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Abstract—The zero forcing problem is a graph-theoretic 

process that arose from linear algebraic motivations, 

namely in limiting the maximum nullity of matrices 

connected with graphs. It has now grown into a 

substantial research area, with applications including 

quantum controllability, network monitoring, and 

combinatorial optimisation. This paper provides an 

overview of the zero forcing problem, including 

definitions, key results with proofs, computational 

complexity, and applications, as well as a discussion of 

current research objectives. 

 

Index Terms—Zero Forcing Set, Zero Forcing Number. 

 

I. INTRODUCTION 

 

Graph theory has emerged as a major research area in 

mathematics and computer science, with applications 

ranging from network theory to physics, electrical 

engineering, and social science. One of the most 

important challenges in this subject is the Zero Forcing 

Problem, which offers a combinatorial technique to 

understanding the spread of influence or knowledge 

across networks. Beyond its obvious interpretation, 

the zero forcing problem has important implications 

for linear algebra, combinatorial optimisation, and 

theoretical computer science. 

The American Institute of Mathematics (AIM) 

established the notion of zero forcing in 2006 as a 

method for limiting the maximum nullity of graph-

related matrices [7]. In linear algebra, the family of 

real symmetric matrices with nonzero off-diagonal 

components corresponds to the adjacency of a graph G 

G. The nullity of such a matrix relates to the size of its 

kernel. It was discovered that the zero forcing number 

offers an upper bound for the maximal nullity in this 

family, linking graph theory and linear algebra. 

Suppose we have a simple graph G with some vertices 

colored blue. The zero forcing rule is as follows: If a 

blue vertex v has a neighborhood with a unique 

uncolored vertex w, w can be colored blue. A zero 

forcing set of G, is a set of vertices S that, when 

colored blue, can eventually color all vertices of G 

using the zero forcing rule. We sometimes simply state 

that the set S is forcing in G. When a vertex v colors 

another vertex w, this is referred to as v forcing w. 

The study of zero forcing sets in graphs has sparked 

interest due to its role as a coloring process and its 

relevance to various fields, including linear algebra 

[1,2,3], power grid dominance strategies [4,5,6], 

theoretical computer science [11], modelling physical 

phenomena [8], quantum system control [9], and 

rumour spreading models [10]. The zero forcing 

technique, first described by Burgarth and 

Giovannetti, has received substantial scientific 

attention [12,13,14]. 

The AIM research group established the idea of zero 

forcing number, which limits the maximum nullity of 

a graph and is related to other graph characteristics. 

Research on zero forcing has been conducted in both 

randomised and reconfigurable settings [15, 16,17]. A 

few more variations of zero forcing have also been 

thoroughly investigated. 

 

II. DEFINITION 

 

Let G= (V, E) be a finite, simple, undirected graph. 

Zero Forcing Rule: If a black vertex u has exactly one 

white neighbor v, then v is forced to become black. 

This is called the color-change rule. 

Zero Forcing Set: A set S⊆V(G) such that, when the 

vertices in S are initially colored black and all others 

white, repeated application of the color-change rule 

results in all vertices becoming black. 

Zero Forcing Number: The minimum cardinality of a 

zero forcing set in G, denoted Z(G)  

Theorem 1. 

For a path graph Pn , with n≥2, Z(Pn)=1. 

Proof. 

Let Pn=v1−v2−⋯−vn.. Choose S={v1}as the initial 

black vertex. Then v1 has exactly one white neighbor, 

v2, so v1 forces v2. Now v2 is black and has exactly 

one white neighbor, v3 so v2 forces v3 
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Repeating this argument, each vertex forces the next 

one along the path. Thus, all vertices are eventually 

black, so S is a zero forcing set of size 1. Clearly, no 

smaller set exists, hence Z(Pn)=1 

 

Theorem 2. 

For a cycle graph, Cn,with n≥3, Z(Cn)=2. 

Proof. 

First, observe that a single black vertex cannot force, 

since every vertex in a cycle has degree 2. Therefore,  

Z(Cn)≥2. Now, choose two adjacent vertices, say v1, 

v2, to be black. Then v1 has a unique white neighbor 

vn (since v2 is black). Thus, v1 forces vn. Similarly, 

v2 forces v3. This creates two propagation chains in 

opposite directions, which eventually color the entire 

cycle black. Thus, two vertices suffice, so Z(Cn)=2. 

 

Theorem 3. 

For a complete graph, Kn , with n≥2, Z(Kn)=n−1. 

Proof. 

Suppose S S is a zero forcing set with ∣S∣≤n−2.  Then 

at least two vertices remain white initially. Since every 

vertex in Kn is adjacent to all others, each black vertex 

has at least two white neighbors, so no forcing is 

possible. Hence Z(Kn)≥n−1. 

Conversely, if n−1 vertices are black, then only one 

vertex remains white. Each black vertex has exactly 

one white neighbor, so the forcing rule applies 

immediately, turning the last vertex black. Thus,  

Z(Kn)=n−1 

 

Theorem 4. 

For a star graph, K1, n−1, with n≥3, Z (K1, n−1) =n−2. 

Proof. 

Let the central vertex be c and the leaves be ℓ1, ℓ2, 

ℓn−1. Suppose fewer than n−2 leaves are initially 

black. Then at least two white leaves exist. The center 

c, regardless of color, cannot force because it is 

adjacent to multiple white vertices. Similarly, no leaf 

can force since each is only adjacent to c. Hence, no 

forcing occurs. 

If n−2 leaves are black, then only the center c and one 

leaf remain white. Each black leaf sees exactly one 

white neighbor (the center). Thus, any black leaf 

forces c. Once c is black, it has exactly one white 

neighbor (the last leaf), so it forces that leaf. Therefore, 

Z (K1, n−1) = n−2. 

III. ZERO FORCING AND LINEAR ALGEBRA 

The study of zero forcing is deeply connected to linear 

algebra, particularly through the concept of maximum 

nullity of matrices associated with a graph. Given a 

graph G, one considers the family of real symmetric 

matrices whose off-diagonal nonzero entries 

correspond to the adjacency of G. The maximum 

nullity M(G) is the largest possible nullity among 

these matrices, while the minimum rank is  

∣V(G)∣−M(G). It was shown that the zero forcing 

number Z(G) provides an upper bound for the 

maximum nullity, i.e., M(G) ≤ Z(G). This bound links 

a purely combinatorial process—the propagation of 

colors under the zero forcing rule—to an algebraic 

invariant of matrices, making zero forcing a powerful 

tool for estimating rank-related parameters and for 

bridging graph theory with spectral and matrix theory 

[1,2.3.9]. Given a graph G, consider the family of real 

symmetric matrices A whose off-diagonal entries 

correspond to the adjacency of G. The maximum 

nullity of G, denoted M(G), is defined as: 

M(G)=max{nullity(A): A∈S(G)}, where S(G) is the 

set of such matrices. It is known that: M(G)≤Z(G). 

Thus, the zero forcing number provides an upper 

bound for maximum nullity, connecting combinatorial 

and algebraic graph theory 

 

IV. COMPUTATIONAL COMPLEXITY 

 

Determining Z(G) for an arbitrary graph is NP-hard 

[8]. However, polynomial-time algorithms exist for 

restricted classes such as trees and graphs of bounded 

pathwidth. Z(G) of a general graph is NP-hard 

(Aazami, 2008), which indicates that no polynomial-

time solution exists to solve it across all graph 

families. This difficulty stems from the combinatorial 

explosion of potential beginning sets that must be 

examined to determine whether they are zero forcing 

sets. Despite this general difficulty, efficient 

algorithms exist for specific types of graphs. For 

example, zero force numbers can be computed in 

polynomial time for pathways, cycles, trees, and 

graphs with bounded treewidth. Approximation 

algorithms and heuristic techniques have also been 

investigated, although the gap between exact 

computing and efficient approximation remains a 

topic of interest in theoretical computer science 

[18,19] 
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V. APPLICATIONS 

 

One of the most notable uses of zero forcing is in the 

study of quantum systems, specifically the 

controllability of quantum spin networks. In these 

networks, vertices represent quantum spins, while 

edges reflect their interactions. The capacity to steer 

the entire system to a desired quantum state with only 

a small number of control inputs is critical for quantum 

computation and information processing. Zero forcing 

is a combinatorial method for testing whether such 

controllability is possible: if the initially controlled 

vertices form a zero forcing set in the underlying 

interaction graph, the entire system can be controlled 

in principle. This connection, first highlighted by 

Burgarth and Giovannetti [10,13] demonstrates how a 

purely graph-theoretic process can capture deep 

physical behavior, linking structural properties of 

graphs to the dynamics of quantum systems.  

Zero forcing also finds important applications in the 

monitoring and control of networks, particularly in the 

context of electrical power grids and sensor placement 

problems. In such systems, operators aim to observe 

or control the entire network using measurements from 

only a small subset of nodes. The zero forcing process 

models how information, once available at certain key 

vertices, can propagate through the network under 

well-defined rules. In power systems, this concept is 

closely related to the power domination problem, 

where the placement of phase measurement units 

(PMUs) is optimized to guarantee complete 

observability of the grid. By identifying minimum 

zero forcing sets, one can determine efficient 

strategies for network monitoring that minimize cost 

while ensuring reliability. This has broader 

applications in communication networks, epidemic 

tracking, and infrastructure monitoring, where the 

spread of observability mimics the spread of color in 

the zero forcing process. Network Monitoring: Closely 

related to the power domination problem, zero forcing 

model’s sensor placement for full observability of 

electric power grids [4,5,6,10]. 

Zero forcing provides a mathematical framework to 

study controlled information propagation, helping in 

optimizing influencer selection, predicting network 

reach, and designing efficient communication 

strategies. It serves as a model for rumor spreading, 

fault detection, and infection processes in networks 

[20 - 27]  

VII. CONCLUSION 

 

The zero forcing problem brings graph theory, linear 

algebra, and network research together in a unique 

way. While essential conclusions for standard graphs 

are known, there are still issues in determining 

accurate values for larger classes and understanding 

the complexity of connected parameters. The field 

continues to draw attention because to its elegant rules, 

computational problems, and broad applicability. 
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