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Abstract -Training deep neural networks requires 

optimizers that have a balance of fast convergence and 

good generalization. Their traditional counterparts such 

as SGD with momentum are very good at generalizing 

but have slow convergence properties, whereas adaptive 

optimizers such as Adam have very fast convergence but 

end up generalizing poorly. In this paper, we introduced 

a Hybrid Adam–SGD optimizer that uses Adam during 

the initial few epochs of training to take advantage of its 

fast convergence, then moves to SGD for the remaining 

epochs to improve generalization. The switching to SGD 

can be managed by means of a static epoch threshold or, 

more dynamically based on plateaus observed in 

validation loss and small enough gradient magnitudes. 

The overall system was developed in PyTorch as a 

modular script that is separated into data processing, 

optimizer switching, monitoring, and evaluation stages. 

The experimental results from the MNIST and CIFAR-

10 datasets using CNN and ResNet-18 suggest that the 

hybrid optimizer converges nearly as quickly as Adam, 

while also achieving higher test accuracy and lower 

generalization gaps compared to both baselines. For 

CIFAR-10, for example, the hybrid optimizer obtained 

+1.2% better test accuracy than SGD, while also 

achieving +2.6% better test accuracy than Adam, while 

also having stable validation loss. We believe our results 

confirm that adaptive optimizer strategies can provide a 

practical and effective method of improving deep 

learning training pipelines. Additionally, our proposed 

framework provides a foundation for implementation of 

switch policies that leverage reinforcement learning or 

meta-learning and extending hybrid strategies to larger 

models and to real-world applications. 
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1.INTRODUCTION 

Deep neural networks (DNNs) have achieved state-of-

the-art results in several domains, that have included 

computer vision, natural language processing, and 

speech recognition [1][2]. However, the training of 

deep models can be very difficult. Other challenges, 

including slow convergence, overfitting, 

hyperparameter sensitivity, and vanishing/exploding 

gradients, all can worsen the training problems for a 

given model [9]. An optimizer functions as the 

algorithm responsible for continuously updating 

model parameters during each backpropagation step in 

the training process [10]. The optimizer selection 

significantly impacts both convergence speed and the 

model's generalization capabilities [3][4]. 

Traditional optimizers like Stochastic Gradient 

Descent (SGD) and momentum-based variations have 

gained widespread adoption across large-scale 

machine learning applications [11]. While SGD 

exhibits strong generalization properties, it 

demonstrates slow convergence and faces challenges 

when escaping local minima [12][13]. These 

limitations prompted the development of adaptive 

methods, including Adam, AdaGrad, and 

RMSProp[5][6]. These optimizers achieve faster 

convergence by dynamically adjusting learning rates 

for individual parameters. 

Nevertheless, adaptive methods frequently exhibit 

poor generalization performance, particularly in 

computer vision applications where SGD consistently 

outperforms them. This inherent trade-off between 

convergence speed and generalization capability has 

driven researchers to explore hybrid and adaptive 

optimization strategies [7][8]. 

In this work, we propose and implement a Hybrid 

Adam-SGD optimizer that combines the strengths of 

both methodologies. The optimizer utilizes Adam 

during the initial training phases to capitalize on its 

rapid convergence properties. Subsequently, it 

transitions to SGD with momentum in later epochs to 

enhance generalization performance. The switching 

mechanism operates through either a fixed epoch 

threshold or dynamic monitoring of validation loss 

plateaus. This approach aims to integrate adaptive 

strategies with conventional methods, achieving a 
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balance between training efficiency and robust 

generalization. 

We implement the proposed optimizer in PyTorch and 

evaluate its performance on benchmark datasets 

including MNIST and CIFAR-10, using Convolutional 

Neural Networks (CNNs) and ResNet-18 as test 

architectures. Experimental results demonstrate that 

the Hybrid Adam-SGD optimizer achieves superior 

generalization compared to Adam while maintaining 

better convergence properties than SGD. These 

findings suggest that adaptive optimizer strategies 

have significant potential to enhance the robustness 

and scalability of deep learning models, highlighting 

promising opportunities for improvement in neural 

network training. 

 

Table 1: Comparison of Optimizers 

Optimizer Key Idea Strengths Weaknesses Best Use-Cases 

SGD Updates parameters with a 

fixed global learning rate 

(optionally with 

momentum) 

Strong generalization, 

simple, widely used in 

CV 

Slow convergence, 

sensitive to LR tuning 

Image classification, 

large-scale vision 

tasks 

Momentum / 

NAG 

Accelerates updates in 

consistent directions 

Faster than vanilla SGD, 

stable 

Still sensitive to LR, 

may overshoot minima 

Deep CNNs, RNNs 

AdaGrad Per-parameter learning rate 

scaling 

Good for sparse features, 

automatic scaling 

LR shrinks too 

aggressively, stalls 

training 

NLP with sparse 

embeddings 

RMSProp Exponential moving 

average of squared gradients 

Handles non-stationary 

loss surfaces well 

Requires tuning decay, 

less generalization than 

SGD 

RNNs, online 

learning 

Adam Combines RMSProp 

(variance scaling) + 

Momentum 

Fast convergence, less 

tuning needed 

Poor generalization, 

may overfit 

Default choice, fast 

prototyping 

AdamW Decouples weight decay 

from LR updates 

Better regularization, 

improved generalization 

More hyperparameters 

to tune 

Transformers, 

modern vision/NLP 

RAdam Rectified variance for stable 

early steps 

Eliminates LR warm-up, 

stable convergence 

Still inherits Adam’s 

generalization issues 

Training with small 

batch sizes 

AdaBelief Uses variance of prediction 

error instead of squared 

gradients 

Combines Adam’s speed 

with SGD-like 

generalization 

More complex, newer 

method 

Robust training, 

noisy data 

Lookahead Maintains two sets of 

weights, interpolates 

Smoother convergence, 

stable 

Adds computation, 

slower per-step 

Works with 

Adam/RAdam 

(Ranger) 

SWATS Switches from Adam → 

SGD automatically 

Gains Adam’s speed + 

SGD’s generalization 

Heuristic-based, not 

widely adopted 

Vision tasks 

(CIFAR, ImageNet) 

Hybrid 

Adam–SGD 

(Proposed) 

Adam in early phase → 

SGD in later phase (plateau-

aware) 

Fast convergence + 

strong generalization, 

simple to implement 

Needs switching policy 

design 

General-purpose, 

robust training 

 

2.SYSTEM ARCHITECTURE 

The proposed architecture will allow for a Hybrid 

Adam–SGD optimizer with a focus on adaptivity, 

modularity and reproducibility in the training of deep 

neural networks. The architecture is as a layered 

structure with clear separation of data acquisition and 

management, model training, optimizer control and 

evaluation. 

An Optimizer Manager lies at the core of the 

architecture. The Optimizer Manager maintains two 

optimizers, Adam and SGD, and it acts as an interfaced 

homogenizer for gradient updates. The Switching 

Policy Module then notifies the manager when to 

switch from Adam to SGD. The switching point may 

be determined using a static epoch threshold, or 

dynamically determined based on validation loss 

plateauing and stabilization of the norms of gradient 

(for example, by utilizing Nesterov momentum). Each 

optimizer will retain the momentum and local regions 

of convergence that would be beneficial to the 

developers, and, thus, with the optimizers switched, 

the SGD will have better generalization properties in 

the ulterior epochs as a result of Adam's fast 

convergence in earlier epochs. 

The Data Manager preprocesses datasets and provides 

batched inputs to the Training Loop; the Model 
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Registry allows access to architectures (like CNN or 

ResNet) that have been defined before. The Training 

Loop manages both forward and backward passes, 

communicates with the optimizer manager, and 

records metrics with the Monitor and Logger. The 

checkpointing saves the state of the model, the state of 

the optimizer, and saved hyperparameters; 

reproducibility may be done. The Evaluator and 

Visualizer modules, in the results, produce accuracy, 

loss, and convergence curves for comparison.   

Figure 1 shows the architecture and workflows of the 

proposed architecture, and if we strip away training, it 

shows how all the elements described interact with one 

another and how they share the optimizer-switching 

mechanism. 

 
Fig 1: System architecture 

3.METHODOLOGY 

3.1 Proposed Approach: Hybrid Optimizer, Adam–

SGD.  

The Hybrid optimizer combines the advantages of 

both Adam (fast early training convergence) and SGD 

with Momentum (superior generalization at later 

training epochs).  

• Phase 1 (Exploration - Adam): In the initial 

epochs, Adam is still the optimal choice in terms 

of the adaptive learning rate and the momentum 

flavor of Adam; it allows both for convergence of 

the network while training quickly.  

• Phase 2 (Exploitation - SGD): This phase starts on 

some fixed "switch epoch" to utilize SGD with 

momentum, which makes uses of momentum to 

not overfit and aids in generalization to unseen 

data.  

Adaptive Switching Mechanism: The change from an 

Adam optimizer to SGD is accomplished either:  

1. When the epoch has reached a fixed threshold (e.g., 

half the training has been completed), OR 

2. When the validation loss has plateaued for a 

predetermined number of epochs, the switch is 

determined dynamically (using some moving average 

etc). 

3.2 Experimental Setup 

• Framework: PyTorch 

• Datasets: 

MNIST (handwritten digit classification) 

CIFAR-10 (object recognition) 

• Models: 

CNN for MNIST 

For CIFAR-10 of ResNet-18 

• Baselines: SGD, Adam, RMSProp, and AdamW 

• Metrics: 

Accuracy (Top-1) 

Convergence speed (#epochs to get to 90% 

accuracy) 

Generalization gap (train/test accuracy) 

3.3 Training Procedure 

1. Load dataset → Define model → The 

HybridAdamSGD optimizer gets initialized. 

2. Calculate loss ← forward pass. 

3. Compute gradients from a backward pass. 

4. Call optimizer.step(epoch). 

5. SGD becomes the optimizer if epoch ≥ 

switch_epoch. 

4.EXPERIMENTAL RESULTS 

The proposed Hybrid Adam, SGD optimizer was 

evaluated via a Convolutional Neural Network (CNN) 

as well as ResNet-18 architecture on two benchmark 

datasets, MNIST and CIFAR-10, respectively. The 

experiments' proposed optimizer did perform, and the 

experiments did compare this performance to 

customary SGD with momentum. Experiments 

compared Adam to this also. 

4.1 Evaluation Metrics 

o Training Convergence Speed (epochs to reach 

90% accuracy) 

o Final Test Accuracy 

o Validation Loss Stability (measured by variance 

in last 10 epochs) 

o Generalization Gap (difference between training 

and test accuracy) 
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4.2 Quantitative Results 

Table 2: Quantitative Results 

Dataset Model Optimizer Epochs to 

90% Acc. 

Final Test Acc. 

(%) 

Generalization Gap 

(%) 

Val. Loss 

Variance 

MNIST CNN SGD 12 98.3 1.4 High   
Adam 6 98.1 2.6 Medium   
Hybrid Adam–SGD 7 98.7 1.1 Low 

CIFAR-10 ResNet-18 SGD 72 86.9 3.2 High   
Adam 42 85.5 4.8 Medium   
Hybrid Adam–SGD 45 88.1 2.4 Low 

 

4.3 Observations 

1. The Hybrid Adam, SGD optimizer, with 

maintenance of SGD's generalization ability, 

converges nearly as fast as Adam. 

2. The hybrid approach did improve test accuracy by 

+1.2% over SGD upon CIFAR-10. In comparison 

to Adam, the improvement came to +2.6%. 

3. Adam overfits more than the hybrid optimizer as 

shown by validation loss curves. 

4. The dynamic switching policy (based on 

validation loss plateau detection) outperformed 

the static switching strategy because it converged 

more smoothly also generalized better. 

                      

Figure 2: Validation Accuracy curve                                           Figure 3: Validation Loss curves 

5. CONCLUSION 

This paper introduced a hybrid adaptive optimization 

method that takes advantage of both Adam and SGD 

with momentum to benefit from faster convergence 

and better generalization on deep neural networks. The 

optimizer starts training with Adam in the early 

learning phase, and then switches to SGD when the 

learning has stabilized. This proposed optimizer 

combines the strengths and weaknesses of each 

specific optimizer. The experiments using MNIST and 

CIFAR-10 have shown that the Hybrid Adam–SGD 

optimizer converges almost as fast as Adam but trained 

with a higher test accuracy and lower generalization 

gaps when compared to Adam and SGD. 

The results clearly indicate that adaptive optimizer 

switching is a viable and efficient means of increasing 

robustness in the deep learning training pipeline. In 

addition to the datasets and models covered in this 

paper, the approach can be leveraged on more robust 

architectures and complex real-world problems. 

Future work will investigate reinforcement learning–

based switch policies, examination of the approach 

with advanced optimizers (i.e., Lookahead, SAM), and 

the deployment of the approach on large-scale 

applications in natural language processing and 

multimodal learning. 
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