
© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184602 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2722

Software Engineering Education in the Era of

Conversational AI: Current Trends and Future

Directions

Dr V Subrahmanyam1, Dr M. V. Siva Prasad2
1Professor, IT Dept. Anurag Engineering College, Kodad

2Professor, CSE Dept., Anurag Engineering College, Kodad

Abstract- Conversational artificial intelligence (AI)

systems — including large language models (LLMs) and

specialized chat assistants — are reshaping how software

is developed, taught, and learned. This paper surveys

current trends in software engineering education

influenced by conversational AI, evaluates pedagogical

implications, and proposes directions for curriculum

design, assessment, and empirical research. We

synthesize evidence from classroom deployments,

industry practices, and recent scholarship to outline

opportunities (e.g., accelerated prototyping,

personalized tutoring, formative feedback) and risks

(e.g., overreliance, academic dishonesty, propagation of

bias). Finally, we propose a modular, ethically-grounded

pedagogical framework that integrates conversational AI

across learning objectives while preserving core

competencies in problem solving, software design, and

professional practice. The paper concludes with research

questions and practical recommendations for educators,

administrators, and researchers.

Keywords: conversational AI, large language models,

software engineering education, pedagogy, assessment,

ethics, curriculum design

INTRODUCTION

Software engineering education has historically

balanced theory, engineering practice, and

collaborative skills. The advent of powerful

conversational AI tools that can generate code, explain

algorithms, and provide contextual guidance is

changing the landscape for both students and

instructors. These systems affect multiple dimensions of

learning: they alter how students approach problem-

solving, how instructors design assignments and

assessments, and how institutions define learning

outcomes.

This paper aims to: (1) describe the current trends in

integrating conversational AI into software engineering

education; (2) analyse pedagogical, ethical, and

assessment challenges; and (3) propose practical

framework and future research directions to guide

educators and researchers.

Background and Scope

We focus on conversational AI systems that accept

natural language queries and produce explanations,

code snippets, design advice, or pedagogical feedback.

Examples include LLMpowered co-pilots, classroom

tutoring bots, and chat-based debugging assistants. The

scope includes undergraduate and graduate software

engineering courses, boot camps, and industry training

programs.

Fig: Frame work

Current Trends

Integration of AI-Powered Tools into Coursework:

Many courses now incorporate AI coding assistants as

part of the programming environment. Instructors

leverage these tools to demonstrate rapid prototyping,

automated refactoring, and alternative solution strategies.

Some programs provide structured labs where students

compare human-authored and AI-generated solutions to

© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184602 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2723

highlight trade-offs in design, correctness, and

maintainability.

AI-Assisted Code Generation and Pair Programming:

Conversational AI is increasingly used in a quasi-pair-

programming role: students prompt AI for

suggestions, iterate on results, and integrate outputs

into projects. This changes the nature of collaboration

and shifts emphasis from pure implementation skill to

problem formulation, prompt engineering, and result

verification.

Personalized Tutoring and Adaptive Feedback:

AI chatbots can offer immediate, tailored hints and

scaffolder explanations, enabling more frequent

formative feedback. Adaptive tutoring systems adjust

the difficulty of problems and the type of hints based

on learner models, allowing scalable one-on-one

support in large classes.

Automated Assessment, Code Review, and Plagiarism

Detection:

AI-powered tools can automate static analysis, test-case

generation, and code-quality feedback. Simultaneously,

the ability of students to use LLMs raises concerns

about authorship; institutions are deploying design-

based assessments, oral exams, and artifact

provenance checks to preserve integrity.

Emphasis on AI Literacy and Responsible Use:

Curricula increasingly include modules on prompt

design, model limitations, bias awareness, and

legal/ethical considerations. Teaching students to

critically assess AI outputs is becoming a required

competency for graduating engineers.

Pedagogical Implications

Learning Objectives and Competency Shifts:

While basic programming skills remain important,

educators are shifting learning objectives toward:

• Problem formulation and requirements

elicitation.

• Critical evaluation of AI outputs (correctness,

performance, security).

• Understanding software architecture and trade-

offs beyond single solutions.

• Ethical reasoning and governance of AI-assisted

systems.

Assessment Design:

Assessment strategies are adapting to the presence of

conversational AI:

• Process-focused assessments: grading design

diaries, commit histories, and reflection logs to

observe student reasoning.

• Oral and live-coding assessments: to confirm

mastery of core skills.

• Higher-order problem tasks: requiring novel

integration, architecture, or evaluation that is

difficult to outsource to an LLM.

• Collaborative and peer assessment: emphasizing

team communication and role-play in which AI

tools are part of the toolchain.

Scaffolding and Instructional Supports:

Instructors should provide scaffolder prompt

frameworks, exemplars of good and bad AI

interactions, and rubrics for evaluating AI-generated

artifacts. Teaching students how to verify and adapt AI

output reduces risk of error propagation.

Proposed Pedagogical Framework

We propose a modular framework — AI-Integrated

Software Engineering Education (AIISEE) — with

four interconnected layers:

• Foundational Layer: core programming, algorithms,

data structures, and software engineering

principles.

• Tooling Layer: hands-on instruction on

conversational AI capabilities, prompt engineering,

and integration into development workflows.

• Verification Layer: techniques for testing, formal

checks, and security reviews of AI-generated

code.

• Ethics & Professionalism Layer: curriculum

modules on fairness, accountability, IP, licensing,

and responsible disclosure.

Each layer maps onto learning outcomes, assessment

types, and recommended teaching activities. For

instance, the Tooling Layer pairs with labs where

students use AI to prototype and then apply

Verification Layer techniques to harden the output.

Example Course Modules and Activities

• Module: Prompt Engineering for Software

Solutions. Lab activities where students craft

© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184602 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2724

prompts and measure differences in generated

code quality and readability.

• Module: Evaluating AI-Generated Designs.

Compare multiple AI-suggested architectures,

evaluate trade-offs, and write a design rationale.

• Capstone Project with AI-in-the-loop. Teams

build full-stack applications using

conversational AI for scaffolding, and submit a

judicial report documenting AI contributions

and verification steps.

• Ethics Case Studies. Role-play scenarios such as

handling biased model output or a licensing

dispute over AI-generated code.

Research Methodologies to Study Impact

To rigorously evaluate the pedagogical impact of

conversational AI, researchers should employ mixed-

methods designs including:

• Controlled quasi-experiments comparing cohorts

with and without AI tools.

• Longitudinal studies tracking skill retention and

career outcomes.

• Qualitative studies (interviews, think-aloud

protocols) to understand cognitive processes

when students use AI.

• Learning analytics capturing prompt histories, edit

patterns, and verification behaviour.

Key metrics include learning gains on conceptual

knowledge, code quality, time-to-solution, and

measures of academic honesty and dependence.

Practical Recommendations for Educators

• Explicitly teach prompt design and AI limitations

rather than banning tools outright.

• Redesign assessments to value process,

rationale, and verification artifacts.

• Incorporate ethics and governance discussions

into technical courses.

• Provide equitable access to tools or equivalent

alternatives for students without access.

• Maintain instructor upskilling programs so faculty

can model effective and responsible tool use.

RESULTS AND GRAPHS

Fig: Conversational AT impact on Software Engineering Education

© September 2025| IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002

IJIRT 184602 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2725

