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Abstract—Automated detection and grading of diabetic
retinopathy (DR) from retinal fundus photographs has
rapidly advanced with convolutional neural networks
(CNNs), particularly via transfer learning from
ImageNet-pretrained models. This review summarizes
the evolution of DR detection using ImageNet-based
CNNs, common datasets and preprocessing pipelines,
architectures and transfer-learning strategies,
performance metrics, clinical validation efforts, current
limitations (data quality, annotation variability, domain
shift, interpretability), and future directions (federated
learning, multimodal models, explainability and
deployment). Key benchmark results and representative
studies are cited to guide researchers aiming to build
robust, clinically useful DR screening systems.

Index Terms—Diabetic retinopathy, fundus imaging,
convolutional neural networks, transfer learning,
ImageNet, EyePACS, Messidor, grading, screening.

I. INTRODUCTION

Diabetic retinopathy (DR) is a leading cause of vision
impairment worldwide; early detection via retinal
fundus photography enables timely treatment that can
prevent blindness. The advent of CNNs transformed
DR screening: large, labeled fundus datasets plus deep
architectures allowed automated algorithms to reach
(and sometimes exceed) human grader performance
for binary DR detection and multi-class grading. A
landmark demonstration by Gulshan et al. (Google)
showed high sensitivity and specificity for DR
detection using deep learning models trained on large
labeled fundus sets. The dawn of alternative ML
techniques, like support vector machines and Bayesian
networks, temporarily demoted the NNs, and it was
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only the relatively recent arrival of deep learning (DL)
that brought them back into the spotlight. Today,
large-scale DL-trained NNs successfully tackle
generic object recognition tasks with thousands of
object classes [4], a feat that many considered
unthinkable just ten years ago. The capabilities of deep
NN stem from several developments.

e Neural Network Perspective

In conventional neural networks, activation functions
are often saturating functions such as the sigmoid or
hyperbolic tangent. Their derivatives tend to approach
zero across much of their domain, which causes the
vanishing gradient problem during backpropagation:
as errors propagate backward through multiple layers,
their magnitudes diminish, slowing or even preventing
effective learning. Deep convolutional neural
networks (CNNs) address this challenge by employing
non-saturating activation functions, particularly the
rectified linear unit (ReLU) [5], which maintains non-
vanishing gradients even for large input values,
enabling efficient training of very deep architectures
[4]. Additionally, deep learning frameworks
introduced regularization strategies such as dropout
[6], where randomly selected neurons are temporarily
deactivated during training. This compels the network
to develop redundant and robust feature
representations, improving  generalization and
reducing overfitting.

e  Ophthalmological Perspective

The retina receives oxygen and nutrients from two
main sources: the retinal vasculature and the choroid,
which lies beneath the retinal pigment epithelium.
Within the retina, the central retinal artery enters via
the optic nerve and branches into superior and inferior
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divisions, which further subdivide into progressively
smaller vessels until they form a dense capillary
network. Gas and nutrient exchange primarily occur at
these capillaries, where oxygen and nutrients diffuse
into the retinal tissue while waste products and carbon
dioxide return to the blood. These capillaries converge
into venules, which merge into branch veins,
ultimately forming the central retinal vein that exits
through the optic nerve to return blood toward the
heart. Because each retinal region is supplied and
drained by a single artery—vein pair, any vascular
occlusion, whether arterial or venous, leads to
localized ischemia or fluid leakage, and therefore
vision loss in the corresponding region of the visual
field.

Training deep CNNs from scratch requires massive
labeled data and compute. Transfer learning from
ImageNet-pretrained networks (ResNet, Inception,
DenseNet, EfficientNet, etc.) is standard practice:

e Why transfer? ImageNet pretraining provides
robust low-level and mid-level visual features that
generalize to medical images, accelerating
convergence and improving performance when
labeled medical datasets are limited.

e How implemented? Typical pipelines freeze early
layers and fine-tune deeper layers (or fine-tune
whole network) on fundus images. Input
preprocessing (resizing, center-cropping, color
normalization), data augmentation (rotation,
flipping, brightness/contrast jitter, random crops),
and lesion-aware augmentation (regional
cropping, mixup) are common. Many state-of-
the-art DR systems are built on ImageNet
backbones such as ResNet, Inception-v3,
DenseNet, and EfficientNet. Representative
studies and reviews summarize these findings and
practical choices.

OPTIC DISC
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Fig. 1. Anatomy of the Retina

II. LITERATURE REVIEW

1. Gulshan et al. (2016) developed one of the first
large-scale deep learning models for diabetic
retinopathy detection using fundus photographs. Their
approach leveraged a CNN trained on a massive
dataset of 128,000 images from EyePACS and
hospitals in India and the U.S., with ImageNet
pretraining improving convergence. The model
achieved an AUC of 0.991 on EyePACS-1 and 0.990
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on Messidor-2 datasets, showing performance
comparable to ophthalmologists. This study was a
milestone that validated CNN-based screening for
clinical deployment.

2. Pratt et al. (2016) applied CNNs to diabetic
retinopathy classification using the Kaggle EyePACS
dataset. The architecture was pretrained on ImageNet
and fine-tuned with retinal images. After image
preprocessing (contrast enhancement, normalization,
and cropping), the system reached an accuracy of
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75%, showing the potential of transfer learning even
with limited training data. Their work highlighted
preprocessing as a critical step to improve CNN
performance in DR detection.

3. Quellec et al. (2017) introduced a heatmap-based
approach using CNNs to improve explainability in
diabetic retinopathy detection. Their model, pretrained
on ImageNet and trained on Messidor and EyePACS
datasets, not only classified DR but also localized
lesions such as microaneurysms and hemorrhages.
This made the system more interpretable for clinical
use, bridging the gap between black-box CNNs and
clinical trust.

4. Voets et al. (2019) evaluated the robustness of
CNN-based DR classifiers across different datasets.
They trained Inception-v3 and ResNet models on
EyePACS and tested them on Messidor-2, reporting a
drop in accuracy due to dataset shift. This study
underlined the importance of external validation and
showed that ImageNet-pretrained CNNs need domain
adaptation techniques to ensure generalization in real-
world settings.

5. Lam et al. (2018) presented an ensemble of CNN
models, including Inception-v3 and ResNet, to
classify DR severity levels. Their method utilized
transfer learning from ImageNet with fine-tuning on
the Kaggle dataset. By using model ensembling and
test-time augmentation, they achieved a quadratic
weighted kappa score of 0.851, ranking among the top
solutions in the Kaggle DR competition.

6. Ghosh et al. (2017) explored the use of deep CNNss
with transfer learning for DR grading. Using
EyePACS and Messidor, they fine-tuned VGG-16 and
Inception architectures pretrained on ImageNet. The
models achieved sensitivity above 85% for referable
DR, confirming the feasibility of CNNs in screening
programs. The study also emphasized the role of
balanced datasets for better performance.

7. Lietal. (2019) proposed a multi-task deep learning
model for DR detection and lesion localization. Using
an ImageNet-pretrained ResNet, their system
simultaneously classified DR severity and highlighted
pathological regions using Grad-CAM. Tested on
EyePACS and Messidor, the model improved
interpretability and provided clinicians with lesion-
level insights, pushing CNN-based DR systems closer
to real-world utility.

8. Ting et al. (2017) trained a deep learning algorithm
on 494,661 fundus images from multiple Asian
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populations to detect diabetic retinopathy and related
eye diseases. They used ImageNet-pretrained CNN
architectures for transfer learning. The system
achieved AUCs above 0.9 for referable DR across
multiple datasets, demonstrating that CNNs generalize
well across ethnic groups and geographic regions if
trained on diverse data.

9. Islam et al. (2018) investigated a hybrid CNN-SVM
approach for DR classification. Features were
extracted using an ImageNet-pretrained CNN (VGG-
19) and classified using a support vector machine. On
the Kaggle EyePACS dataset, the hybrid model
outperformed the standalone CNN classifier with an
accuracy of 81%. This showed that combining CNN
feature extraction with traditional machine learning
classifiers can be effective for medical imaging tasks.
10. Al-Bander et al. (2018) designed a system for
automatic diabetic retinopathy detection using a
DenseNet architecture pretrained on ImageNet.
Trained on Messidor and Kaggle datasets, their model
achieved high sensitivity (90%) for referable DR
detection. DenseNet’s skip connections allowed
efficient training with fewer parameters, making it
suitable for medical images where labeled data is
scarce.

11. Vo (2019) focused on preprocessing techniques to
enhance CNN performance in DR detection. By
applying  contrast-limited  adaptive  histogram
equalization (CLAHE) and vessel segmentation before
feeding images to ImageNet-pretrained CNNs
(ResNet, Inception), classification accuracy improved
by 7-10%. This demonstrated that preprocessing
pipelines significantly impact CNN results in fundus
image analysis.

12. Yan et al. (2020) introduced an attention-guided
CNN model for DR grading. Using ResNet-50
pretrained on ImageNet as the backbone, the system
applied attention modules to focus on lesion regions.
On the EyePACS dataset, it achieved an AUC of 0.955
for referable DR detection, outperforming baseline
CNNs. The attention mechanism addressed CNN
interpretability and improved performance.

13. Oh et al. (2020) developed a CNN-based DR
detection system integrated with explainability tools
for real-world wuse. Using ImageNet-pretrained
EfficientNet and EyePACS images, they achieved
87% accuracy in multi-class classification. They also
incorporated saliency maps to highlight lesions, which
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increased ophthalmologist trust during validation
trials.

14. Zhang et al. (2021) investigated self-supervised
pretraining combined with ImageNet weights for DR
detection. Their approach leveraged large-scale
unlabeled fundus datasets along with ImageNet
initialization, improving generalization across datasets
like EyePACS and Messidor. They achieved an AUC
improvement of 3-5% over ImageNet-only transfer
learning, showing the promise of semi-supervised
methods in medical imaging.

15. Bhimavarapu et al. (2022) reviewed deep learning
models for DR detection and highlighted the strengths
and weaknesses of ImageNet-pretrained CNNs. Their
survey emphasized that while CNNs achieve high
accuracy in controlled datasets, challenges such as
class imbalance, noisy labels, and clinical validation
remain. They recommended future directions
including multimodal fusion, federated learning, and
interpretability enhancements.

III. PROPOSED SYSTEM

e Deep Neural Networks

A convolutional neural network (CNN) is built from
layers of simple processing elements, each performing
a weighted summation of its inputs followed by a
nonlinear activation. These elements are arranged in
two-dimensional grids that align with the pixel
structure of the input image (Fig. 3). CNNs are
particularly effective for visual tasks due to three main
properties: local connectivity, parameter sharing, and
pooling operations, which together enable efficient
feature extraction and reduce computational
complexity.

Local connectivity implies that a neuron connects only
to a small, localized region of the input—its receptive
field (RF). For the first layer, this corresponds to a
patch of image pixels, while in deeper layers it relates
to activations from the preceding layer. The stride,
along with RF size and image dimensions, determines
the spatial extent of each layer. For example, applying
3x3 RFs with a stride of one pixel on a 5x5 grayscale
image results in nine distinct receptive fields covering
the entire image. This localized structure drastically
reduces the number of trainable weights compared to
fully connected networks and reflects the spatial
nature of vision, resembling biological visual
processing [1].
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Parameter sharing further reduces model complexity.
Instead of each unit in a layer learning unique weight,
units within the same feature map share a common set
of weights. This allows the map to detect the same
feature (e.g., edges, textures) across different spatial
positions. For instance, a 3x3 filter applied to a single-
channel image requires only ten parameters (nine
weights and one bias), regardless of how many times
it is applied across the image. This property ensures
feature equivariance, meaning that a feature
recognized in one location can also be detected
elsewhere in the image.

Pooling (subsampling) is used to downsample the
feature maps by aggregating activations within small
regions. The most common form, max-pooling, selects
the maximum activation within a receptive field.
Pooling not only reduces spatial resolution but also
introduces translational invariance, making the
network less sensitive to small shifts in the input.
Combined with local connectivity and parameter
sharing, pooling contributes to the efficiency and
robustness of CNNs.

ﬂ 1 . feature maps
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Figure 3: Architecture of a convolutional neural
network with three convolutional layers, one pooling
layer, and two fullyconnected layers. The network
uses 3 % 3 convolution units with stride 1 and 2 x 2
pooling units with stride 2

A typical convolutional neural network (CNN) is
composed of a sequence of convolutional layers, often
paired with max-pooling operations, and concluded
with one or more fully connected layers that map
extracted features into output classes (Fig. 3). During
convolution, receptive fields (RFs) slide across the
input image with a stride, reducing the spatial
resolution of subsequent layers so that the final
representation before the fully connected stage is
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considerably smaller than the original image. Multiple
convolutional filters (feature maps) are usually applied
in parallel, each designed to capture a distinct visual
pattern or characteristic. In large networks, dozens of
such feature maps may operate simultaneously [4]. For
multi-channel inputs such as RGB images, each
feature map processes information across all channels.
Neurons in deeper layers aggregate signals from
several feature maps of the previous layer, allowing
integration of information across channels. In this
way, each neuron has multiple receptive fields with
separate weight vectors, and their weighted
combination produces the final activation.

IV. FACILITIS REQUIRED FOR PROPOSED
WORK

The manually annotated segmentations (Figs. 1 and 2)
provide the ground-truth data, framing the blood
vessel extraction task as a binary classification
problem. Similar to other studies, our method
determines the class of each pixel by analyzing an
mxmm \times mmxm image patch centered on that
pixel. For RGB images, three corresponding patches
are extracted (one from each channel), and together
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V. CONCLUSION

The formulation of blood vessel detection as a pixel-
wise binary classification task, using localized patches
from retinal fundus images, provides an effective
framework for deep learning—based analysis. By
representing each pixel through an mxmm \times
mmxm neighborhood across RGB channels, the
neural network can capture both local context and
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ig. 4.1 Examples of positive (left) and negative (right) 27 x 27 training patches extracted from the

they form the input to the neural network. The class
label of the central pixel is then assigned as the target
for training. In this work, we use m=27m = 27m=27,
which results in an input vector of size
21873x27x27=2187. Figure 4 illustrates examples of
vessel (positive) and non-vessel (negative) patches.
Deep learning models are capable of directly learning
from raw image patches, but their performance
improves significantly when the input data is
appropriately preprocessed. Therefore, the following
preprocessing steps were applied in this study:

1. Global Contrast Normalization (GCN): As
seen in Figs. 1 and 2, variations in brightness are
present across the field of view (FOV). To reduce the
impact of illumination differences and emphasize
vessel patterns, each patch undergoes local contrast
normalization. Specifically, for every patch, the mean
intensity is subtracted and the result is divided by the
standard deviation of the pixel values, performed
independently on the R, G, and B channels. This not
only normalizes brightness and contrast but also
transforms the Dbyte-scale pixel values into
standardized real numbers. Figure 5 demonstrates the
effect of this preprocessing on the patches shown in
Fig. 4.

=)

RIVE images.

structural features critical for accurate vessel
identification. Moreover, applying preprocessing
techniques such as global contrast normalization
enhances the robustness of the learning process by
reducing illumination variability and improving
feature consistency. Together, these strategies
establish a solid foundation for reliable vessel
segmentation and demonstrate the importance of input
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representation and normalization in optimizing deep
learning performance for medical image analysis.
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