
© September 2025 | IJIRT | Volume 12 Issue 4 | ISSN: 2349-6002 

IJIRT 184612 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2101 

Deep Learning Models for Biomarker Discovery and 

Disease Diagnosis from Blood Test Data 
 

 

Nilesh Gupta1, Manish Kumar Kushwaha2 
1Asst Professor Department of CSE, Chouksey Group of Colleges, Bilaspur (C.G.), India 

2M. Tech Student, Chouksey Group of Colleges, Bilaspur (C.G.), India 

 

Abstract— The use of data generated from blood tests in 

laboratories, epidemiology and public health 

investigations. A deep learning framework aimed at 

biomarker identification and disease diagnosis using 

hematological and biochemical test results is presented. 

The model includes blood cells, hemoglobin, hematocrit, 

platelets, glucose, cholesterol, electrolytes. The 

experiment showed that this deep learning model 

performed better than the machine learning method with 

an accuracy of 93.2%. An analysis indicated that the 

model could effectively detect complicated non-linear 

feature interactions. Through ablation tests, blood cell 

parameters were designated as clinically valuable 

predictors. Moreover, the model has identified 

important biomarkers that closely correlate with 

anemia, leukemia, diabetes, and CVDs, underscoring its 

clinical relevance. Strong evidence suggests that this 

model will allow for more accurate clinicopathological 

diagnoses and enable personalized risk stratification 

profiles. This study shows how deep learning can 

interpret blood data. This can significantly help 

precision medicine and medical research focused on 

biomarkers. 

 

Index Terms—Deep Learning, Biomarker Discovery, 

Blood Test Data, Disease Diagnosis, Clinical Decision 

Support. 

 

I. INTRODUCTION 

 

To ensure that the model is robust, it should be further 

tested on an independent dataset. Or this model may 

also be turned into a general framework which can be 

used for larger andon different datasets throughout 

different laboratories, but from the point of view of a 

physical theory. Longitudinal blood data will improve 

disease progression and treatment effect monitoring. 

And like this, the integration of genomics, proteomics 

as well other multi-omics data can improve 

predictability and give more biological insight. 

Confidence in the clinical use of AI healthcare 

solutions needs a boost. In the final analysis, 

improvements blood data analysis will bring about 

personalized medicine leaning towards more precise 

diagnostics, as well that medicines could be taken 

instantly at expense of only tiny bits or molecules such 

as glucose/saline injections. 

 

II. RELATED WORK 

 

A. Machine Learning in Hematology and Clinical 

Diagnostics 

Manual analysis of blood test parameters, like red cell 

indices, white-cell counts, and biochemical indexes 

has been traditional methodology for excluding 

diseases [1], [3]. Recent Literature has thought about 

using the up-and-coming field of hematology, 

machine learning (ML), to automatically assess blood 

test parameters and thus spot wide variety conditions 

in record after ever-new text data [1], [3]. ML 

algorithms are able to recognize more complex and 

nonlinear relationships for diagnostic purposes, 

making them more useful publicly [6], [9]. As recent 

studies show, machine learning can now detect 

biomarkers and diagnose pathologies. For example, 

classifiers built from routine blood tests may tell a 

bacterium apart from a virus [19]. In the same vein, 

deep learning has upgraded the recognition of 

hematologic neoplasms such as acute myelogenous 

leukemia (AML) from blood smears [12], [15], [16]. 

Moreover, simple ML platforms targeted towards 

clinicians are now diagnosing quicker, at the same 

time it also leads to greater popularization of medical 

knowledge [4]. One major multidisciplinary research 

area is interdisciplinary ML, which uses explainable 

AI techniques to disclose important factors that 

support clinical trust and individualized treatment 

further. Nonetheless, there are challenges around 

dataset diversity and generalizability [7], [10], [13]; 
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but there is some progress in ML for hematology, 

clinical diagnosis-and it can't be ignored. 

 

B. Biomarker Discovery Approaches 

Blood tests help to solve challenges of biomarker 

identification, which are important for disease 

diagnosis and prognosis and treatment planning. 

Blood-based biomarkers, such as hemoglobin, 

platelets, and other metabolic indices, can indicate 

progression or status of disease [2], [5]. Nearly all 

traditional approaches based on statistical association 

tests [8], and in particular do not address complex 

nonlinear interactive (non-)genomic effects on cancer 

risk. The high-dimensional data and response 

stratifications that exist using machine learning (ML) 

and deep learning (DL) in recent years have offered 

new avenues for biomarker discovery [14]. As an 

example, ML has previously been used to predict early 

cardiovascular disease biomarkers based on complete 

blood cell counts and serum biochemical parameters 

[17]. DL techniques also improve on feature selection 

through learning hierarchical feature representations, 

particularly for complex datasets, such as blood 

imaging or multi-omics data [18]. Interpretable ML 

methods can identify clinically actionable features 

with disease prediction validation [11], representing 

an important research direction for end-to-end 

explainable biomarker discovery. These 

methodologies enhance diagnostic models and 

customized medicine, providing instruments for 

patient management, clinical decision making, and 

public health [9]. 

 

C. Deep Learning for Disease Diagnosis 

Deep learning (DL) has driven forward diagnosing 

diseases with medical data such as blood tests and 

imagery. In comparison to traditional machine 

learning methods such as those used for unstructured 

text, DF can automatically extract the semantic feature 

hierarchy. The result is less manual extracting features 

to reduce diagnostic accuracy; however, it is not in 

bulk form like some other features. Clinical Diagnosis 

Common Networks Used are: CNN, RNN as well as 

their combined networks CNN predictions have been 

offered in normal medicine. For example, 

classification of leukocytes from the cover-edge blood 

film and identification their anomalies with higher 

accuracy than manual estimation is provided. In 

similar fashion, by combining blood chemistry results 

with patient demographics, DL has improved the 

identification of such diseases as sepsis [16], anemia 

[18] and leukemia. However, some of them can be 

found borderline among patient groups using a data 

standardization for different datasets as shown below 

in Table 1. In recent attempts, DL has also linked with 

State of the Art from small medical data sets using pre-

trained models [20]. In addition, interpretable DL 

methods have been widely used by clinicians who can 

read prediction details in order to integrate computer-

based biomarkers and medical staff [11]. 

Consequently, collectively, DL approaches are 

transforming disease diagnosis, precision medicine 

output as well as standard clinical work-flows. 

 

III. DATASET DESCRIPTION 

 

The dataset utilized in this study comprises data from 

a blood examination system, encompassing 

comprehensive hematological and biochemical 

parameters. Key features include the count of red 

blood cells (RBC), hemoglobin levels, hematocrit, 

mean corpuscular volume (MCV), platelet count, and 

white blood cell (WBC) differentials. It includes 

biochemical markers like glucose level, cholesterol 

level, electrolyte concentration, etc. thereby giving a 

complete picture of patient's health. These features are 

known as key diagnostic biomarkers for different 

diseases in clinic. The dataset includes samples from a 

wide range of individuals, ensuring diversity in age, 

gender, and health status, facilitating strong model 

development. There was effort to anonymize all 

information to comply with ethical research standards 

and the need for confidentiality of patients. Step 1: 

Data Preprocessing By filling missing data, 

normalizing numerical variables and encoding 

categorical features. Such a carefully curated dataset 

lays the foundation for the application of deployable 

deep learning models for biomarker identification and 

disease diagnosis. 

 

IV. PROPOSED METHODOLOGY 

 

A. Deep Learning Framework for Biomarker 

Discovery 

The proposed framework employs deep learning to 

uncover key biomarkers and classify diseases from 

blood test data. The process begins with data 

preprocessing, where missing values are handled, 
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features are normalized, and outliers are addressed to 

ensure data quality. A deep neural network (DNN) is 

then used to model complex relationships among 

hematological and biochemical features. Multiple 

hidden layers with ReLU activations capture non-

linear patterns, while dropout and batch normalization 

prevent overfitting and enhance generalization. To 

improve interpretability, attention mechanisms and 

layer-wise relevance propagation highlight the most 

influential biomarkers, such as hemoglobin, glucose, 

cholesterol, and platelet counts. The model is trained 

using categorical cross-entropy loss and optimized 

with the Adam optimizer for efficient convergence. 

The final SoftMax layer outputs probability scores for 

disease classes, enabling robust diagnosis and 

biomarker-driven insights. This framework combines 

predictive accuracy with clinical interpretability, 

making it suitable for supporting early disease 

detection and personalized treatment strategies. 

 

B. Training Procedure and Hyperparameter Tuning 

The deep learning model was trained to minimize the 

classification error over blood test data using 

supervised learning. Let the dataset be represented as: 

𝒟 = {(xi, yi)}i=1
N  where xi ∈ ℝd denotes the d-

dimensional feature vector of blood biomarkers, and 

yi ∈ {1,2, … , C} represents the disease class label 

among C categories. 

The network predicts class probabilities using a 

SoftMax function: 

ŷi,c =
ezi,c

∑  C
k=1   e

zi,k
 

where zi,c is the logit for class c. The objective 

function is the categorical cross-entropy loss: 

ℒ = −
1

N
∑  

N

i=1

∑ 

C

c=1

1(yi = c) ⋅ log⁡ ŷi,c 

where 1(⋅) is the indicator function. Training was 

performed using the Adam optimizer with learning 

rate ηr momentum parameters β1 = 0.9, β2 = 0.999, 

and weight decay regularization. Hyperparameters 

such as number of hidden layers, neurons per layer, 

dropout rate, batch size, and epochs were optimized 

via cross-validation. The optimal configuration 

achieved a balance between accuracy and 

generalization. 

 

V. RESULTS AND ANALYSIS 

 

A. Disease Diagnosis Performance 

From Table 1, we can see that the proposed deep 

learning-based model outperforms other models 

obviously by comparing the results. The deep learning 

model outperformed Logistic Regression, Random 

Forest and SVM based models which had an accuracy 

between 82–88% with accuracy of 92.8% and the best 

AUC (0.95). This indicates its strong performance in 

biomarker-based disease diagnosis with blood test 

data. 

 

 

Table 1: Performance comparison of different models for disease diagnosis using blood test data 

 

 
Figure 1: Comparative performance of machine learning models and the proposed deep learning framework across 

Accuracy, Precision, Recall, F1-Score, and AUC. 

Model Accuracy Precision Recall F1-Score AUC 

Logistic Regression 82.4% 80.1% 78.6% 79.3% 0.85 

Random Forest 87.6% 85.9% 84.2% 85.0% 0.90 

Support Vector Machine (SVM) 85.2% 83.4% 82.0% 82.7% 0.88 

Proposed Deep Learning 92.8% 91.5% 90.3% 90.9% 0.95 
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We see in figure 1 that there is a significant 

performance gap between the traditional ML models 

and the deep learning approach developed here. 

Logistic Regression, SVM and Random Forest 

performed slightly better than RANDCOPA with 

accuracy values between 82.4% to 87.6%. By 

comparison, the current deep learning model achieved 

a higher accuracy of 92.8% and an AUC value of 0.95, 

which suggest its sensitivity in integrating intricate 

interactions among biomarkers. This excellent 

xanthine oxidase-like activity demonstrates its 

possibility for dependable clinical diagnosis. 

 

B. Comparative Biomarker Contribution Across 

Diseases 

Table 2 presents the diagnostic contributions as 

measured based on the biomarker analysis, which is 

shown to differ among diseases. The worst 

performance was observed for hemoglobin (75.3% 

overall impact), and especially for anemia screening. 

WBC count and platelet count were primary what 

influenced leukemias, and glucose was the ultimate 

biomarker for diabetes (91%). Cholesterol was critical 

for prediction of CVD (88%). Electrolytes including 

sodium moderately contributed, indicating a 

supportive but less influential diagnostic role. 

 

Table 2: Contribution of individual biomarkers across different disease categories based on model interpretability 

analysis 

 

 
Figure 2: Contribution of Key Biomarkers Across Different Diseases and Overall Impact 

 

This Figure 2 shows how the top six biomarkers, 

Hemoglobin, Platelet Count, WBC Count, Glucose, 

Cholesterol and Sodium contribute to the diagnosis of 

Anemia, Leukemia etc., along with their overall 

contribution percentage. The first disease, Anemia has 

the most significant relationship with Hemoglobin, 

whereas Leukemia is highly correlated with Platelet 

Count and WBC Count. Diabetes need Glucose while 

cardiovascular is affected most by Cholesterol. 

Moderate, but reliable effects are also obtained for 

sodium across conditions. Collectively, these 

biomarkers provide a fully comprehensive basis for 

successful prediction of diseases and marker-based 

diagnostics. 

 

C. Per-Class Performance Analysis 

The effect of stepwise exclusion of various groups of 

biomarkers on model fit is shown in Table 3. All 

features resulted in the best accuracy (93.2%) and 

showed balanced precision, recall, F1-score. Blood 

cell counts and combined biochemical/electrolytes 

were removed from the model with a significant drop 

in performance. Biochemical markers and electrolytes 

were moderately affected, but performance was well-

Biomarker Anemia (%) Leukemia (%) Diabetes (%) Cardiovascular 

Disease (%) 

Overall 

Contribution (%) 

Hemoglobin 92 74 65 70 75.3 

Platelet Count 68 85 60 64 69.3 

WBC Count 55 89 58 62 66.0 

Glucose 40 45 91 72 62.0 

Cholesterol 38 42 68 88 59.0 

Sodium 44 50 54 61 52.3 
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maintained. These findings underscore the combined 

relevance of different biomarker groups to obtain high 

robust predictive accuracy for disease classification. 

and recall among all classes, respectively, which 

demonstrates its robustness in multi-disease diagnosis 

task. 

 

Table 3: Per-Class Precision, Recall, and F- Score 

 

 
Figure 3: Contribution of Key Biomarkers Across Different Diseases and Overall Impact 

 

From Figure 3, we can conclude that taking all features 

achieves the best accuracy (93%) and the most 

balanced performance in precision, recall and F1-

score. Among individual subsets established, 

electrolytes bars strongly for prediction (˃91% 

accuracy), whereas biochemical markers are based on 

reliable percentage (89%). By contrast, blood cell 

counts are less effective (86%). A combination of 

biochemical and electrolyte characteristics offers 

moderate gains, emphasizing that these 2 markers may 

be complementary in a biomarker-based approach to 

diagnosis. 

 

D. Ablation Study on Biomarker Contributions 

An ablation study was performed in order to evaluate 

the significance of each group of biomarkers. In this 

study, some of the feature sets were incrementally 

removed and model performance was re-evaluated. 

Table 4 presents the resulting accuracy, precision, 

recall and F1-score when omitting certain biomarker 

categories. Results show that the blood cell count 

features (hemoglobin, hematocrit, WBCs, platelets) 

contributed most to the diagnostic accuracy. 

Performance was only moderately affected by 

exclusion of biochemicals, e.g., glucose and 

cholesterol or removal of electrolytes. The maximum 

accuracy of the model was 93.2% when using all 

biomarkers. This analysis supports hematological 

parameters as the primary signal for disease prediction 

with biochemical and electrolyte features reinforcing 

the diagnostic signals. 

 

 Table 4: Ablation Study Results 

Disease Class Precision (%) Recall (%) F1-Score 

(%) 

Anemia 95.2 93.5 94.3 

Leukemia 91.4 89.6 90.5 

Diabetes 92.1 90.7 91.4 

Cardiovascular 90.8 91.6 91.2 

Biomarker Group Removed Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

None (All Features) 93.2 92.5 93.0 92.7 

Blood Cell Counts 86.4 85.8 86.0 85.9 

Biochemical Markers 89.7 88.9 89.3 89.1 

Electrolyte Levels 91.0 90.5 90.8 90.6 

Combined Biochemical + Electrolytes 87.9 87.2 87.5 87.3 
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VI. DISCUSSION 

 

A. Clinical Significance of Discovered Biomarkers 

The proposed deep learning framework identifies 

biomarkers with high clinical significance. 

Hematological blood count components, hemoglobin, 

hematocrit, and platelets are all established markers of 

anemia, bleeding pathology and bone marrow 

function. Likewise, bio-indicators such as glucose and 

cholesterol are important for predicting diabetes and 

cardiovascular reliabilities. It captures hematologic as 

well as metabolic health conditions, weaving in 

several categories of biomarkers to form a holistic 

diagnostic. Even more importantly, identification of 

new biomarker pairs may provide understanding to 

disease aetiologias for a better earlier detection and 

clinical intervention. 

 

B. Strengths and Limitations of the Proposed Model 

The proposed model boasts a significant advantage: it 

can handle complex, high-dimensional blood test data 

and autonomously identify the inherent interpretable 

features. Its superior predictive performance 

compared to traditional machine learning techniques 

has demonstrated its reliability and clinical usefulness. 

Additionally, the framework is adaptable, allowing for 

the integration of additional biomarkers from new 

datasets. Nonetheless, there are some limitations. 

Firstly, the model's performance might be influenced 

by the variability in laboratory standards across 

different regions. Secondly, explaining the model 

remains challenging, as deep learning models are often 

viewed as 'black boxes,' necessitating explanation 

methods to ensure clinical practicality. 

 

C. Potential Applications in Personalized Medicine 

Promising as well, the model can provide patients with 

informative risk profiles and suggestions for 

personalized treatment strategies based on their 

specific patterns of biomarkers. Performance To take 

an example, borderline glucose and cholesterol levels 

patients might have their lives changed by tailored 

lifestyle guidance. On the other hand, those readers 

will recognize that high hematological risk profiles 

must be subject to close clinical surveillance. 

Language training and research projects bustle with 

this kind of thing. Moreover, were the results of this 

model to be incorporated seamlessly into electronic 

health records, then health care providers could tap 

into on-line real-time decision support as offered by 

AI. Discarding the diagnostic aspects just mentioned, 

this approach can also be used for preventive health 

care and predicting how drugs will work. Population 

health modeling could eventually lead to better patient 

outcomes at lower cost in health care overall. 

 

VIII. CONCLUSION AND FUTURE WORK 

 

A. Summary of Findings 

We have developed a deep learning framework for 

blood test data, which is used to find and diagnose 

diseases as well as serve as the discriminate in other 

tests. Based on hematological and biochemical 

indicators, this new model surpasses traditional 

machine learning methods in its diagnostic capability. 

The results showed that blood cell count dominated in 

prediction accuracy; however, while biochemical 

components offered readily interpreted insights into 

possible illnesses which were confirmable with a 

blood diagnose Tarry11 reader. Compared and 

ablation studies demonstrated that this method is 

significantly more efficient than conventional 

approaches (with a total accuracy rate of 93.2%). It 

also guarantees reliability and security of result. This 

study is both highly novel and important for clinical 

diagnosis because deep learning can prompt clinician 

to discover a variety of clinically significant markers, 

provide early warning about disorders in the body and 

make distinctions between diseases that are difficult 

for traditional methods to elucidate. 

 

B. Future Trends in Blood Data Analysis 

This model should undergo validation using additional 

independent datasets or be developed into a more 

generalized framework that can be applied to larger 

and more varied datasets from different laboratories 

and populations. Incorporating repeated blood test 

measurements over time could enhance the monitoring 

of disease progression and treatment response. 

Moreover, integrating this with multi-omics data, such 

as genomics and proteomics, could lead to the 

discovery of deeper biological insights and improved 

predictive capabilities. Emphasizing explainable AI 

techniques is also crucial to boost clinical confidence 

and interpretability. Ultimately, advancements in 

blood data analysis will support personalized 

medicine, precision diagnostics, and real-time 

decision-making in healthcare applications. 
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