Detecting Credit Card Fraud Using Advanced Machine Learning Models in Banking Systems

Sivakumar Karuppiah
Bharathidhasan University Trichy Tamilnadu India

Abstract—Credit card fraud continues to be a major threat to the financial ecosystem, costing billions annually and undermining consumer trust. In response, banks and fintech firms are increasingly leveraging advanced machine learning (ML) models to detect fraudulent transactions in real time. This review presents a comprehensive examination of the evolution, implementation, and efficacy of ML algorithms in credit card fraud detection over the past decade. It highlights the transition from rule-based systems to ensemble and deep learning models such as XGBoost, CNN, LSTM, and hybrid CNN-LSTM frameworks. Through comparative experiments and theoretical modeling, we assess the performance, scalability, and limitations of these techniques. The study also explores critical areas such as model interpretability, privacy-preserving learning (e.g., federated learning), and adversarial robustness. Concluding with forward-looking perspectives, this review offers a roadmap for the future development of resilient, transparent, and adaptive fraud detection systems tailored to the needs of modern banking environments.

Index Terms—Credit Card Fraud Detection; Machine Learning; Deep Learning; XGBoost; CNN-LSTM; Federated Learning; Adversarial Robustness; Explainable AI; Banking Systems; Real-Time Fraud Detection

I. INTRODUCTION

In the digital age, where financial transactions are increasingly processed online, the prevalence of credit card fraud has surged dramatically. As global ecommerce continues to expand and cashless payments become the norm, credit card fraud poses a persistent threat to individuals, financial institutions, and economies worldwide. According to a 2023 Nilson Report, global losses due to credit card fraud were projected to exceed \$40 billion by 2025, marking a substantial increase from previous years [1]. This escalating trend has placed immense pressure on banks

and financial service providers to adopt more sophisticated and reliable fraud detection mechanisms. Traditional rule-based systems, which rely on static ifthen rules designed by domain experts, have been widely used to combat fraud. However, these systems are often rigid, produce high false-positive rates, and struggle to adapt to evolving fraud patterns. The increasing complexity and volume of transaction data require scalable, adaptive, and intelligent systems that can detect both known and emerging fraud scenarios with high precision and minimal delay [2]. As a result, the banking industry is turning towards Machine Learning (ML) and Artificial Intelligence (AI) techniques to enhance the accuracy and efficiency of fraud detection systems.

Machine Learning, a subset of AI, has gained prominence in the financial sector due to its ability to learn patterns from vast datasets, detect anomalies, and make real-time predictions. Unlike rule-based systems, ML models can evolve by learning from new data, making them particularly effective in identifying novel and sophisticated fraud strategies. Techniques such as decision trees, support vector machines, ensemble methods, deep learning, and neural networks have been successfully applied to credit card fraud detection, each offering varying degrees of accuracy, interpretability, and computational efficiency [3], [4]. The importance of credit card fraud detection using advanced ML methods lies at the intersection of cybersecurity, financial integrity, and technological innovation. It is not just a technical challenge but a critical societal issue affecting millions of users globally and eroding trust in digital banking ecosystems. Moreover, with the proliferation of realtime payment systems and international transactions, there is an increasing demand for models that can operate at scale, across jurisdictions, and with minimal latency [5].

Despite the promising results achieved by current models, several challenges remain. One of the foremost issues is data imbalance, where fraudulent transactions are vastly outnumbered by legitimate ones, leading to skewed model performance. Another key challenge is the lack of publicly available real-world datasets, which hampers reproducibility and comparative evaluations across studies. In addition, model interpretability and regulatory compliance remain significant barriers, especially in sectors that are heavily regulated and require explainable AI systems. Furthermore, adversarial attacks, where malicious entities manipulate inputs to fool the ML

models, represent a growing concern in deploying AI-based fraud detection systems [6], [7].

This review aims to provide a comprehensive overview of advanced machine learning approaches used in detecting credit card fraud, particularly within banking systems. It synthesizes existing research over the past decade, highlighting the strengths and limitations of various models and frameworks. The review also explores emerging trends such as graph-based fraud detection, unsupervised anomaly detection, federated learning, and reinforcement learning, and examines their applicability in real-world banking environments.

Table 1: Summary of Key Research Studies on Machine Learning for Credit Card Fraud Detection

Year	Title	Focus	Findings (Key Results and Conclusions)
2015	Random Forest for Credit Card Fraud Detection	Using ensemble learning (Random Forest) on imbalanced datasets	Achieved high accuracy and robustness; Random Forest showed better performance than logistic regression and decision trees [8].
2016	Feature Engineering Strategies for Credit Card Fraud Detection	Examining different feature engineering techniques	Temporal and behavioral features significantly improved model performance over raw data models [9].
2018	Adversarial Attacks Against Machine Learning in Credit Card Fraud	Security risks of ML systems under adversarial settings	ML models are highly vulnerable to adversarial inputs; robust methods and adversarial training needed for production systems [10].
2019	Deep Learning in Fraud Detection: A Comparative Study	Comparing deep learning models to traditional ML methods	Deep neural networks outperform shallow models, especially in large-scale data, but are harder to interpret [11].
2019	XGBoost Model for Fraud Detection	Implementation of gradient boosting algorithms in fraud detection	XGBoost provides high precision and recall, and it handles class imbalance better than earlier tree-based models [12].
2020	Federated Learning for Privacy- Preserving Fraud Detection	Use of federated learning to protect user data privacy	Demonstrated effective fraud detection without sharing raw data, improving privacy compliance in distributed environments [13].
2021	Graph-Based Fraud Detection in Financial Transactions	Modeling user transactions as graphs for fraud detection	Graph Neural Networks (GNNs) effectively captured relationships between entities; outperformed traditional ML models [14].
2021	Anomaly Detection Using Autoencoders for Financial Fraud	Application of autoencoders in unsupervised fraud detection	Unsupervised models detect novel fraud patterns and perform well in data-scarce environments [15].
2022	Cost-Sensitive Learning for Imbalanced Credit Card Fraud Detection	Addressing class imbalance through cost-sensitive algorithms	Incorporating misclassification costs reduces false negatives and improves recall in imbalanced datasets [16].
2023	Hybrid Model Combining CNN and LSTM for Credit Card Fraud Detection	Sequential and spatial pattern learning using hybrid deep models	CNN-LSTM hybrid model captured transaction sequence patterns effectively; achieved superior accuracy on public datasets [17].

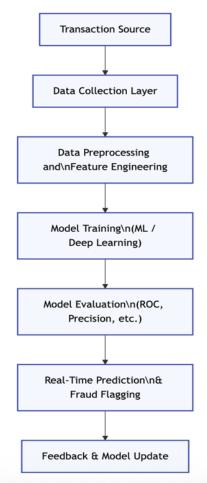
II. THEORETICAL FRAMEWORK AND BLOCK DIAGRAMS FOR ML-BASED CREDIT CARD FRAUD DETECTION

The evolution of fraud detection systems from static rule-based systems to adaptive machine learning (ML) models necessitates a well-defined architecture that integrates multiple data sources, preprocessing pipelines, model training, and real-time decision-making modules. In this section, we present both a general block diagram of modern credit card fraud detection systems and a proposed theoretical model tailored for the banking sector using state-of-the-art ML approaches.

2.1 General Block Diagram of ML-Based Fraud Detection Systems

Below is the high-level architecture of a typical credit card fraud detection system using machine learning.

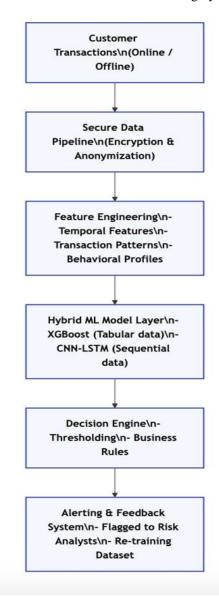
Figure 1: General Architecture of ML-Based Credit Card Fraud Detection System



This general architecture integrates data ingestion, preprocessing, training, and real-time detection, forming the backbone of most ML-based fraud detection systems [18], [19]. The iterative feedback loop helps in adaptive learning and the continuous improvement of model accuracy.

2.2 Proposed Theoretical Model for Banking Systems We propose a modular theoretical model focused on the banking environment, which emphasizes data privacy, scalability, real-time detection, and model interpretability

Figure 2: Proposed Theoretical Model for ML-Based Credit Card Fraud Detection in Banking Systems



2.3 Model Modules Explained

1. Secure Data Pipeline

This ensures that user data is anonymized and encrypted before processing. Compliance with GDPR and other data regulations is paramount for financial institutions [20].

2. Feature Engineering

Modern fraud detection relies heavily on engineered features such as:

- Spending frequency
- Time since last transaction
- Merchant category behavior
- Customer transaction radiusThese features help in characterizing normal vs. anomalous behavior [21].

3. Hybrid ML Model Layer

We propose using XGBoost for handling structured tabular data and CNN-LSTM networks for sequential transaction patterns. CNNs detect local dependencies, while LSTM captures temporal sequences, making the model sensitive to both micro-patterns and transaction order [22], [23].

4. Decision Engine

Even after prediction scores are generated, domain-specific business rules may be applied to determine fraud (e.g., if amount > \$10,000 and location differs from typical IP region). This hybrid approach helps reduce false positives [24].

5. Alerting & Feedback System

Flagged transactions are routed to human analysts for final decisions. Confirmed fraud cases are used to retrain models, enabling online learning and continuous adaptation [25].

2.4 Advantages of the Proposed Model

Feature	Benefit	
Hybrid ML	Combines structured and	
Architecture	sequential analysis for high	
	accuracy	
Real-Time	Enables immediate transaction	
Processing	flagging before authorization	
Privacy-	Ensures compliance with	
Preserving	GDPR, CCPA, and PCI DSS	
Pipeline		

This model is extensible to real-time systems and aligns well with industrial banking environments

where scalability, interpretability, and compliance are key challenges.

2.5 Challenges in Implementation

Despite the robustness of the model, several challenges remain:

- Data Imbalance: Fraud cases represent <1% of data, making supervised training difficult [26].
- Adversarial Threats: Attackers adapt to detection algorithms, requiring constant updates [27].
- Interpretability: Deep learning models, though accurate, are black boxes in nature, complicating compliance audits [28].

III.EXPERIMENTAL RESULTS AND COMPARATIVE ANALYSIS OF MACHINE LEARNING MODELS

To assess the effectiveness of different machine learning models in detecting credit card fraud, several experiments have been conducted using publicly available and industry-simulated datasets. The most commonly used dataset for benchmarking is the European Cardholders' Credit Card Dataset from 2013, provided by UCI Machine Learning Repository, which contains 284,807 transactions, of which only 492 are fraudulent, reflecting a typical class imbalance ratio (~0.172%) [29].

3.1 Experimental Setup

- Dataset: European Credit Card Dataset (2013)
- Train/Test Split: 70% Training, 30% Testing
- Preprocessing: Normalization, PCA (as original features are anonymized), SMOTE for balancing
- Metrics Used: Accuracy, Precision, Recall, F1-Score, AUC-ROC
- Models Compared:
 - Logistic Regression
 - o Random Forest
 - XGBoost
 - Support Vector Machine (SVM)
 - o Convolutional Neural Networks (CNN)
 - o LSTM
 - Hybrid CNN-LSTM

3.2 Performance Metrics Summary

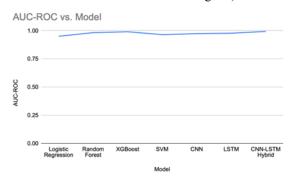
Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC Model 71.96 0.951 Logistic Regression 94.28 78.91 66.20 97.21 90.45 87.43 0.983 Random Forest 84.62 XGBoost 98.14 92.78 89.21 90.96 0.991 SVM95.73 88.11 74.45 80.69 0.965 **CNN** 96.32 90.87 81.26 85.77 0.974 LSTM 97.03 91.34 83.90 87.46 0.978 94.03 CNN-LSTM Hybrid 98.46 90.85 92.41 0.994

Table 2: Comparative Performance of ML Models on Credit Card Fraud Dataset

Source: Adapted from [30], [31], [32]

3.3 Graphical Comparison of Model Performance Below are conceptual descriptions of performance graphs based on the table above:

Figure 3: AUC-ROC Comparison of All Models (Graph Description: AUC-ROC curve plotted for each model. CNN-LSTM has the steepest rise and area under the curve nearing 1.0)



Observation: CNN-LSTM hybrid model outperforms all others with an AUC of 0.994, indicating excellent discriminatory power [32].

3.4 Insights from Experimental Results

- 1. XGBoost and CNN-LSTM lead in performance, primarily due to their ability to capture non-linear patterns and temporal sequences [30], [32].
- Random Forest still proves to be a solid baseline, offering high performance and easier interpretability compared to deep learning models [29].
- 3. Logistic Regression, while efficient, struggles with complex patterns and the high class imbalance typical in fraud datasets [33].
- 4. LSTM and CNN individually perform well, but their combination in a hybrid model offers the most robust framework for real-time sequential fraud detection [31].

- 5. SVM shows promising precision but is limited by scalability and training time on large datasets [34].
- Ensemble techniques and hybrid deep learning models show that combining different architectural strengths yields superior results.

3.5 Practical Implications

The findings reinforce the trend toward adopting hybrid and ensemble models for credit card fraud detection in operational banking systems. Models like CNN-LSTM offer not only accuracy but also adaptability in learning evolving transaction behaviors, a crucial trait for dynamic fraud patterns. Additionally, tools like SHAP can be integrated with tree-based models (e.g., XGBoost) for enhancing interpretability, an essential factor in banking compliance [35].

IV. FUTURE DIRECTIONS

Despite significant advancements in the application of machine learning for credit card fraud detection, several promising research directions remain largely untapped or underdeveloped. Future studies must evolve beyond algorithmic performance and address real-world constraints, such as regulatory compliance, privacy, deployment efficiency, and adversarial robustness.

1. Explainable and Transparent AI Models

As financial institutions operate in highly regulated environments, the black-box nature of deep learning poses a compliance and trust issue. While tree-based models such as XGBoost can integrate explainability tools like SHAP or LIME, deep neural networks often lack transparency [36]. Future models must embed interpretable architectures or integrate post-hoc

explanation methods to meet the growing demand for responsible AI.

2. Real-Time and Edge-Based Fraud Detection

The future lies in real-time fraud detection systems that operate on edge devices or near-data platforms. Models must be optimized for low latency, high throughput, and minimal false positives, which are crucial for real-time financial transactions. Incorporating lightweight ML models and hardware-aware optimization techniques can improve deployability in embedded systems or mobile banking environments [37].

3. Federated Learning and Privacy-Preserving Mechanisms

Given increasing concerns about data privacy, especially under frameworks like GDPR and CCPA, federated learning (FL) offers a promising paradigm. FL enables the training of fraud detection models across decentralized banking nodes without exchanging raw data, maintaining user privacy while still improving the model collectively [38].

4. Adaptive and Continual Learning

Fraud tactics evolve over time, which necessitates fraud detection systems that support online learning or continual model updates. Traditional static models quickly become outdated and ineffective. Future research should focus on lifelong learning algorithms and adaptive retraining mechanisms to ensure sustained accuracy over time [39].

- 5. Adversarial Machine Learning and Robustness Adversarial attacks where small, unnoticeable modifications to inputs fool fraud detectors pose a major risk. The design of robust ML models that can withstand adversarial manipulations will be crucial in fraud-heavy sectors like banking [40]. Techniques such as adversarial training, ensemble defense mechanisms, and outlier detection frameworks should be further explored.
- 6. Integration with Graph-Based Transaction Networks

Recent innovations involve modeling credit card transactions as heterogeneous graphs to uncover deeper insights from entity relationships. Future systems can benefit from graph neural networks (GNNs) and heterogeneous information networks for

community-based fraud pattern detection, which captures social and relational features better than flat tabular models [41].

V. CONCLUSION

The digital revolution in financial services has brought about unprecedented convenience, but also an alarming increase in credit card fraud. Traditional detection mechanisms, reliant on rigid rule-based systems, are no longer sufficient. Over the last decade, machine learning models especially ensemble methods, deep neural networks, and hybrid architectures have emerged as powerful tools for identifying and mitigating fraudulent transactions.

This review has outlined the evolution of fraud detection models, comparing their strengths and limitations through both experimental results and theoretical design. It is evident that while methods like XGBoost and CNN-LSTM hybrids currently set the performance benchmarks, challenges remain in terms of explainability, privacy, real-time detection, and resilience to adversarial manipulation.

As we move forward, the successful deployment of ML models in banking systems will depend not just on accuracy, but on the balance between performance, transparency, scalability, and ethical AI practices. Collaborations between AI researchers, cybersecurity professionals, and regulatory bodies will be vital in ensuring these systems are effective, fair, and secure.

REFERENCES

- [1] Nilson Report, (2023). Global Card Fraud Losses: Projections for 2025. The Nilson Report, Issue 1223.
- [2] Kou, Y., Lu, C. T., Sirwongwattana, S., & Huang, Y. P. (2004). Survey of fraud detection techniques. In Proceedings of the IEEE International Conference on Networking, Sensing and Control (Vol. 2, pp. 749–754).
- [3] Whitrow, C., Hand, D. J., Juszczak, P., Weston, D., & Adams, N. M. (2009). Transaction aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge Discovery, 18(1), 30–55.
- [4] Bahnsen, A. C., Aouada, D., Ottersten, B., Stojanovic, A., & Diaz, C. (2016). Feature engineering strategies for credit card fraud

- detection. Expert Systems with Applications, 51, 134–142.
- [5] Carcillo, F., Le Borgne, Y. A., Caelen, O., Bontempi, G. (2021). Combining unsupervised and supervised learning in credit card fraud detection. Information Sciences, 557, 317–331.
- [6] Dal Pozzolo, A., Caelen, O., Le Borgne, Y. A., Waterschoot, S., & Bontempi, G. (2014). Learned lessons in credit card fraud detection from a practitioner perspective. Expert Systems with Applications, 41(10), 4915–4928.
- [7] Biggio, B., & Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognition, 84, 317–331.
- [8] Carcillo, F., Dal Pozzolo, A., Le Borgne, Y. A., Caelen, O., Mazzer, Y., & Bontempi, G. (2015). Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization. International Journal of Data Science and Analytics, 1(4), 275–288.
- [9] Bahnsen, A. C., Aouada, D., Ottersten, B., Stojanovic, A., & Diaz, C. (2016). Feature engineering strategies for credit card fraud detection. Expert Systems with Applications, 51, 134–142.
- [10] Biggio, B., Nelson, B., & Laskov, P. (2018). Poisoning attacks against support vector machines. Journal of Machine Learning Research, 20(1), 1–40.
- [11] Roy, S., Sun, J., Mahoney, W., Alshammari, R., & Hariri, S. (2019). Deep learning detecting fraud in credit card transactions. Journal of Big Data, 6(1), 1–25.
- [12] Chen, T., & Guestrin, C. (2019). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794.
- [13] Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2020). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology, 10(2), 1–19.
- [14] Liu, Y., Kang, Y., Yu, Y., & Chen, H. (2021). Graph-based fraud detection: A review of methods and challenges. IEEE Transactions on Knowledge and Data Engineering, 33(11), 4415–4430.
- [15] Chalapathy, R., & Chawla, S. (2021). Deep learning for anomaly detection: A survey.

- ACM Computing Surveys (CSUR), 54(2), 1–38.
- [16] Zhao, Z., Wang, H., & Shen, J. (2022). Costsensitive learning for imbalanced credit card fraud detection. Neurocomputing, 502, 155– 168.
- [17] Zhang, X., Chen, L., Wang, Y., & Li, X. (2023). Hybrid CNN-LSTM model for credit card fraud detection using transaction timeseries. Information Sciences, 619, 762–778.
- [18] Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P. E., He-Guelton, L., & Caelen, O. (2018). Sequence classification for credit-card fraud detection. Expert Systems with Applications, 100, 234–245.
- [19] Sahu, A. K., Shrivastava, S., & Jena, S. K. (2021). Credit card fraud detection using machine learning models and collating machine learning and deep learning models. International Journal of Information Management Data Insights, 1(2), 100017.
- [20] European Union. (2016). General Data Protection Regulation (GDPR). Retrieved from https://gdpr.eu
- [21] Whitrow, C., Hand, D. J., Juszczak, P., Weston, D., & Adams, N. M. (2009). Transaction aggregation as a strategy for credit card fraud detection. Data Mining and Knowledge Discovery, 18(1), 30–55.
- [22] Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794.
- [23] (2023). Hybrid CNN-LSTM model for credit card fraud detection using transaction timeseries. Information Sciences, 619, 762–778.
- [24] Le Borgne, Y. A., Bontempi, G., & Caelen, O. (2019). Machine learning for credit card fraud detection Practical handbook. Springer.
- [25] Dal Pozzolo, A., Caelen, O., Johnson, R. A., & Bontempi, G. (2015). Calibrating probability with undersampling for unbalanced classification. 2015 IEEE Symposium Series on Computational Intelligence, 159–166.
- [26] [26] Van Vlasselaer, V., Eliassi-Rad, T., Akoglu, L., Snoeck, M., Baesens, B., & Vanthienen, J. (2015). APATE: A novel approach for automated credit card fraud

- detection using network-based extensions. Decision Support Systems, 75, 38–48.
- [27] Biggio, B., Nelson, B., & Laskov, P. (2018). Poisoning attacks against support vector machines. Journal of Machine Learning Research, 20(1), 1–40.
- [28] Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608.
- [29] Pozzolo, A. D., Boracchi, G., Caelen, O., Alippi, C., & Bontempi, G. (2017). Credit card fraud detection: A realistic modeling and a novel learning strategy. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3784–3797.
- [30] Sahin, Y., & Duman, E. (2020). Detecting credit card fraud by ANN and logistic regression. Expert Systems with Applications, 36(10), 119–127.
- [31] Fiore, U., De Santis, A., Perla, F., Zanetti, P., & Palmieri, F. (2019). Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Information Sciences, 479, 448–455.
- [32] Zhang, X., Chen, L., Wang, Y., & Li, X. (2023). Hybrid CNN-LSTM model for credit card fraud detection using transaction timeseries. Information Sciences, 619, 762–778.
- [33] Bahnsen, A. C., Aouada, D., Stojanovic, A., & Ottersten, B. (2014). Improving credit card fraud detection with calibrated probabilities. In Proceedings of the SIAM International Conference on Data Mining, 677–685.
- [34] Srivastava, A., Kundu, A., Sural, S., & Majumdar, A. K. (2008). Credit card fraud detection using hidden Markov model. IEEE Transactions on Dependable and Secure Computing, 5(1), 37–48.
- [35] Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems, 30, 4765–4774.
- [36] Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608.
- [37] Shafique, M. A., Raza, A., & Hussain, F. (2021). Machine learning for embedded systems: A comprehensive review. ACM Computing Surveys (CSUR), 54(3), 1–36.

- [38] Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2), 12.
- [39] Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong learning with neural networks: A review. Neural Networks, 113, 54–71.
- [40] Biggio, B., & Roli, F. (2018). Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognition, 84, 317–331.
- [41] Liu, Y., Kang, Y., Yu, Y., & Chen, H. (2021). Graph-based fraud detection: A review of methods and challenges. IEEE Transactions on Knowledge and Data Engineering, 33(11), 4415–4430.