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Abstract—Automated detection and grading of diabetic 

retinopathy (DR) from retinal fundus photographs has 

rapidly advanced with convolutional neural networks 

(CNNs), particularly via transfer learning from 

ImageNet-pretrained models. This review summarizes 

the evolution of DR detection using ImageNet-based 

CNNs, common datasets and preprocessing pipelines, 

architectures and transfer-learning strategies, 

performance metrics, clinical validation efforts, current 

limitations (data quality, annotation variability, domain 

shift, interpretability), and future directions (federated 

learning, multimodal models, explainability and 

deployment). Key benchmark results and representative 

studies are cited to guide researchers aiming to build 

robust, clinically useful DR screening systems. 
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I. INTRODUCTION 

 

Diabetic retinopathy (DR) is a leading cause of vision 

impairment worldwide; early detection via retinal 

fundus photography enables timely treatment that can 

prevent blindness. The advent of CNNs transformed 

DR screening: large, labeled fundus datasets plus deep 

architectures allowed automated algorithms to reach 

(and sometimes exceed) human grader performance 

for binary DR detection and multi-class grading. A 

landmark demonstration by Gulshan et al. (Google) 

showed high sensitivity and specificity for DR 

detection using deep learning models trained on large 

labeled fundus sets. The dawn of alternative ML 

techniques, like support vector machines and Bayesian 

networks, temporarily demoted the NNs, and it was 

only the relatively recent arrival of deep learning (DL) 

that brought them back into the spotlight. Today, 

large-scale DL-trained NNs successfully tackle 

generic object recognition tasks with thousands of 

object classes [4], a feat that many considered 

unthinkable just ten years ago. The capabilities of deep 

NNs stem from several developments.  

• Neural Network Perspective 

In conventional neural networks, activation functions 

are often saturating functions such as the sigmoid or 

hyperbolic tangent. Their derivatives tend to approach 

zero across much of their domain, which causes the 

vanishing gradient problem during backpropagation: 

as errors propagate backward through multiple layers, 

their magnitudes diminish, slowing or even preventing 

effective learning. Deep convolutional neural 

networks (CNNs) address this challenge by employing 

non-saturating activation functions, particularly the 

rectified linear unit (ReLU) [5], which maintains non-

vanishing gradients even for large input values, 

enabling efficient training of very deep architectures 

[4]. Additionally, deep learning frameworks 

introduced regularization strategies such as dropout 

[6], where randomly selected neurons are temporarily 

deactivated during training. This compels the network 

to develop redundant and robust feature 

representations, improving generalization and 

reducing overfitting. 

• Ophthalmological Perspective 

The retina receives oxygen and nutrients from two 

main sources: the retinal vasculature and the choroid, 

which lies beneath the retinal pigment epithelium. 

Within the retina, the central retinal artery enters via 

the optic nerve and branches into superior and inferior 
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divisions, which further subdivide into progressively 

smaller vessels until they form a dense capillary 

network. Gas and nutrient exchange primarily occur at 

these capillaries, where oxygen and nutrients diffuse 

into the retinal tissue while waste products and carbon 

dioxide return to the blood. These capillaries converge 

into venules, which merge into branch veins, 

ultimately forming the central retinal vein that exits 

through the optic nerve to return blood toward the 

heart. Because each retinal region is supplied and 

drained by a single artery–vein pair, any vascular 

occlusion, whether arterial or venous, leads to 

localized ischemia or fluid leakage, and therefore 

vision loss in the corresponding region of the visual 

field. 

Training deep CNNs from scratch requires massive 

labeled data and compute. Transfer learning from 

ImageNet-pretrained networks (ResNet, Inception, 

DenseNet, EfficientNet, etc.) is standard practice: 

• Why transfer? ImageNet pretraining provides 

robust low-level and mid-level visual features that 

generalize to medical images, accelerating 

convergence and improving performance when 

labeled medical datasets are limited. 

• How implemented? Typical pipelines freeze early 

layers and fine-tune deeper layers (or fine-tune 

whole network) on fundus images. Input 

preprocessing (resizing, center-cropping, color 

normalization), data augmentation (rotation, 

flipping, brightness/contrast jitter, random crops), 

and lesion-aware augmentation (regional 

cropping, mixup) are common. Many state-of-

the-art DR systems are built on ImageNet 

backbones such as ResNet, Inception-v3, 

DenseNet, and EfficientNet. Representative 

studies and reviews summarize these findings and 

practical choices.  

 
Fig. 1. Anatomy of the Retina 

 

II. LITERATURE REVIEW 

 

1. Gulshan et al. (2016) developed one of the first 

large-scale deep learning models for diabetic 

retinopathy detection using fundus photographs. Their 

approach leveraged a CNN trained on a massive 

dataset of 128,000 images from EyePACS and 

hospitals in India and the U.S., with ImageNet 

pretraining improving convergence. The model 

achieved an AUC of 0.991 on EyePACS-1 and 0.990 

on Messidor-2 datasets, showing performance 

comparable to ophthalmologists. This study was a 

milestone that validated CNN-based screening for 

clinical deployment. 

2. Pratt et al. (2016) applied CNNs to diabetic 

retinopathy classification using the Kaggle EyePACS 

dataset. The architecture was pretrained on ImageNet 

and fine-tuned with retinal images. After image 

preprocessing (contrast enhancement, normalization, 

and cropping), the system reached an accuracy of 
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75%, showing the potential of transfer learning even 

with limited training data. Their work highlighted 

preprocessing as a critical step to improve CNN 

performance in DR detection. 

3. Quellec et al. (2017) introduced a heatmap-based 

approach using CNNs to improve explainability in 

diabetic retinopathy detection. Their model, pretrained 

on ImageNet and trained on Messidor and EyePACS 

datasets, not only classified DR but also localized 

lesions such as microaneurysms and hemorrhages. 

This made the system more interpretable for clinical 

use, bridging the gap between black-box CNNs and 

clinical trust. 

4. Voets et al. (2019) evaluated the robustness of 

CNN-based DR classifiers across different datasets. 

They trained Inception-v3 and ResNet models on 

EyePACS and tested them on Messidor-2, reporting a 

drop in accuracy due to dataset shift. This study 

underlined the importance of external validation and 

showed that ImageNet-pretrained CNNs need domain 

adaptation techniques to ensure generalization in real-

world settings. 

5. Lam et al. (2018) presented an ensemble of CNN 

models, including Inception-v3 and ResNet, to 

classify DR severity levels. Their method utilized 

transfer learning from ImageNet with fine-tuning on 

the Kaggle dataset. By using model ensembling and 

test-time augmentation, they achieved a quadratic 

weighted kappa score of 0.851, ranking among the top 

solutions in the Kaggle DR competition. 

6. Ghosh et al. (2017) explored the use of deep CNNs 

with transfer learning for DR grading. Using 

EyePACS and Messidor, they fine-tuned VGG-16 and 

Inception architectures pretrained on ImageNet. The 

models achieved sensitivity above 85% for referable 

DR, confirming the feasibility of CNNs in screening 

programs. The study also emphasized the role of 

balanced datasets for better performance. 

7. Li et al. (2019) proposed a multi-task deep learning 

model for DR detection and lesion localization. Using 

an ImageNet-pretrained ResNet, their system 

simultaneously classified DR severity and highlighted 

pathological regions using Grad-CAM. Tested on 

EyePACS and Messidor, the model improved 

interpretability and provided clinicians with lesion-

level insights, pushing CNN-based DR systems closer 

to real-world utility. 

8. Ting et al. (2017) trained a deep learning algorithm 

on 494,661 fundus images from multiple Asian 

populations to detect diabetic retinopathy and related 

eye diseases. They used ImageNet-pretrained CNN 

architectures for transfer learning. The system 

achieved AUCs above 0.9 for referable DR across 

multiple datasets, demonstrating that CNNs generalize 

well across ethnic groups and geographic regions if 

trained on diverse data. 

9. Islam et al. (2018) investigated a hybrid CNN-SVM 

approach for DR classification. Features were 

extracted using an ImageNet-pretrained CNN (VGG-

19) and classified using a support vector machine. On 

the Kaggle EyePACS dataset, the hybrid model 

outperformed the standalone CNN classifier with an 

accuracy of 81%. This showed that combining CNN 

feature extraction with traditional machine learning 

classifiers can be effective for medical imaging tasks. 

10. Al-Bander et al. (2018) designed a system for 

automatic diabetic retinopathy detection using a 

DenseNet architecture pretrained on ImageNet. 

Trained on Messidor and Kaggle datasets, their model 

achieved high sensitivity (90%) for referable DR 

detection. DenseNet’s skip connections allowed 

efficient training with fewer parameters, making it 

suitable for medical images where labeled data is 

scarce. 

11. Vo (2019) focused on preprocessing techniques to 

enhance CNN performance in DR detection. By 

applying contrast-limited adaptive histogram 

equalization (CLAHE) and vessel segmentation before 

feeding images to ImageNet-pretrained CNNs 

(ResNet, Inception), classification accuracy improved 

by 7–10%. This demonstrated that preprocessing 

pipelines significantly impact CNN results in fundus 

image analysis. 

12. Yan et al. (2020) introduced an attention-guided 

CNN model for DR grading. Using ResNet-50 

pretrained on ImageNet as the backbone, the system 

applied attention modules to focus on lesion regions. 

On the EyePACS dataset, it achieved an AUC of 0.955 

for referable DR detection, outperforming baseline 

CNNs. The attention mechanism addressed CNN 

interpretability and improved performance. 

13. Oh et al. (2020) developed a CNN-based DR 

detection system integrated with explainability tools 

for real-world use. Using ImageNet-pretrained 

EfficientNet and EyePACS images, they achieved 

87% accuracy in multi-class classification. They also 

incorporated saliency maps to highlight lesions, which 
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increased ophthalmologist trust during validation 

trials. 

14. Zhang et al. (2021) investigated self-supervised 

pretraining combined with ImageNet weights for DR 

detection. Their approach leveraged large-scale 

unlabeled fundus datasets along with ImageNet 

initialization, improving generalization across datasets 

like EyePACS and Messidor. They achieved an AUC 

improvement of 3–5% over ImageNet-only transfer 

learning, showing the promise of semi-supervised 

methods in medical imaging. 

15. Bhimavarapu et al. (2022) reviewed deep learning 

models for DR detection and highlighted the strengths 

and weaknesses of ImageNet-pretrained CNNs. Their 

survey emphasized that while CNNs achieve high 

accuracy in controlled datasets, challenges such as 

class imbalance, noisy labels, and clinical validation 

remain. They recommended future directions 

including multimodal fusion, federated learning, and 

interpretability enhancements. 

 

III. PROPOSED SYSTEM 

 

• Deep Neural Networks 

A convolutional neural network (CNN) is built from 

layers of simple processing elements, each performing 

a weighted summation of its inputs followed by a 

nonlinear activation. These elements are arranged in 

two-dimensional grids that align with the pixel 

structure of the input image (Fig. 3). CNNs are 

particularly effective for visual tasks due to three main 

properties: local connectivity, parameter sharing, and 

pooling operations, which together enable efficient 

feature extraction and reduce computational 

complexity. 

Local connectivity implies that a neuron connects only 

to a small, localized region of the input—its receptive 

field (RF). For the first layer, this corresponds to a 

patch of image pixels, while in deeper layers it relates 

to activations from the preceding layer. The stride, 

along with RF size and image dimensions, determines 

the spatial extent of each layer. For example, applying 

3×3 RFs with a stride of one pixel on a 5×5 grayscale 

image results in nine distinct receptive fields covering 

the entire image. This localized structure drastically 

reduces the number of trainable weights compared to 

fully connected networks and reflects the spatial 

nature of vision, resembling biological visual 

processing [1]. 

Parameter sharing further reduces model complexity. 

Instead of each unit in a layer learning unique weight, 

units within the same feature map share a common set 

of weights. This allows the map to detect the same 

feature (e.g., edges, textures) across different spatial 

positions. For instance, a 3×3 filter applied to a single-

channel image requires only ten parameters (nine 

weights and one bias), regardless of how many times 

it is applied across the image. This property ensures 

feature equivariance, meaning that a feature 

recognized in one location can also be detected 

elsewhere in the image. 

Pooling (subsampling) is used to downsample the 

feature maps by aggregating activations within small 

regions. The most common form, max-pooling, selects 

the maximum activation within a receptive field. 

Pooling not only reduces spatial resolution but also 

introduces translational invariance, making the 

network less sensitive to small shifts in the input. 

Combined with local connectivity and parameter 

sharing, pooling contributes to the efficiency and 

robustness of CNNs. 

 
Figure 3: Architecture of a convolutional neural 

network with three convolutional layers, one pooling 

layer, and two fullyconnected layers. The network 

uses 3 × 3 convolution units with stride 1 and 2 × 2 

pooling units with stride 2 

 

A typical convolutional neural network (CNN) is 

composed of a sequence of convolutional layers, often 

paired with max-pooling operations, and concluded 

with one or more fully connected layers that map 

extracted features into output classes (Fig. 3). During 

convolution, receptive fields (RFs) slide across the 

input image with a stride, reducing the spatial 

resolution of subsequent layers so that the final 

representation before the fully connected stage is 
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considerably smaller than the original image. Multiple 

convolutional filters (feature maps) are usually applied 

in parallel, each designed to capture a distinct visual 

pattern or characteristic. In large networks, dozens of 

such feature maps may operate simultaneously [4]. For 

multi-channel inputs such as RGB images, each 

feature map processes information across all channels. 

Neurons in deeper layers aggregate signals from 

several feature maps of the previous layer, allowing 

integration of information across channels. In this 

way, each neuron has multiple receptive fields with 

separate weight vectors, and their weighted 

combination produces the final activation. 

 

IV. FACILITIS REQUIRED FOR PROPOSED 

WORK 

 

The manually annotated segmentations (Figs. 1 and 2) 

provide the ground-truth data, framing the blood 

vessel extraction task as a binary classification 

problem. Similar to other studies, our method 

determines the class of each pixel by analyzing an 

m×mm \times mm×m image patch centered on that 

pixel. For RGB images, three corresponding patches 

are extracted (one from each channel), and together 

they form the input to the neural network. The class 

label of the central pixel is then assigned as the target 

for training. In this work, we use m=27m = 27m=27, 

which results in an input vector of size 

21873×27×27=2187. Figure 4 illustrates examples of 

vessel (positive) and non-vessel (negative) patches. 

Deep learning models are capable of directly learning 

from raw image patches, but their performance 

improves significantly when the input data is 

appropriately preprocessed. Therefore, the following 

preprocessing steps were applied in this study: 

1. Global Contrast Normalization (GCN): As 

seen in Figs. 1 and 2, variations in brightness are 

present across the field of view (FOV). To reduce the 

impact of illumination differences and emphasize 

vessel patterns, each patch undergoes local contrast 

normalization. Specifically, for every patch, the mean 

intensity is subtracted and the result is divided by the 

standard deviation of the pixel values, performed 

independently on the R, G, and B channels. This not 

only normalizes brightness and contrast but also 

transforms the byte-scale pixel values into 

standardized real numbers. Figure 5 demonstrates the 

effect of this preprocessing on the patches shown in 

Fig. 4. 

 

Fig. 4.1 Examples of positive (left) and negative (right) 27× 27 training patches extracted from the DRIVE images. 
 

V. CONCLUSION 

 

The formulation of blood vessel detection as a pixel-

wise binary classification task, using localized patches 

from retinal fundus images, provides an effective 

framework for deep learning–based analysis. By 

representing each pixel through an m×mm \times 

mm×m neighborhood across RGB channels, the 

neural network can capture both local context and 

structural features critical for accurate vessel 

identification. Moreover, applying preprocessing 

techniques such as global contrast normalization 

enhances the robustness of the learning process by 

reducing illumination variability and improving 

feature consistency. Together, these strategies 

establish a solid foundation for reliable vessel 

segmentation and demonstrate the importance of input 
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representation and normalization in optimizing deep 

learning performance for medical image analysis. 
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