Embedded and Communication Systems

(ICIIECS), Coimbatore, India, 17–18 March

2017; pp. 1–6. [Google Scholar] [CrossRef]

[15] Chaple, G.; Daruwala, R.D. Design of Sobel

operator based image edge detection algorithm on

FPGA. In Proceedings of the 2014 International

Conference on Communication and Signal

Processing, Melmaruvathur, India, 3–5 April

2014; pp. 788–792. [Google Scholar] [CrossRef]

[16] Sree, S.J.; Ashwin, S.; Kumar, S.A. Edge

preserving algorithm for impulse noise removal

using FPGA. In Proceedings of the 2012

International Conference on Machine Vision and

Image Processing (MVIP), Coimbatore, India,

14–15 December 2012; pp. 69–72. [Google

Scholar] [CrossRef]

[17] Khongprasongsiri, C.; Kumhom, P.;

Suwansantisuk, W.; Chotikawanid, T.; Chumpol,

S.; Ikura, M. A hardware implementation for real-

time lane detection using high-level synthesis. In

Proceedings of the 2018 International Workshop

on Advanced Image Technology (IWAIT),

Chiang Mai, Thailand, 7–9 January 2018; pp. 1–

4. [Google Scholar]

[18] Mukhija, P.; Priyanka, P. Comparison of

Different Edge Detection Techniques Used in

License Plate Localization. In Proceedings of the

2022 Fifth International Conference on

Computational Intelligence and Communication

Technologies (CCICT), Sonepat, India, 8–9 July

2022; pp. 400–403. [Google Scholar] [CrossRef].

[19] Chaitra, M.; Aravind, H.S.; GR, A.S.; Bohara, H.;

Shiak, N.A.; Srividhya, S. Design of Evaluation

Board for Image Processing ASIC and VHDL

Implementation of FPGA Interface. In

Proceedings of the 2018 International Conference

on Recent Innovations in Electrical, Electronics &

Communication Engineering (ICRIEECE),

Bhubaneswar, India, 27–28 July 2018; pp. 1284–

1288. [Google Scholar] [CrossRef]

[20] Q. Xu, C. Chakrabarti, and L. J. Karam, “A

distributed Canny edge detector: Algorithm and

FPGA implementation,” IEEE Transaction on

image processing, Vol.23, No.7, July 2014.

