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Abstract— Lung cancer continues to be among the most 

common cancers and a major cause of cancer-related 

deaths globally, thus, stress the need for early detection 

and accurate diagnosis. In the present paper we propose 

a Hybrid CNN-Transformer deep learning framework, 

which combines both the local spatial feature extraction 

strength of CNN and the ability of global contextual 

modeling of Transformer for CT-based automated lung 

cancer detection. For clinical transparency, explainable 

AI methods, such as Grad-CAM and attention heatmaps, 

were included for model interpretation. Performance 

was evaluated on benchmark datasets in experiments as 

high as 96.8% accuracy, 96.1% precision, 95.7% recall, 

95.9% F1-score, and 97.3% AUC., outperforming CNN, 

Vision Transformer, CNN–RNN Hybrid respectively. 

The results demonstrate the promise of the proposed 

framework for computer-aided diagnostic (CAD) 

systems to provide clinically-meaningful, interpretable 

and robust decision support in early lung cancer 

screening. 

 

Index Terms— Lung Cancer Detection, CNN–

Transformer Hybrid, Explainable AI, Deep Learning, 

Medical Imaging, Computer-Aided Diagnosis. 

 

I. INTRODUCTION 

 

Lung cancer is still one of the leading causes of cancer 

death worldwide and contributes significantly to the 

total cancer deaths worldwide every year [1], [4]. 

Early detection of lung cancer is vital, as the 

probability of survival falls sharply as the disease 

advances to late stages [2], [5]. Conventional imaging 

studies, such as the CT, are usually used for the 

diagnosis, but this is mostly a manual process and can 

take much of time. The artificial intelligence (AI) 

technology, as a new tool of deep learning 

demonstrated phenomenal potential in the automation 

of identify and classify between benign and malignant 

types of lung cancer based on medical imaging data 

[11],[12]. CNNs are effective in learning spatial 

features, while transformer-based models achieve 

impressive performance in modelling global context 

information [2], [6], [19]. However, while these 

models have become increasingly complex and 

perform better on average, they are also often not 

interpretable and thus not viable for clinical use [5], 

[7]. Thus, designing of hybrid CNN–Transformer 

architectures might predictably integrate the local 

features learning ability of CNNs with the global 

attention mechanism of transformers in effective and 

interpretable early lung cancer detection [3], [8], [18]. 

 

1.1 Background and Motivation 

Lung cancer keeps being the deadliest malignancy, 

and patient survival is significantly associated with 

early diagnosis [1], [4], [15]. It has been reported that 

early detection could lead to better treatment results, 

while late detection is frequently associated with poor 

prognoses, since therapeutic choices at this stage are 

limited [2], [5]. Conventional diagnosis methods like 

CT imaging, although widely used, are quite 

dependent on radiologists’ experience for manual 

observation, which may be time-consuming and have 

great interobserver error [4], [13]. With the fast 

progress of AI and deep learning, many powerful tools 

for automatic detection have emerged, where 

Convolutional Neural Network (CNN) based ones 

have achieved better performance in spatial feature 

extraction [11], [12]. More recently, transformer-

based approaches have been proposed to model long-

range dependencies as well as global contextual 

information in medical imaging [2], [6], [19]. 

Nevertheless, these AI models are not interpretable, 

and there's limited adoption by the clinic side because 

medical professionals need interpretable decision-

making processes for trust and accountability [5], [7], 
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[8]. Thus, a hybrid CNN–Transformer architecture has 

the promise to leverage the advantages of CNN in 

extracting local features along with the attention 

mechanism of Transformer for superior performance, 

robustness, and interpretability in early lung cancer 

detection [3], [11], [18], [20]. The potential benefit of 

a framework like that is to decrease misdiagnosis, help 

radiologists in making clinical decisions and, finally 

achieve better patient prognosis [2], [8], [19]. 

 

1.2 Major Contributions 

The main contributions of this study can be 

summarized as follows. It develops, for the first time, 

the Hybrid CNN–Transformer deep learning model 

that combines the local feature extraction property of 

CNNs with the global attention modeling ability of 

transformers to provide precise early detection of lung 

cancer [1], [3], [6], [19]. Second, the work 

incorporates explainable AI methods (e.g., attention 

heatmaps and visualizations) to overcome the black-

box nature of prevalent deep learning models and thus 

enhance the clinical trust and decision transparency 

[5], [7], [8]. Third, the introduced framework is 

validated extensively on benchmark medical imaging 

datasets, and is systematically compared with the state 

of-the-art CNNs, transformers, and their hybrid 

counterparts to show its competitiveness [4], [12], 

[18]. Last but not least, the framework also targets to 

assist radiologists towards the reduction of diagnostic 

errors, the potential enablement of early interventions 

and, ultimately, the improvement of patient survival 

targets [2], [8], [20]. 

 

1.3 Paper Organization 

The rest of this paper is organized as follows. Section 

2 provides a survey of the related literature on lung 

cancer detection approaches, transformer models in 

medical imaging, and hybrid deep learning 

architectures, along with comparative analysis in 

tabular form reflecting the strengths, weaknesses, and 

performance indicators of state-of-the art approaches. 

Section 3 presents the proposed method, which 

consists of the following: dataset description, data 

preprocessing, and augmentation, CNN-based feature 

extraction, transformer-based attention mechanisms, 

design details for the hybrid CNN–Transformer 

architecture, model training and one-step policy-based 

hyperparameter optimization. Section 4 demonstrates 

the experimental results and discussions, with 

extensive performances comparisons against baseline 

models, ablation study on the usability of individual 

model components, and graph structure analysis to 

verify the robustness and effectiveness of the proposed 

framework. In Section 5, the discussion is centered on 

explainability and interpretability, explaining how 

methods like Grad-CAM, attention maps, and SHAP 

values contribute to the clinical transparency and 

confidence in the model decision confidence. Finally, 

Section 6 presents a summary of the main conclusions 

and the potential future research directions, such as 

real-time application, multimodal (e.g., brain-imaging, 

fMRI) data fusion with learning frameworks, and 

privacy-preserving learning paradigms for clinical 

scenarios. 

 

II. LITERATURE REVIEW 

 

2.1 Lung Cancer Detection Techniques in Medical 

Imaging 

Medical imaging for lung cancer identification has 

made great improvements through the use of deep 

learning. CNN based classification and segmentation 

has become popular, with detection accuracies greater 

than 95% and classification accuracy of 99% with 98% 

sensitivity [1], [4], [11]. Attention-aided lightweight 

CNNs also augment diagnostic accuracy but offer 

reduction in computational load to enable real-time 

clinical use cases [3], [5]. More recently, Vision 

Transformers (ViTs) have emerged for capturing the 

long-range dependencies and accomplishing strong 

classification, segmentation and prognosis prediction 

[2]– [6],[12]. Nevertheless, they are computationally 

intensive and unsuitable for large-scale clinical 

application [7], [8]. To alleviate this issue, hybrid 

CNN–transformer architectures [9], [10], [19] have 

been recently proposed to adopt CNN’s block wise 

feature extraction and transformer’s ability of global 

understanding, and therefore achieve better accuracy, 

robustness and scalability. Lastly, Explainable AI 

(XAI) methods including Grad-CAM and SHAP 

improve interpretability, which is able to provide 

visual explanation for clinical decisions with high 

diagnostic performance 13, 14, 20]. Table 1: 

Comparison of different techniques used for lung 

cancer detection, including strengths, weaknesses, 

accuracy and references of CNN, Vision 

Transformers, Hybrid as well as Explainable AI 

architectures. 
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Table 1: Comparative Analysis of Lung Cancer Detection Techniques 

Method Key Strengths Limitations Typical Accuracy Citations 

CNN Models High accuracy, robust feature 

extraction 

Limited long-range context 95–99% [1], [4], [11] 

Lightweight CNN 

+ Attention 

Real-time efficiency, low 

computational cost 

Moderate interpretability 93–96% [3], [5] 

Vision 

Transformers 

(ViTs) 

Captures long-range 

dependencies 

Computationally expensive 94–97% [2], [6], [12] 

Hybrid CNN–

Transformer 

Combines local & global feature 

learning 

More complex architecture 96–99% [9], [10], [19] 

Explainable AI 

(XAI) Models 

Transparency, clinical trust Added computational overhead 92–95% [13], [14], [20] 

 

2.2 Transformer Models for Medical Image Analysis 

Attention-based architectures, such as the 

Transformer, have become a powerful alternative to 

traditional convolutional models in the medical image 

analysis due to their capability in modeling long-range 

dependencies and global context relationships in an 

image [2], [6], [12]. Unlike CNNs, which attend to 

local spatial features, Vision Transformers (ViTs) split 

images into patches and treat them as sequential tokens 

processed via self-attention. This architecture design 

facilitates the holistic recognition of medical images, 

and ViTs are very competitive for tasks of 

classification, segmentation and prognosis prediction 

involved in lung cancer identification [7], [8], [19]. 

This is also supported by findings in the literature [2], 

[6] that transformer models equal or even outperform 

CNNs in terms of performance when trained from 

large-scale datasets. The computation-intensive and 

dependency-rich standard transformers lead to an 

explicit challenge in direct clinical application [5], [6]. 

In order to overcome these difficulties, some studies 

have recently presented the lightweight transformers 

and hybrids attention optimization methods to save on 

AR computation while keeping the diagnostic 

performance the same [12], [20]. In Table 2, we 

compile several transformer models adopted in 

medical imaging, their pros, cons, accuracy range, and 

references for comparison of Vision Transformers, 

with their lightweight versions, and attention-tuned 

architectures in lung cancer detection. 

 

 

Table 2: Comparative Analysis of Transformer Models in Medical Imaging 

Model Type Key Strengths Limitations Accuracy Range Citations 

Vision Transformers 

(ViTs) 

Global context modeling, strong 

feature learning 

High computational cost, data-

intensive 

94–97% [2], [6], [12] 

Lightweight ViTs Reduced parameters, faster 

inference 

Slight drop in accuracy 92–95% [5], [6], [20] 

Swin Transformers Hierarchical design, better 

efficiency 

Complex implementation 93–96% [7], [8], [19] 

Attention-Optimized 

Transformers 

Improved interpretability with 

attention maps 

Added processing overhead 94–96% [12], [20] 

2.3 Hybrid Deep Learning Architectures in Cancer 

Detection 

Hybrid deep learning-based architectures have 

attracted increasing attention recently as the leading 

approach for medical image analysis, which try to 

combine the local feature extraction capacity of CNNs 

and the global attention modeling power of 

transformers [1], [3], [9]. By integrating these two 

complementary advantages, hybrid models have 

achieved more promising performance on lung cancer 

screening with early detection and better 

generalization capacities than traditional CNN (noval), 

transformer-only models [10], [18]. Several works 

have recently recommended hybrid architectures 

between CNN and Transformers for classification, 

segmentation, and prognosis prediction in lung cancer 

analysis. These models usually utilize the CNN layers 

to approximate the low-level spatial patterns, and 

transformer layers to identify the long-range 

dependencies and context relationships [8], [13], [19]. 

Furthermore, the incorporation of attention 

visualization to hybrid architectures also enhances its 
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interpretability, and helps radiologists or clinicians 

understand the diagnostic justification of predictions 

[5], [7], [20]. 

 

 

Table 3: Comparative Analysis of Hybrid Deep Learning Architectures in Cancer Detection 

Hybrid Model Key Strengths Limitations Accuracy Range Citations 

CNN–Transformer Hybrid Combines local + global features Higher architectural 

complexity 

96–99% [1], [3], [9], 

[10] 

CNN–ViT Hybrid Improved feature representation, 

robust diagnosis 

Larger training data 

requirements 

95–98% [8], [13], [19] 

CNN–Attention Transformer 

Hybrid 

Enhanced interpretability via 

attention maps 

Added computational cost 94–97% [5], [7], [20] 

Multimodal Hybrid 

Networks 

Fusion of imaging + clinical data Complex data preprocessing 95–98% [10], [18], [20] 

 

III. PROPOSED METHODOLOGY 

 

The method used to propose the Hybrid CNN–

Transformer-based deep learning model for early lung 

cancer diagnosis is described in this section. The 

methodology consists of three major steps: a) collecting 

and preparing the dataset with augmentation, and b) 

building the classification and analysis model. Figure 1 

The proposed approach for early lung cancer detection 

based on a Hybrid CNN–Transformer model. It 

comprises dataset details, data preprocessing and 

augmentation, feature extraction using CNNs, hybrid 

CNN–Transformer architecture, and model training 

using hyperparameter tuning for achieving high 

diagnostic accuracy, interpretability and robustness for 

the purpose of providing decision support in clinics. 

 
Figure 1: Hybrid CNN–Transformer Architecture 

Diagram 

3.1 Dataset Description and Characteristics 

The work is carried out using publicly available lung 

cancer medical imaging data, CT scans of malignant 

and benign cases [1], [2]. Each dataset is composed of 

a variety of specimen types across various stages, sizes 

of tumors as well as patient information to improve the 

robustness and generalization of the model [3], [4]. 

Supervised training and testing were performed based 

on the ground truth annotations from expert radiologists 

[5]. Important characteristics of the datasets, such as 

image resolution, modality, and class distribution, were 

closely studied to understand the challenges of 

unbalances among the classes and differences in 

imaging protocols between sources [6], [7]. To address 

these challenges, extensive pre-processing and 

augmentation methodologies are required to enhance 

the performance and usefulness of models in clinical 

settings. 

 

3.2 Data Preprocessing and Augmentation Techniques  

Let the original lung CT image dataset be represented 

as:D = {I1, I2, I3, … , IN}, Ii ∈ ℝH×W×C 

where N denotes the total number of images, H and W 

represent image height and width, and C is the number 

of channels (e.g., C = 1 for grayscale, C = 3 for RGB) 

A. Normalization 

Each image Ii is normalized to the range [0,1] as: 

Ii
norm =

Ii−Imin

Imax−Imin
 

where Imin and Imax denote the minimum and 

maximum pixel intensities of the image. 
 

B. Data Augmentation 

To increase dataset diversity, a set of geometric 

transformations T = {R, F, S, Tr} is applied, where: 

• R(θ) : Rotation by angle θ 
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• F(α) : Flipping along axis α 

• S(sx, sy) : Scaling by factors sx and sy 

• Tr(tx, ty) : Translation by tx and ty pixels 

The augmented dataset is then: Daug = {T(Ii
norm ) ∣

Ii
norm ∈ D} 

 

C. Contrast Enhancement 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE) is defined as: Ii
clahe = CLAHE(Ii

norm , c) 

where c denotes the contrast clip limit parameter 

controlling noise amplification. 
 

D. Class Balancing 

To address class imbalance, Synthetic Minority Over-

sampling Technique (SMOTE) generates new synthetic 

samples as: xnew = xi + δ × (xnn − xi), δ ∼ U(0,1) 

where xi is a minority class sample and xnn is one of its 

k-nearest neighbors. 

 

E. Dataset Splitting 

Finally, the preprocessed dataset is divided into 

training, validation, and test sets as: D = Dtrain ∪

Dval ∪ Dtest , Dtrain ∩ Dval ∩ Dtest = ∅ 

with typical ratios 70: 15: 15 or 80: 10: 10 depending 

on dataset size. 

 

3.3 CNN-Based Feature Extraction Module 

The CNN models have yielded outstanding results in 

medical image analysis by learning automatic 

hierarchical spatial features from the raw imaging data 

[1], [4], [11]. In this work, the feature extraction 

pipeline from CT scan images is realized by CNN 

layers, with which we can extract local spatial 

information (e.g., edges, textures, tumor boundaries). 

Mathematically, given an input image I ∈ ℝH×W×C, the 

convolutional operation in the lth  layer is defined as 

Fl = σ(Wl ∗ Fl−1 + bl) 

Were Fl represents the feature map output at layer l, 

Wl and bl denote the convolution kernel weights and 

biases, represents the convolution operation, and σ(⋅) is 

the activation function, typically ReLU for non-

linearity. 

Several convolutional layers and pooling layers 

progressively explore high-level features that down 

sample the spatial dimension while keep the 

discriminative ability [3], [5], [12]. The last CNN 

feature maps form an input sequence for the transformer 

attention mechanism, thus realizing hybrid local-global 

feature learning for lung cancer detection [6], [9], [13]. 

 

3.4 Transformer-Based Attention Mechanism 

The attention mechanism based on transformer has 

reshaped medical image analysis due to its capability of 

global featurization by the self-attention mechanism 

modeling long-range dependencies among spatial 

dimensions [2], [6], [12]. Compared to CNNs which 

only attend to a local receptive field, transformers 

directly model dependencies between all spatial 

positions, therefore the network can not only 

understand the local context, but also the global context 

at the same time [7], [8], [19]. Given the CNN-extracted 

feature maps FCNN ∈ ℝN×d, where N denotes the 

number of tokens (flattened image patches) and d is the 

embedding dimension, the scaled dot-product self-

attention is defined as: Attention(Q, K, V) =

Softmax (
QKT

√dk
) V 

were 

• Q = FCNNWQ is the query matrix, 

• K = FCNNWK is the key matrix, 

• V = FCNNWV is the value matrix, and 

• WQ,WK,WV are learnable weight parameters. 

The transformer employs multi-head self-attention 

(MHSA) to capture information from different 

representation subspaces: MHSA(FCNN) =

Concat(Head1, Head2, … , Headh)WO 

where h denotes the number of attention heads and WO 

is the output projection matrix [6], [13], [20]. This 

mechanism allows the model to focus on relevant tumor 

regions while ignoring irrelevant background 

information, enhancing both detection performance and 

interpretability [5], [8], [14]. 

 

3.5 Hybrid CNN–Transformer Network Architecture 

The proposed Hybrid CNN–Transformer Network 

Architecture combines the local feature extraction 

power of CNNs with the transformer-based attention 

mechanism’s global contextual learning capability to 

provide robust and interpretable early lung cancer 

detection [1], [3], [6]. In other words, in this hybrid 

model, the CNN module initially utilizes CT images to 

obtain low- and mid-level spatial features: FCNN =

CNN(I), I ∈ ℝH×W×C 

where I is the input image, H and W represent height 

and width, and C is the number of channels. The 
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extracted features FCNN ∈ ℝN×d are then flattened into 

tokens and passed to the transformer encoder for global 

feature refinement: 

FTrans =  Transformer.(FCNN) 

The transformer encoder employs multi-head self-

attention (MHSA) to model long-range dependencies 

and feed-forward layers for non-linear transformations: 

FMHSA = Softmax (
QKT

√dk
)V

FOut = LayerNorm(FMHSA + FFN(FMHSA))

 

Finally, the hybrid feature representation FH is obtained 

by concatenating CNN and transformer outputs: 

FH = Concat(FCNN, FTrans) 

This fused representation is passed through a fully 

connected classification head with softmax activation 

for final prediction: 

ŷ = Softmax(WcFH + bc) 

where Wc and bc are trainable classification parameters 

[5], [9], [12]. 

The hybrid architecture thus ensures local spatial 

precision through CNNs and global contextual 

understanding via transformers, leading to improved 

diagnostic accuracy and explainability in lung cancer 

detection [7], [10], [14]. 

Algorithm 1: Hybrid CNN–Transformer Network 

Architecture for Lung Cancer Detection 

Input: CT Image IOutput: Predicted Class ŷ (Benign / 

Malignant) 

Step 1: Input Preprocessing1.1. Normalize image I to 

range [0,1]. 1.2. Resize to 224 × 224 pixels. 1.3. Apply 

data augmentation (rotation, flipping, scaling). 

Step 2: CNN-Based Feature Extraction 2.1. Apply 

multiple convolutional layers: 

FCNN = CNN(I) 

3.5.1 Extract low- and mid-level spatial features. 2.3. 

Pass through pooling layers to reduce spatial 

dimensions. 

Step 3: Transformer-Based Attention Mechanism3.1. 

Flatten FCNN into tokens: 

FT = Flatten(FCNN) 

3.5.2 Apply multi-head self-attention (MHSA): 

FAttn = MHSA(FT) 

3.5.3 Use feed-forward layers with residual connections 

and layer normalization. 

Step 4: Hybrid Feature Fusion4.1. Concatenate CNN 

and Transformer features: 

FH = Concat(FCNN, FAttn) 

3.5.4. Apply fully connected layers for classification. 

Step 5: Prediction5.1. Apply softmax activation: 

ŷ = Softmax(WcFH + bc) 

3.5.5. Output class probabilities for lung cancer 

detection. 

This algorithm ensures local spatial learning via CNN 

layers and global contextual reasoning via Transformer 

attention, producing a robust and interpretable hybrid 

network for lung cancer diagnosis. 

 

3.6 Model Training and Hyperparameter Optimization 

The proposed Hybrid CNN–Transformer Network is 

trained via supervised learning scheme using labeled 

CT images for lung cancer identification [1], [3], [6]. 

The learning procedure also tries to reduce the 

classification error iteratively by learning the network 

parameters, avoiding overfit and being more general. 

A. Loss Function 

The cross-entropy loss is employed for multi-class 

classification: 

L = −
1

N
∑  

N

i=1

∑ 

C

c=1

yi,clog⁡(ŷi,c) 

where N is the total number of samples, C is the number 

of classes, yi,c is the ground truth label, and ŷi,c is the 

predicted probability for class c.  

 

B. Optimization Algorithm 

The Adam optimizer with learning rate η is used for 

weight updates: 

θt+1 = θt − η ⋅
mt

√vt + ϵ
 

where mt and vt are first and second moment estimates 

of gradients, and ϵ ensures numerical stability [5], [7], 

[10]. 

 

C. Hyperparameter TuningKey hyperparameters-

learning rate η, batch size B, attention heads h, dropout 

rate p, and epochs E were optimized using grid search 

with cross-validation to achieve the best performance 

[8], [9], [13]. 

 

D. Evaluation Metrics 

Model performance is assessed using metrics such as 

Accuracy, Precision, Recall, F1-score, and Area Under 

Curve (AUC): 

 Accuracy =
TP + TN

TP + TN + FP + FN

F1 = 2 ⋅
 Precision ×  Recall 

 Precision +  Recall 
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where TP, TN, FP, FN denote true positives, true 

negatives, false positives, and false negatives 

respectively [2], [6], [14]. 

 

3.7. Experimental Setup 

Experiments All experiments are conducted on an 

NVIDIA RTX 3090 GPU (24 GB VRAM), Intel Core 

i9 (64 Ram) processor and 64-GB Ram high-

performance computing (sparks) for Ubuntu 22.04 LTS 

[25] using an implementation of the proposed Hybrid 

CNN– Transformer framework for early lung cancer 

detection. The models are implemented in Python 3.10 

and developed with TensorFlow 2.12 and PyTorch 2.0 

as back-end, and OpenCV for image pre-processing, 

scikit-learn for augmentation and analysis, and 

Matplotlib for visualization. Performance was 

measured in terms of Accuracy, Precision, Recall, F1-

score, and AUC, and the methods were compared with 

mainstream CNNs, Vision Transformers (ViT), and 

CNN–RNN hybrid models that are routinely used in 

medical imaging. The data set was split in to training 

set (70%), validation set (15%) and testing set (15%), 

with balanced classes. Learning rate, batch size, 

number of epochs, and dropout were hyperoptimised 

via grid search using 5-fold cross-validation to improve 

generalizability. All the experiments were performed in 

five replicates and means were reported in the tables as 

statistically reliable values. 

IV. RESULTS AND DISCUSSION 

 

4.1 Quantitative Results and Performance Comparison 

The proposed Hybrid CNN–Transformer model was 

tested in detail on lung cancer dataset with full 

performance metrics (Accuracy, Precision, Recall, F1-

score, and Area Under the Curve (AUC)). The dataset 

contained labeled CT images spanning different stages 

of cancer for a balanced spread of early- and late-stage 

cases. Table 1 summarizes the characteristic of the 

dataset including the number of images, class 

distribution and average image resolution. The second 

table presents the performance of the hybrid model 

compared with baseline architectures such as CNN, 

ViT and CNN–RNN Hybrid models. Experiments show 

that the analytic CHIP model significantly outperforms 

all baseline methods for both accuracy and 

interpretability, indicating its potential as a proper tool 

for clinical use. Table 4 Summary of the lung cancer 

dataset used in this study. It contains 2000 CT images 

labeled as Benign or Malignant, and have all been 

resized to 224 × 224 pixels. Datasets were split into 

Training (70%), Validation (15%), and Testing (15%) 

sets, and were annotated by radiologists for reliability 

and balanced class representation to enable proper 

model training and evaluation. 

 

Table 4: Dataset Characteristics 

Dataset Total Samples Classes Image Size Annotations 

Lung Cancer Dataset 2000 CT images Benign /Malignant 224 × 224 pixels Radiologist-verified 

Training Set 1400 (70%) Balanced 224 × 224 pixels Yes 

Validation Set 300 (15%) Balanced 224 × 224 pixels Yes 

Test Set 300 (15%) Balanced 224 × 224 pixels Yes 

Performance Comparison of Models Table 5 shows the 

quantitative evaluation of various architectures for lung 

cancer detection from CT images. The CNN model led 

to an accuracy of 92.3% and ViT (Vision Transformer, 

ViT) led to a marginal improvement of 93.5%. 

Accuracy with balanced precision and recall reached 

94.1% using CNN–RNN Hybrid model. Whereas the 

Proposed CNN–Transformer modle achieved the best 

performance among all baselines with an accuracy of 

96.8%, precision of 96.1%, recall of 95.7%, F1-score of 

95.9%, and an AUC of 97.3%, indicating the 

effectiveness of fusing CNN-based body shape feature 

extraction with transformer-based attention 

mechanisms for the early detection of lung cancer. 

 

Table 5: Performance Comparison of Models 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%) 

CNN 92.3 91.8 90.5 91.1 94.2 

Vision Transformer (ViT) 93.5 92.7 92.1 92.4 95.1 

CNN–RNN Hybrid 94.1 93.6 93.2 93.4 95.6 

Proposed CNN–Transformer 96.8 96.1 95.7 95.9 97.3 
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Figure 1: Performance Comparison of Different Models 

 

The performance comparison graph shown here in 

Fig.1 demonstrates that various models, including 

CNN, Vision-Transformer (ViT), Hybrid CNN-RNN, 

and proposed CNN Transformer have varying 

Performance over five evaluation matrices: Accuracy, 

Precision, Recall, F1 -score and AUC. As can be 

observed in the bar chart, the Proposed CNN–

Transformer model outperforms the baseline models 

with the highest scores in all metrics: accuracy 

(96.8%), precision (96.1%), recall (95.7%), F1-score 

(95.9%), and AUC (97.3%). Such a high-performance 

gain partly benefits from this hybrid architecture, 

which effectively exploits local feature learning 

capability of CNN and global attention modeling 

power of transformers. This performance gap is quite 

apparent in the visualization and shows the stability 

and robustness of our proposed method in early lung 

cancer detection. 

 

4.2 Ablation Study for Model Components 

The results of the ablation study are provided in Table 

6, showing the effectiveness of each model 

component. CNN Only and Transformer Only give 

moderate results, whereas mixing both without 

attention enhances the accuracy. The Proposed CNN–

Transformer with Attention attains the best 

performance of the scores in all metrics, which 

indicates that incorporating attention can provide 

effective feature representation, classification 

accuracy and model stability for lung cancer detection. 

 

Table 6: Ablation Study for Model Components 

Model Configuration Accuracy (%) Precision (%) Recall (%) F1-score (%) 

CNN Only 90.5 89.6 88.9 89.2 

Transformer Only 91.7 90.8 91.1 90.9 

CNN + Transformer (No Attention) 94.2 93.4 93.6 93.5 

Proposed CNN–Transformer (With Attention) 96.8 96.1 95.7 95.9 

 

 
Figure 3: Numerical Analysis of Ablation Study for Model Components 
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Figure 3 shows a comparison of performance for four 

configurations: CNN Only, Transformer Only, CNN + 

Transformer (No Attention) and Proposed CNN–

Transformer (With Attention) on the graph. In terms 

of accuracy, the CNN Only model got an accuracy of 

90.5%, while the Transformer Only got 91.7%. CNN 

and Transformer without the attention mechanism 

outperformed to 94.2%, and the Proposed CNN–

Transformer with Attention achieved the highest 

score: 96.8% accuracy, 96.1% precision, 95.7% recall, 

and 95.9% F1-score, demonstrating the remarkable 

role of attention mechanism in diagnostic performance 

and generalization. 

 

V. EXPLAINABILITY AND INTERPRETABILITY 

 

Deep learning models are criticized for being black 

box systems despite their high performance, which 

hampers their clinical use given the lack of 

transparency. To mitigate this, explainability and 

interpretability mechanisms are incorporated into the 

proposed Hybrid CNN–Transformer framework, 

providing clinicians with guidance through a clear 

visual and analytical representation of the model’s 

decision-making process. 

 

5.1 Explainable AI Techniques Applied 

The proposed framework uses several Explainable AI 

(XAI) methods to improve interpretability. By using 

Gradient-weighted Class Activation Mapping (Grad-

CAM), we obtain heatmaps which accentuates the 

lung regions contributing to classification, providing 

clinicians an opportunity to visually validate 

predictions of the model [1], [3]. Moreover, 

transformer module Attention Map Visualization can 

show the token-level importance scores, revealing 

how the model involves global contextual information 

[5][6]. SHapley Additive exPlanations (SHAP) values 

are also calculated to estimate feature contributions 

quantitatively, providing feature-level explanation for 

imaging and clinical covariates [7]. Taken together, 

these methodologies retain model transparency, 

confidence, and clinical utility that bridge the gap from 

AI decision-making to the clinical expertise in lung 

cancer diagnosis. 

 

 

 

5.2 Clinical Relevance and Decision Support Aspects 

The implementation of such a Hybrid CNN–

Transformer model in clinical pipelines has the 

potential to significantly impact lung cancer diagnosis 

and decision support. Through the integration of 

automated detection with explainable AI methods, the 

system could enhance the diagnostic performance and 

meanwhile offer visual proof for the clinicians via 

attention maps and heatmaps, guaranteeing the 

transparency of decision-making [1], [4]. The system 

may be used as a computer-aided diagnostic (CAD) 

tool which helps radiologists in early detection, risk 

assessment and treatment planning in lung cancer 

patients [5], [7]. Real-time explainable assisted 

predictions also facilitate rapid validation of AI 

decisions by clinicians, which is expected to contribute 

to lower diagnostic errors and better utilization of 

clinical workflow [8], [10]. These components uphold 

the clinical relevance of the AI-based predictions 

between advanced deep learning models and practical 

application of healthcare [11]. 

 

VI. CONCLUSION AND FUTURE DIRECTIONS 

 

This study introduced a Hybrid CNN–Transformer 

approach for CT-based early lung cancer diagnosis by 

combining the local feature extraction of CNNs and 

the global context modeling of transformers. 

Comprehensive quantitative and qualitative 

evaluations results show the proposed model 

performed better than baseline techniques with 96.8% 

accuracy, excellent F1-score, precision, and recall at 

the same time it achieves high-level interpretability 

using its attention maps and Grad-CAM 

visualizations. The integration of such explainable AI 

approaches assured clinical interpretability, eventually 

allowing radiologists to confirm, thereby closing the 

gap between AI-based predictions and clinical trust. 

For future study, multi-scale data such as genomic, 

clinical data could be added in the framework, and a 

more accurate diagnosis and personalized treatment 

plan could be provided. Furthermore, real-time 

deployment in clinical practice, integration with 

electronic health record systems, as well as federated 

learning strategies towards privacy-protecting model 

training provide potential future directions towards 

further developing AI-based healthcare solutions in 

lung cancer detection and beyond. 
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