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Abstract—The growing demand for scalable and 

operationalized machine learning (ML) solutions has 

driven the adoption of Apache Spark as a platform for 

end-to-end ML workflows. This review explored the 

current landscape of ML integration within Spark-based 

pipelines, covering tools, architectures, scalability, and 

comparative performance with emerging distributed 

frameworks such as Ray, Dask, and Flink. Despite 

Spark’s strength in unified batch-stream processing and 

its robust MLlib API, limitations persist in deep learning 

integration, real-time model updating, and GPU 

utilization. The review presented a theoretical 

S.P.A.R.K. framework and shared experimental 

benchmarks to guide practitioners in optimizing 

resource usage, tracking lineage, and enhancing 

modularity. Future progress will rely on tighter 

ecosystem integrations, automated MLOps workflows, 

and AI-driven orchestration to sustain Spark’s relevance 

in the era of increasingly dynamic and heterogeneous 

ML workloads. 
 

Index Terms—Apache Spark, machine learning 

pipelines, distributed computing, MLlib, Spark 

Structured Streaming, MLOps, AutoML, scalable ML, 

model orchestration, big data infrastructure 

 

I. INTRODUCTION 

 

In recent years, the convergence of big data processing 

and machine learning (ML) has profoundly reshaped 

how organizations generate value from data. As data 

volumes continue to explode driven by IoT, web-scale 

applications, and real-time streaming systems there is 

an urgent need for scalable, distributed platforms 

capable of processing, transforming, and learning 

from this data efficiently. Among the leading 

technologies in this domain, Apache Spark has 

emerged as a powerhouse for unified batch and stream 

processing, offering native support for machine 

learning pipelines through its MLlib and ML APIs [1]. 

Apache Spark distinguishes itself from earlier big data 

tools by enabling in-memory computing, distributed 

execution, and fault tolerance. It supports a wide array 

of processing paradigms, including SQL analytics, 

graph computations, streaming, and most notably, 

machine learning workflows all within the same 

runtime engine [2]. The inclusion of MLlib and the 

pyspark.ml API has allowed data scientists and 

engineers to build end-to-end machine learning 

pipelines that integrate data ingestion, preprocessing, 

feature engineering, model training, and deployment 

directly within the Spark ecosystem. 

The integration of machine learning into Spark-based 

pipelines is of growing importance in a wide range of 

sectors. In finance, Spark pipelines are used for fraud 

detection, credit scoring, and algorithmic trading. In 

healthcare, they enable real-time patient monitoring 

and predictive diagnostics. In telecommunications, 

they support churn prediction, network optimization, 

and personalized recommendations [3]. This multi-

industry relevance highlights the increasing demand 

for scalable ML operations (MLOps) that are deeply 

embedded within big data frameworks. 

However, integrating ML into Spark-based data 

pipelines is not without its challenges. One of the 

major limitations is the lack of advanced model 

support while Spark MLlib supports linear models, 

decision trees, and ensemble methods, it falls short 

when it comes to deep learning frameworks like 

TensorFlow or PyTorch, which often require 

additional integration layers (e.g., Horovod, Elephas) 

[4]. Another challenge lies in data serialization 

overhead, pipeline versioning, and model serving at 

scale. Additionally, streaming ML real-time model 

updates and inference over Spark Structured 

Streaming remains a relatively underexplored frontier 

due to latency and state management complexities [5]. 

There are also methodological and operational gaps in 

the current literature. Many studies focus on Spark's 

performance in handling large-scale ML workflows 

but provide limited insight into best practices for 

production-grade ML pipelines, integration with 

MLOps frameworks, or interoperability between 

Spark and cloud-native tools like MLflow, Kubeflow, 

or SageMaker. Moreover, real-world comparisons of 
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Spark ML pipelines with alternative solutions (e.g., 

Dask, Ray, Flink) are still emerging and warrant 

deeper investigation [6]. 

 

The objective of this review is to provide a 

comprehensive and practical synthesis of research and 

industry practices surrounding machine learning 

integration in Spark-based pipelines. It aims to answer 

key questions such as: 

 

• How effective is Spark for various stages of ML 

pipeline development? 

• What tools and strategies enhance Spark’s ML 

capabilities? 

• How do Spark ML pipelines compare with other 

distributed ML systems? 

 

This paper is structured as follows: 

1. Overview of Apache Spark and its ML 

components 

2. Architectural patterns for integrating ML in Spark 

pipelines 

3. Tools, libraries, and MLOps integrations used in 

production 

4. Use cases across industries (finance, healthcare, 

retail, etc.) 

5. Performance benchmarks and limitations 

6. Future trends in distributed machine learning 

pipelines 

By analyzing current techniques, experimental 

findings, and emerging frameworks, this review seeks 

to support data scientists, ML engineers, architects, 

and researchers in designing robust, scalable, and 

intelligent Spark-based ML pipelines. 
 

 

II. LITERATURE REVIEW 

 

Table: Key Research on Machine Learning Integration in Spark-Based Pipelines 

Year Title Focus Findings (Key Results and Conclusions) 

2016 MLLib: Machine Learning in 

Apache Spark 

Described the design and 

features of Spark's MLlib 

Established MLlib as a scalable, fault-tolerant 

ML library, but noted lack of deep learning 

support [7]. 

2018 BigDL: Distributed Deep 

Learning on Apache Spark 

Introduced a deep learning 

library compatible with Spark 

Enabled training deep neural networks directly 

on Spark; integration improved for CPU-bound 

workloads [8]. 

2019 Distributed Hyperparameter 

Tuning with Spark and MLlib 

Addressed model optimization 

and parallel tuning 

Demonstrated effective parallelism for tuning 

models using grid and random search within 

Spark [9]. 

2020 Integrating PyTorch and 

TensorFlow with Spark 

Pipelines 

Compared external deep 

learning frameworks 

integrated into Spark 

Found Elephas and Horovod to be effective 

bridges but added pipeline complexity [10]. 

2020 Real-Time ML with Spark 

Structured Streaming 

Explored stream-based ML 

with Spark 

Highlighted success with streaming 

classification but warned of state management 

and latency challenges [11]. 

2021 Spark NLP: Natural Language 

Processing on Big Data 

Provided an overview of Spark 

NLP integration in pipelines 

Enabled scalable sentiment analysis, NER, and 

language detection for large datasets [12]. 

2021 MLflow for End-to-End ML 

Lifecycle Management on 

Spark 

Evaluated model versioning 

and reproducibility in Spark 

ML workflows 

MLflow simplified experimentation, tracking, 

and deployment in Spark-based pipelines [13]. 

2022 Benchmarking Spark ML vs. 

Flink and Dask 

Compared Spark MLlib with 

other distributed ML 

frameworks 

Spark excelled in throughput but 

underperformed in training time compared to 

Dask on medium datasets [14]. 

2023 Scalable AutoML with 

Apache Spark and Hyperopt 

Focused on automating model 

selection and tuning on Spark 

AutoML extensions improved model quality but 

increased runtime, especially in large grid 

spaces [15]. 

2024 Federated Learning 

Integration in Spark ML 

Pipelines 

Investigated federated learning 

over distributed Spark clusters 

Early prototypes enabled privacy-preserving 

training across nodes but lacked robust 

orchestration [16]. 
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III. BLOCK DIAGRAMS AND THEORETICAL 

MODEL FOR MACHINE LEARNING 

INTEGRATION IN SPARK-BASED PIPELINES 

 

Block Diagram 1: Standard Spark-Based ML Pipeline 

Architecture 

This diagram outlines the core components of a Spark 

machine learning pipeline from raw data ingestion to 

final model output demonstrating how Spark's 

modular structure supports end-to-end ML workflows. 

 
Explanation: This pipeline model demonstrates the 

structured sequence of tasks using Spark’s native 

MLlib and Data Frame APIs. It supports both batch 

and streaming inputs and integrates easily with 

MLflow for experiment tracking and deployment [17]. 

Proposed Theoretical Model: S.P.A.R.K. Framework 

for ML Pipelines 

To advance the operational maturity of ML workflows 

on Spark, we propose the S.P.A.R.K. framework, 

which maps five foundational pillars to core Spark 

functionalities for scalable and compliant ML 

deployment: 

S Scalable Orchestration 

● Use of Spark Structured Streaming and Apache 

Airflow to manage both batch and real-time 

workflows. 

● Enables task-level parallelism and checkpointing 

for robust recovery [18]. 

P Pipeline Modularity 

● ML workflows structured as reusable modules 

(transformers and estimators). 

● Facilitates plug-and-play integration of 

preprocessing, modeling, and post-processing 

steps using Spark’s ML Pipeline API [19]. 

A Auditability and Experiment Tracking 

● Leveraging MLflow and Delta Lake for lineage 

tracking, versioning, and reproducibility. 

● Ensures compliance with ML governance 

policies, especially in regulated sectors [20]. 

R Resource Optimization 

● Smart caching with persist() and Tungsten/Project 

Hydrogen optimization. 

● Reduces job execution time and improves 

memory utilization across iterative ML workloads 

[21]. 

K Knowledge-Driven Adaptability 

● Incorporates AutoML (e.g., Hyperopt + Spark) 

and feature store integration to accelerate model 

tuning and reuse. 

● Enables pipelines to evolve based on historical 

performance metrics and dataset shifts [22]. 

 

Discussion 

The S.P.A.R.K. model addresses key pain points in 

Spark-based ML workflows by introducing structured 

orchestration, traceability, and optimization best 

practices. It aligns with current trends in MLOps and 

cloud-native pipeline deployment, helping teams scale 

ML experiments without sacrificing reproducibility or 

efficiency. 

For instance, in production pipelines deployed in 

financial fraud detection, this model ensures: 

● ML jobs are checkpointed and recoverable 

● Model experiments are versioned and 

reproducible 

● Feature pipelines are modular and governed 

● Resource usage is predictable and optimized 

Additionally, it provides a blueprint for scaling ML in 

cloud-native environments like Databricks, Amazon 

EMR, or Google Cloud Datapost while maintaining 

observability, explainability, and control. 
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IV. EXPERIMENTAL RESULTS, GRAPHS, AND 

TABLES 

 

To evaluate the effectiveness of machine learning 

integration in Spark-based pipelines, a series of 

experiments were conducted focusing on the 

following key performance metrics: 

1. Pipeline Execution Time 

2. Model Accuracy 

3. Scalability across Data Volume 

4. Resource Utilization (CPU/Memory) 

5. Comparison to Alternative Distributed ML 

Frameworks 

The tests used three ML models: logistic regression, 

gradient-boosted trees (GBT), and random forests, 

trained on datasets ranging from 10 million to 100 

million records, including both batch and streaming 

modes. 

 

Table 1: Execution Time Across Frameworks (100M 

Records) 

Framework Logistic 

Regression 

GBT Random 

Forest 

Apache Spark 

MLlib 

11.4 min 17.9 min 19.3 min 

Dask-ML 10.6 min 16.8 min 17.5 min 

Ray with 

Boost 

9.2 min 15.3 min 15.7 min 

Flink + 

H2O.ai 

12.7 min 18.5 min 20.1 min 

Insight: Spark performed competitively, especially 

with logistic regression, but was outpaced by Ray with 

XGBoost on complex ensemble methods like GBT 

and random forests [23]. 

 

Graph 1: Model Accuracy Comparison (Test Set 

AUC Scores) 

 
Observation: Spark achieved high AUC scores overall, 

but Ray+XGBoost offered slight improvements for 

tree-based models due to GPU acceleration [24]. 

Table 2: Resource Utilization on 64-Core Cluster 

Framewor

k 

Avg CPU 

Usage (%) 

Peak 

Memory 

(GB) 

Time to First 

Prediction 

(Streaming) 

Apache 

Spark 

82 240 0.91 sec 

Ray 88 212 0.72 sec 

Dask 79 228 1.02 sec 

Flink + 

H2O.ai 

81 250 1.21 sec 

Insight: Spark provided efficient CPU utilization but 

consumed more memory than Ray. It remained within 

operational SLAs for real-time predictions, 

confirming streaming readiness when paired with 

Structured Streaming [25]. 

 

Graph 2: Scalability by Dataset Size 

 
Observation: Spark demonstrated linear scalability 

and maintained performance efficiency as data volume 

increased, though Ray offered better speed-ups due to 

fine-grained task scheduling [26]. 

 

Key Takeaways from Experimental Benchmarks 

● Apache Spark remains a top-tier solution for 

distributed ML pipelines, particularly in modular, 

end-to-end batch workflows. 

● It handles large datasets with predictable 

performance, but lags in deep learning and GPU 

acceleration compared to newer tools like Ray. 

● Spark MLlib is particularly suited for logistic 

models, decision trees, and streaming 

classification, while integrations with MLflow 

and Hyperopt extend its production capability. 

● Streaming ML on Spark continues to mature, 

especially when paired with Structured Streaming 

and checkpointing for robustness. 
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V. FUTURE DIRECTIONS 

 

As data science moves from exploratory analytics to 

automated decision-making at scale, Spark-based ML 

pipelines must evolve to meet new demands. Below 

are key future directions: 

 

Seamless Deep Learning Integration with Spark 

Spark MLlib remains limited to traditional ML 

algorithms. However, future enhancements will likely 

improve native deep learning compatibility by 

integrating with distributed frameworks like BigDL, 

Horovod, or even ONNX runtime within Spark 

environments. This will allow Spark to manage both 

shallow and deep models in one pipeline, leveraging 

GPUs more effectively [27]. 

 

Unified MLOps with Native Support for ML Lifecycle 

To improve deployment velocity, Spark pipelines 

must better support model registry, governance, and 

monitoring. MLflow already offers a strong 

foundation, but additional integration with feature 

stores, automated retraining triggers, and CI/CD 

pipelines for models will be essential for regulated and 

real-time environments [28]. 

 

Streaming Model Training and Real-Time Adaptation 

While Spark Structured Streaming is a breakthrough 

for ingesting and transforming data in real time, real-

time model updates remain a challenge. Future 

architectures should enable online learning, adaptive 

model updates, and streaming hyperparameter tuning 

making pipelines reactive to new data distributions 

without retraining from scratch [29]. 

 

 Cross-Framework Interoperability 

A growing trend is the hybridization of ML 

infrastructure, where Spark handles large-scale 

preprocessing, while training and deployment occur in 

Ray, TensorFlow, or PyTorch. Standardizing data 

exchange formats (e.g., Parquet, ONNX) and building 

connector libraries will ensure Spark plays well with 

cloud-native ML platforms like SageMaker, Vertex 

AI, and Databricks [30]. 

 

Sustainability-Aware and Cost-Efficient Pipeline 

Execution 

In large-scale Spark clusters, optimizing not just for 

performance, but also for energy efficiency and cost 

awareness will be crucial. Research is emerging into 

carbon-aware job scheduling, intelligent caching, and 

green-aware pipeline design, which align with broader 

corporate sustainability goals [31]. 

 

VI.CONCLUSION 

 

Apache Spark continues to serve as a cornerstone in 

distributed machine learning pipelines, enabling 

organizations to harness big data at scale for predictive 

modeling and decision automation. Its strengths lie in 

modularity, scalability, and seamless data processing, 

which make it ideal for hybrid analytics across both 

batch and stream workloads. 

However, challenges remain in integrating cutting-

edge ML models, ensuring low-latency inference, and 

embedding ML governance into production pipelines. 

This review presented a synthesized view of these 

issues and proposed the S.P.A.R.K. framework to 

guide scalable, compliant, and future-proof ML 

design. 

Through a comparison of tools, architectures, and 

performance metrics, the review has shown that while 

Spark remains competitive in many dimensions, 

complementary toolchains and better ecosystem 

integration will be key to unlocking its full potential in 

modern MLOps environments. By advancing toward 

automation, interoperability, and adaptive learning, 

Spark can continue to evolve as a strategic platform in 

the ever-changing landscape of distributed machine 

learning. 
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