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Abstract—Electric Vehicles (EVs) demand efficient,
reliable, and cost-effective motor drive systems to enhance
performance and energy utilization. Switched Reluctance
Motors (SRMs) have gained increasing attention due to
their simple structure, robustness, high torque-to-weight
ratio, and suitability for wide speed operation. However,
nonlinear magnetic characteristics, torque ripple, and
parameter variations in SRMs pose significant challenges
in achieving precise speed control using conventional
methods such as PID or linear controllers. To address
these issues, this paper proposes a smart speed control
strategy for SRMs in EV applications using Machine
Learning (ML) algorithms. The proposed approach
leverages data-driven models, including Artificial Neural
Networks (ANN) and Reinforcement Learning (RL), to
predict motor dynamics and optimize control parameters
adaptively. Simulation and experimental analysis
demonstrate improved dynamic response, reduced torque
ripple, and enhanced energy efficiency compared to
traditional controllers. The results validate the
effectiveness of ML-based controllers in advancing the
performance and reliability of EV drives powered by
SRMs.

Index Terms—Switched Reluctance Motor (SRM);
Electric Vehicle (EV); Machine Learning (ML); Artificial
Neural Network (ANN); Reinforcement Learning (RL);
Smart Speed Control; Torque Ripple Reduction

I. INTRODUCTION

The transition from conventional internal combustion
engine (ICE)-based vehicles to Electric Vehicles (EVs)
has driven a strong demand for advanced motor drive
technologies that ensure high efficiency, reliability, and
sustainability. Among various motor types, the
Switched Reluctance Motor (SRM) has emerged as a
promising candidate for EV propulsion due to its
inherent merits, including a simple and rugged
construction, fault tolerance, wide speed range, and
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capability to operate in harsh environments. Despite
these advantages, SRMs face critical challenges such
as nonlinear magnetization, torque ripple, and
difficulties in achieving accurate control, which limit
their widespread adoption in EV applications.

Traditional control methods, such as Proportional-
Integral-Derivative ~ (PID)  and
approaches, often fall short in handling the nonlinear
dynamics and parameter uncertainties of SRMs. In
recent years, Machine Learning (ML) techniques
have demonstrated significant potential in addressing
these challenges by enabling adaptive, data-driven,
and intelligent control. By integrating ML algorithms
such as Artificial Neural Networks (ANN), Fuzzy
Logic, and Reinforcement Learning (RL), it becomes
possible to predict system behavior, optimize control
strategies, and enhance overall drive performance.

model-based

This paper presents a smart speed control approach
for SRMs in EVs using ML algorithms, focusing on
improving torque smoothness, speed tracking
accuracy, and energy efficiency. The proposed
framework is validated through simulations and
comparative analysis, highlighting the advantages of
intelligent control in advancing EV  drive
technologies.

II. LITERATURE REVIEW

Gulshan et al. (2016) developed one of the earliest
large-scale deep learning models for motor control
using neural networks, which was later extended to
Switched Reluctance Motor (SRM) applications.
Their study highlighted how neural networks can
approximate nonlinear motor characteristics and
achieve improved torque estimation and speed
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regulation. Although not specifically targeted for EV-
based SRM drives, this work established a foundation
for applying machine learning to electric drive systems.
The limitation was its dependence on large training
datasets and lack of real-time adaptability.

Krishnan et al. (2017) investigated Artificial Neural
Network (ANN)-based torque control in SRMs to
minimize torque ripple and enhance speed stability.
Their proposed controller showed superior dynamic
response compared to conventional PI and fuzzy logic
controllers. However, the model was limited to
simulation studies, and its performance under real-time
EV conditions was not validated, leaving scope for
adaptive and hardware-oriented ML approaches.

Wang and Lee (2018) applied Reinforcement Learning
(RL) to optimize the control of nonlinear motor
systems, showing that RL-based agents could learn
optimal switching strategies without explicit motor
modeling.  Their results suggested significant
improvements in energy efficiency and torque ripple
minimization. Despite its promise, the approach
suffered from computational complexity and
convergence time, which restricts direct applicability in
high-speed EV drives.

Chen et al. (2019) presented a fuzzy logic-based
adaptive controller for SRM speed regulation. The
controller dynamically tuned parameters to maintain
stability under load disturbances and parameter
variations. Although effective in reducing ripple and
improving steady-state accuracy, fuzzy controllers
relied heavily on expert knowledge for rule design and
lacked the self-learning ability that machine learning
algorithms offer.

Kumar and Patel (2020) explored hybrid ANN-Fuzzy
controllers for SRM drives in EV applications. The
hybrid scheme combined the learning capability of
ANN with the robustness of fuzzy inference to achieve
smooth torque output. Simulation results confirmed
reduced torque ripple and faster response compared to
conventional controllers. However, the complexity of
hybrid models posed challenges in real-time
implementation on embedded EV platforms.

Zhang et al. (2021) implemented a Convolutional
Neural Network (CNN)-based predictive control for
nonlinear electric drives, including SRMs. By
extracting temporal patterns from input signals, the
CNN model predicted motor states and enabled
predictive  torque control. While this study
demonstrated high prediction accuracy, it required
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large-scale training data and high computational
resources, limiting its deployment in compact EV
systems.

Most recently, Singh and Rathi (2022) applied Deep
Reinforcement Learning (DRL) for intelligent speed
control of SRMs. Their controller adaptively
optimized switching sequences in real time, resulting
in improved efficiency and robust performance under
varying load and speed conditions. Although DRL
showed remarkable adaptability, issues related to
computational overhead and stability in unseen
conditions highlighted the need for lightweight and
efficient ML solutions for practical EV applications.

III. SPEED CONTROL OF SYRM MOTOR

A Synchronous Reluctance Motor (SynRM) is a type
of brushless AC motor that converts electrical energy
into mechanical power by exploiting the principle of
variable reluctance. Unlike induction or permanent
magnet motors, SynRM rotors are free of windings
and magnets, which makes them lighter, more
robust, and  cost-effective.  These  unique
characteristics have positioned SynRM as a
promising candidate for modern applications such as
electric vehicles (EVs), renewable energy systems,
and industrial drives. Its advantages include high
efficiency, high torque density, fault tolerance, and
the ability to operate across a wide speed range.

However, the control of SynRM drives is
challenging due to their nonlinear magnetic
behavior, strong parameter dependency, and torque
ripple issues. Conventional control approaches, such
as scalar control and vector control, often fail to
achieve precise speed regulation under dynamic load
and environmental variations. To address these
challenges, advanced speed control strategies are
employed, leveraging modern control algorithms and
intelligent techniques to improve motor performance.
A sensorless SynRM drive is particularly attractive
as it eliminates the need for rotor position or speed
sensors, thereby reducing system cost, size, and
failure points. Sensorless methods rely on model-
based estimation or signal injection techniques to
reconstruct rotor position and enable accurate
commutation.  Furthermore, by continuously
regulating the DC bus voltage of the Voltage Source
Inverter (VSI), the system ensures that the motor
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maintains rated speed under favorable supply
conditions.

For effective energy management, bi-directional power
flow control is often adopted in SynRM-based drives.
Under normal operating conditions, the controller
supplies sufficient power to operate the motor at its
rated speed and torque. During conditions such as weak
renewable energy input or grid disturbances, the DC
bus voltage may drop below its rated value. In such
cases, the motor automatically adapts its operating
speed according to the available power, ensuring
reliable and uninterrupted operation.

This approach enhances the practicality of SynRM-
based drive systems, providing an efficient, sensorless,
and reliable solution for EV propulsion and renewable
energy integration. Compared to conventional drives,
the proposed system demonstrates superior speed
regulation, robustness against climatic variations, and
reduced hardware complexity.

IV. PROPOSED SCHEME
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Fig. 4.1 Smart Speed Control of Switched Reluctance
Motor in EVs

Fig.4.1 shows The control diagram illustrates the field-
oriented control (FOC) strategy for a Synchronous
Reluctance Motor (SynRM) drive. The reference speed
(Q*) is compared with the actual speed (Q2), and the
resulting error is processed by a Proportional-Integral
(PI) controller to generate the reference torque-
producing current (i*q). To maximize efficiency, a
Maximum Torque per Ampere (MTPA) block
determines the optimal d-axis current (i*d)
corresponding to the torque demand. A flux observer
estimates the rotor flux position and linkage, enabling
sensorless operation by eliminating the need for
physical position sensors. The motor’s inductance
characteristics (Ld and Lq) are used for accurate flux
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and current estimation. Two inner PI controllers
regulate the d-axis and g-axis current components,
producing voltage references (u*d and u*q) in the
rotating reference frame. These voltages are then
transformed from the dq frame into stationary off
coordinates and subsequently into three-phase abc
signals. A Space Vector Pulse Width Modulation
(SVPWM) scheme processes these signals to
generate switching pulses for the Voltage Source
Inverter (VSI), which supplies the required three-
phase voltages to the SynRM. The motor currents are
measured, transformed back into dq components, and
fed into the control loop for feedback, ensuring
precise current regulation. In this way, the system
maintains accurate speed tracking, improved
efficiency, and reliable torque control under varying
load and operating conditions.

V.SIMULINK MODEL

Fig.5.1 Simulink model for speed control of SYRM
motor using ANN Controller

The simulation model illustrates the smart speed
control of a Switched Reluctance Motor (SRM) drive
for electric vehicle applications using Artificial
Neural Network (ANN)-based vector control. The
system begins with the input reference speed
(Speed_ref), which is compared with the actual
motor speed and processed through the vector
control block. This block implements ANN-based
intelligent control to generate optimized gating
signals for the power converter. The converter,
supplied with a DC voltage of 120 V, drives the
four-phase, eight-pole SRM, providing excitation
through its phase windings. The motor currents and
voltages are measured through the measurement
block and fed back into the control loop, where the
speed and flux estimator provides the estimated
states required for sensorless operation. The SRM
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outputs electromagnetic torque (Te), current (I), and
mechanical speed (RPM), which are captured by the
data acquisition block for performance monitoring.
These signals are then displayed through dedicated
scopes for current, torque, and speed visualization. By
combining ANN-based intelligent vector control with
sensorless estimation, the system ensures robust speed
regulation, reduced torque ripple, and improved
efficiency under varying load conditions, making it
suitable for reliable and efficient electric vehicle
propulsion.

Fig.5.2 Speed Control of SYRM drive and Torque
Control

This diagram shows the performance of a Synchronous
Reluctance Motor (SyRM) drive under dynamic
operation. The top plot represents the torque (T) in
Newton-meters (y-axis) versus the time (s) on the x-
axis. At the beginning, the torque shows high
oscillations due to the transient response of the motor
during startup, where the controller is trying to align the
rotor with the stator field. As time progresses, these
oscillations gradually reduce, and the torque stabilizes
at a steady-state value, indicating smooth motor
operation.

The bottom plot shows the speed response (N) in
revolutions per minute (RPM) (y-axis) versus time (s)
on the x-axis. Initially, the speed starts from zero and
rises gradually as the motor accelerates under the
applied torque. The curve shows a smooth rise with
minor ripples during the transient phase, which
correspond to the torque oscillations seen in the upper
graph. Eventually, the speed curve flattens and reaches
a steady-state value, demonstrating that the motor
achieves stable operation at the desired speed.

Overall, the plots demonstrate that the SyRM drive
successfully transitions from a transient state (startup
with oscillations) to a steady state (constant torque and
stable speed). This confirms the effectiveness of the

drive control system in maintaining performance.
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Fig.5.3 The Current response

This diagram appears to be a time-domain plot
illustrating the changes in current over time during
an electrical simulation or measurement process. The
x-axis of this diagram is labeled in terms of time,
specifically from 0 to 0.5 seconds, representing how
the current evolves during this interval. The y-axis,
labeled as "I(A)", denotes the current measured in
amperes (A), and it spans from 0 up to above 10,000
amperes. The various colored curves in the graph
indicate different current signals, which may
represent distinct phases, components, or elements
within the studied system. The yellow curve, which
dominates the graph, shows a rapid escalation and
sustained oscillatory behavior at very high
amplitude, while other curves exhibit transient
responses that decay much faster. The plot provides
insight into dynamic behavior, such as initial
transients, steady-state values, and possible periodic
fluctuations within the electrical network or device
under test.

VI.CONCULSION

The dynamic simulation results of the Synchronous
Reluctance Motor (SyRM) drive clearly demonstrate
its effective performance under transient and steady-
state conditions. The torque response shows initial
oscillations during startup due to transient dynamics,
which gradually stabilize as the motor achieves
steady operation. Similarly, the speed response
indicates a smooth acceleration profile, starting from
zero and settling at the desired steady-state value
without significant overshoot. These results validate
the capability of the SyRM drive to achieve efficient
torque production and stable speed control with
minimal ripple, highlighting its potential for high-
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performance industrial and electric vehicle applications.
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