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Abstract—The study optimizes a solar PV–wind hybrid 

system for rural electrification, aiming to provide 

reliable and cost-effective power to remote communities 

with limited grid access. By combining solar and wind 

resources, the system ensures continuous electricity 

despite daily and seasonal variations. Optimization 

focuses on minimizing Levelized Cost of Energy (LCOE) 

or Net Present Cost (NPC) while maintaining high 

reliability (LPSP < 5%). The approach includes site-

specific resource assessment, detailed load profiling, and 

modeling of PV, wind, and battery components. 

Metaheuristic optimization techniques, such as Genetic 

Algorithms and Particle Swarm Optimization, identify 

optimal system configurations, with sensitivity analyses 

addressing resource variability, cost changes, and load 

growth. Practical factors like component availability, 

maintenance, environmental resilience, and socio-

economic impact are also considered. The optimized 

system can reduce fossil fuel dependence, lower carbon 

emissions, and improve rural living standards by 

supporting essential services and small-scale enterprises. 

Index Terms—Solar Photovoltaic (PV), Wind Energy, 

Hybrid Energy System, Rural Electrification, Levelized 

Cost of Energy (LCOE), Net Present Cost (NPC), Loss of 

Power Supply Probability (LPSP), Renewable Energy 

Optimization, Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), Energy Storage, Load Profiling, 

Sustainability, Carbon Emission Reduction. 

I. INTRODUCTION 

[.  The optimization of a solar photovoltaic (PV)–wind 

hybrid energy system for rural electrification focuses 

on designing a cost-effective and reliable power 

supply tailored to the unique characteristics of remote 

communities. In rural areas where grid connectivity is 

weak or nonexistent, hybrid renewable systems 

combine the complementary strengths of solar and 

wind resources to ensure continuous electricity 

generation throughout the day and across seasons. The 

primary objective of optimization is to minimize the 

overall cost of energy—typically measured as 

Levelized Cost of Energy (LCOE) or Net Present Cost 

(NPC)—while ensuring that the system meets the 

required load demand with an acceptable level of 

reliability. This process requires a careful balance 

between capital investments, operating costs, battery 

replacement cycles, and the variability of renewable 

resources. 

The first step in the optimization process involves 

collecting comprehensive site-specific data, including 

hourly solar irradiance, ambient temperature, and 

wind speed at the prospective turbine hub height. This 

environmental data is complemented by a detailed 

load profile that reflects the electricity consumption 

pattern of the rural community, ideally at an hourly 

resolution to capture seasonal and daily variations. 

The energy models for the PV array account for 

irradiance on the plane of the modules, temperature 

effects, and system losses due to soiling, shading, and 

wiring inefficiencies. Similarly, the wind turbine’s 

power output is derived from its power curve in 

relation to hourly wind speeds adjusted for hub height 

using the appropriate wind shear coefficient. Batteries 

are modelled dynamically to simulate their state of 

charge over time, considering charging and 

discharging efficiencies, depth-of-discharge limits, 

and cycle life to accurately estimate replacements and 

costs. 

Once these component models are established, the 

energy balance for every hour of the year is calculated 
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to determine whether generation from the PV array, 

the wind turbine, and any stored energy in the batteries 

can meet the load. A key constraint in rural 

applications is reliability, which is often quantified 

using metrics such as the Loss of Power Supply 

Probability (LPSP). Systems are typically optimized to 

maintain an LPSP of less than 1–5%, meaning that the 

system can supply electricity at least 95–99% of the 

time. Trade-offs emerge between the size of the PV 

and wind subsystems and the battery storage capacity: 

larger batteries improve reliability but increase costs, 

while additional PV or wind capacity may reduce 

storage needs but adds capital expenditure. 

The optimization process is usually formulated as a 

mathematical problem where the decision variables 

include the rated PV power capacity, the rated wind 

turbine capacity, the total battery storage energy, and 

sometimes the inverter rating and operational 

strategies. The objective is to minimize the cost 

function, typically LCOE or NPC, subject to 

constraints related to load satisfaction, battery limits, 

and reliability targets. Because of the non-linear nature 

of renewable resource fluctuations and battery 

behavior, metaheuristic optimization techniques such 

as Genetic Algorithms (GA), Particle Swarm 

Optimization (PSO), or multi-objective algorithms 

like NSGA-II are often employed. These algorithms 

explore a wide range of design combinations to 

identify the most cost-efficient and reliable 

configurations. Alternatively, specialized simulation 

tools such as HOMER Pro are widely used to automate 

techno-economic optimization by simulating 

thousands of system combinations based on resource 

data and cost parameters. 

A thorough optimization not only identifies the ideal 

mix of PV, wind, and storage but also informs 

component sizing heuristics for initial feasibility 

studies. For example, battery capacity is often 

estimated to provide at least one to two days of 

autonomy at the expected daily load, adjusted for 

permissible depth of discharge, while PV capacity is 

roughly determined using the local peak sun hours and 

expected daily energy demand. Wind contribution is 

sized to complement solar generation during periods 

of low sunlight or at night, especially in regions with 

favorable seasonal wind patterns. Sensitivity analysis 

is a crucial part of this process, evaluating how 

variations in solar irradiance, wind speeds, battery 

costs, and projected load growth influence the optimal 

configuration and system economics. 

In rural electrification projects, optimization extends 

beyond technical and economic calculations to include 

practical considerations such as local availability of 

components, ease of maintenance, training of 

community operators, and access to spare parts. 

Robust hybrid systems must be designed to withstand 

environmental stresses such as high temperatures, 

humidity, dust, and occasional storms, making 

component derating and protective infrastructure 

essential. Moreover, social and financial factors—like 

community ownership models, government subsidies, 

and the affordability of electricity tariffs—play a key 

role in selecting the final design from the optimal 

configurations suggested by the analysis. 

Overall, the optimization of solar PV–wind hybrid 

systems for rural electrification is a multi-disciplinary 

process that integrates renewable resource assessment, 

load forecasting, component modelling, cost analysis, 

and advanced optimization techniques to achieve a 

reliable, sustainable, and economically viable energy 

solution. Such systems, when properly optimized, not 

only reduce dependence on fossil fuels and minimize 

carbon emissions but also enhance the quality of life 

in rural communities by providing stable electricity for 

lighting, irrigation, healthcare, education, and small 

enterprises. 

II. GOALS & DESIGN OBJECTIVES 

The main objectives in optimizing a hybrid renewable 

energy system include minimizing the Levelized Cost 

of Energy (LCOE) or Net Present Cost (NPC), 

reducing unmet load to increase reliability—measured 

through metrics such as Loss of Power Supply 

Probability (LPSP) or Loss of Load Expectation 

(LOLE)—and minimizing capital cost while adhering 

to reliability targets. Additionally, maximizing the 

renewable fraction or minimizing reliance on diesel or 

backup fuel is a key goal. A common approach is to 

treat the problem as a multi-objective optimization, 

balancing LCOE against reliability, identifying the 

Pareto front of optimal solutions, and selecting a 

preferred configuration based on stakeholder 

priorities.  
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IV. LITERATURE BACKGROUND 

Hybrid Renewable Energy Systems (HRES), 

particularly those combining solar PV and wind 

energy, have gained prominence as viable solutions 

for electrifying remote and rural areas. These systems 

leverage the complementary nature of solar and wind 

resources to provide a more stable and reliable energy 

supply compared to standalone systems. The 

integration of these renewable sources addresses the 

intermittency issues inherent in each, thereby 

enhancing the overall system performance and 

reliability. 

 

A. Optimization Techniques in Hybrid Systems 

1. Sizing and Configuration Optimization 

Optimal sizing of system components is crucial for 

minimizing costs and ensuring reliability. Various 

optimization techniques have been employed, 

including: 

• Linear Programming (LP) and Mixed-Integer Linear 

Programming (MILP): These methods are used to 

determine the optimal size and configuration of hybrid 

systems by minimizing costs while meeting energy 

demand and reliability constraints. 

• Metaheuristic Algorithms: Techniques such as 

Particle Swarm Optimization (PSO), Genetic 

Algorithms (GA), and Differential Evolution (DE) are 

applied to handle the nonlinearities and uncertainties 

in hybrid system design. These algorithms are 

particularly effective in exploring large solution 

spaces and finding near-optimal solutions. 

• HOMER Software: The Hybrid Optimization Model 

for Multiple Energy Resources (HOMER) is widely 

used for modeling and optimizing hybrid systems. It 

assists in evaluating different configurations based on 

cost, reliability, and environmental impact. 

2. Control Strategies 

Effective control strategies are essential for the 

efficient operation of hybrid systems. These include: 

• Maximum Power Point Tracking (MPPT): MPPT 

techniques, such as Perturb and Observe (P&O) and 

Incremental Conductance (IncCond), are utilized to 

extract the maximum possible power from solar panels 

and wind turbines under varying environmental 

conditions. 

• Energy Management Systems (EMS): EMS are 

implemented to coordinate the operation of different 

energy sources and storage systems, ensuring optimal 

energy dispatch and minimizing costs. 

• Advanced Control Algorithms: Techniques like 

Model Predictive Control (MPC) and Fuzzy Logic 

Controllers (FLC) are employed to enhance the 

dynamic response and stability of hybrid systems. 

 

B. Performance Evaluation Metrics 

To assess the effectiveness of hybrid systems, several 

performance metrics are considered: 

• Levelized Cost of Energy (LCOE): LCOE is a key 

economic indicator that represents the per-unit cost of 

electricity generated by the system over its lifetime. 

• Loss of Power Supply Probability (LPSP): LPSP 

measures the probability that the system will be unable 

to meet the energy demand, serving as an indicator of 

reliability. 

• Energy Efficiency and Storage Utilization: These 

metrics evaluate how effectively the system utilizes 

generated energy and manages storage, impacting both 

performance and cost-effectiveness. 

 

C. Socio-Economic and Environment 

Beyond technical optimization, the socio-economic 

and environmental impacts of hybrid systems are 

critical: 

• Community Engagement: Involving local 

communities in the planning and operation of hybrid 

systems ensures that the solutions are tailored to their 

needs and promotes sustainable development. 

• Environmental Impact: Hybrid systems contribute to 

reducing greenhouse gas emissions and dependence 

on fossil fuels, aligning with global sustainability 

goals. 

• Economic Benefits: The deployment of hybrid 

systems can stimulate local economies by creating 

jobs and reducing energy costs, thereby improving the 

quality of life in rural areas. 

 

D. Future Directions and Challenges 

While significant progress has been made, several 

challenges remain: 

• Integration with Smart Grids: The integration of 

hybrid systems with smart grid technologies can 

enhance their efficiency and reliability but requires 

advanced communication and control infrastructure 

Nature. 

• Energy Storage Solutions: The development of cost-

effective and efficient energy storage systems is 
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crucial for managing the variability of renewable 

energy sources. 

• Policy and Regulatory Frameworks: Establishing 

supportive policies and regulatory frameworks is 

essential to encourage investment and facilitate the 

deployment of hybrid systems in rural areas. 

Early studies on hybrid PV–wind systems primarily 

focused on technical feasibility and basic sizing 

calculations using average monthly data. As 

renewable penetration increased, researchers shifted 

toward detailed techno-economic analyses 

incorporating hourly weather patterns, seasonal 

variations, and stochastic models of resource 

availability. Modern tools such as HOMER Pro, 

MATLAB-Simulink, and metaheuristic algorithms 

(Genetic Algorithm, Particle Swarm Optimization) are 

often used to minimize cost of energy and unmet load 

hours. 

 

E. Design Considerations for Optimization 

Optimization balances multiple competing objectives 

under site-specific constraints: load profiling, resource 

assessment, component selection, economic inputs, 

and operational constraints (land, grid connectivity, 

reliability targets). 

 

F. Methodology of Optimization 

A typical optimization methodology involves data 

collection, preliminary sizing, hourly simulation, 

objective function formulation, optimization 

algorithm selection, sensitivity analysis, validation, 

and implementation planning. 

 

G. Control and Dispatch Strategy 

Energy Management Systems (EMS) should prioritize 

renewable generation, dispatch stored energy during 

low-generation periods, and activate backup 

generators only as a last resort. Advanced strategies 

such as Model Predictive Control (MPC), fuzzy logic 

controllers, and demand-side management can 

enhance efficiency and reduce storage costs. 

 

H. Mathematical Formulation 

This section presents a compact but practically useful 

mathematical formulation for sizing and dispatch 

optimization of a PV–wind hybrid system. Notation 

and equations are written in a form suitable for 

implementation in hourly simulation and optimization 

frameworks. 

V.  DECISION VARIABLES AND PARAMETERS 

A.  Decision variables: 

• 𝑃𝑝𝑣  (kW): Rated PV capacity 

•  𝑃𝑤 (kW): Rated wind turbine capacity (aggregate) 

•  𝐶𝑏𝑎𝑡𝑡 (kWh): Usable battery energy capacity 

• 𝑁𝑤 (integer): Number of wind turbines (if discrete) 

• 𝑃𝑖𝑛𝑣  (kW): Inverter/convertor rating 

• 𝑃𝑔𝑒𝑛 (kW) (optional): Backup generator rating 

 

B. Time-dependent variables (hour t): 

• 𝑃𝑝𝑣(𝑡)(kW): PV power produced at hour t 

• 𝑃𝑤(𝑡)(kW): Wind power produced at hour t 

• 𝑃𝑐ℎ(𝑡)(kW): Battery charging power at hour t 

• 𝑃𝑑𝑖𝑠(𝑡)(kW): Battery discharging power at hour t 

• 𝑆𝑂𝐶(𝑡) (kWh): State of charge at the beginning of 

hour t 

• 𝑃𝑢𝑛𝑚𝑒𝑡(𝑡)(kW): Unmet load at hour t 

 

C. Parameters: 

• 𝐸𝑙𝑜𝑎𝑑(𝑡) (kW): Electrical load demand at hour t 

• 𝐼(𝑡) (
kW

m2) :  Solar irradiance at hour t 

• V(t) (m/s): Wind speed at hub height at hour t 

• 𝜂𝑝𝑣 : PV system efficiency factor (includes module, 

soiling, temp) 

• ρ: Air density (
kg

m3) 

• 𝐶𝑝 : Wind turbine power coefficient (practical) 

• 𝐴𝑟 : Rotor swept area (m^2) (aggregate) 

• 𝜂𝑐ℎ, 𝜂𝑑𝑖𝑠 : Battery charge and discharge efficiencies 

• 𝑆𝑂𝐶𝑚𝑖𝑛 , 𝑆𝑂𝐶𝑚𝑎𝑥: Min and max state-of-charge 

limits 

• r: Discount rate 

• T: Optimization horizon in hours (e.g., 8760 for 1 

year hourly) 

D. Resource and Generation Models 

PV instantaneous output (simplified): 

𝑃𝑝𝑣(𝑡) =  𝑃𝑝𝑣 ∗  𝑓𝑝𝑣(𝑡) =  𝑃𝑝𝑣 ∗  𝜂𝑝𝑣𝑛𝑜𝑟𝑚
∗  (

𝐼(𝑡)

𝐼𝑟𝑒𝑓
)     

(1) 

 

Wind turbine output (simplified cubic region model, 

with cut-in and rated-speed limits): 

 

𝑃𝑤(𝑡) = 𝑃𝑤 ∗ 𝑓𝑤(𝑡) ≈ 0.5 ∗ 𝜌 ∗ 𝐴𝑟 ∗ 𝐶𝑝 ∗ 𝑉(𝑡)3      (2) 

(capped at Pw and 0 below cut-in) 
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In practice fpv(t) and fw(t) are normalized production 

profiles (0–1) derived from hourly resource data and 

equipment characteristics. 

 

E. Energy Balance and Storage Dynamics 

Energy balance at every hour t (supply meets demand 

plus/minus storage): 

 

𝑃𝑝𝑣(𝑡) + 𝑃𝑤(𝑡) +  𝑃𝑔𝑒𝑛(𝑡) +  𝑃𝑑𝑖𝑠(𝑡) − 𝑃𝑐ℎ(𝑡) −

 𝐸𝑙𝑜𝑎𝑑(𝑡) +  𝑃𝑢𝑛𝑚𝑒𝑡(𝑡) =  0     (3) 

State-of-charge dynamics (discrete hourly model): 

 

𝑆𝑂𝐶(𝑡 + 1) =  𝑆𝑂𝐶(𝑡) + 𝜂𝑐ℎ ∗  𝑃𝑐ℎ(𝑡) ∗  𝛥𝑡 −

 (
1

𝜂𝑑𝑖𝑠
) ∗  𝑃𝑑𝑖𝑠(𝑡) ∗  𝛥𝑡  (4) 

 

Subject to: 

SOCmin  ≤ SOC(t) ≤ SOCmax 

0 ≤ Pch(t)≤ Pchmax  
 

0 ≤ Pdis(t)≤ Pdismax  
 

0 ≤ Punmet(t)≤ Eload(t) 

 

F. Reliability Metrics 

Loss of Power Supply Probability (LPSP) or unmet-

energy ratio is computed as: 

 

𝐿𝑃𝑆𝑃 = (𝛴
{𝑡=1}

𝑢𝑛𝑚𝑒𝑡(𝑡)
{𝑇}𝑃 ∗  𝛥𝑡) (𝛴

{𝑡=1}
𝑙𝑜𝑎𝑑(𝑡)
{𝑇}𝐸 ∗  𝛥𝑡)   

 (5) 

Alternatively, Loss of Load Probability (LOLP) 

counts the fraction of hours with unmet load: 

 

𝐿𝑂𝐿𝑃 =  (
1

𝑇
) ∗  𝛴{𝑡=1}

{𝑇}
𝐼{𝑃𝑢𝑛𝑚𝑒𝑡(𝑡) >  0}  (6) 

 

Designers set target thresholds, e.g., LPSP ≤ ε (e.g., 

0.01 or 1%) to ensure reliability. 

 

G. Cost Models 

Capital cost (CC): 

 

𝐶𝐶 =  𝐶𝑝𝑣 ∗  𝑃𝑝𝑣 +  𝐶𝑤 ∗  𝑃𝑤 + 𝐶𝑏𝑎𝑡𝑡𝑝𝑒𝑟𝑘𝑊ℎ
∗

 𝐶𝑏𝑎𝑡𝑡 +  𝐶𝑖𝑛𝑣 ∗  𝑃𝑖𝑛𝑣 + 𝐶𝑔𝑒𝑛 ∗  𝑃𝑔𝑒𝑛  (7) 

 

Annualized or Net Present Cost (NPC) across the 

lifetime can be written as: 

 

𝑁𝑃𝐶 =  𝐶𝐶 + 𝛴{𝑦=1}
{𝑌}

(𝑀𝑦 +  𝐹𝑢𝑒𝑙𝑦 +

 𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑦)(1 +  𝑟)𝑦   (8) 

 

Levelized Cost of Energy (LCOE): 

 

𝐿𝐶𝑂𝐸 =  𝑁𝑃𝐶 ÷ ∑ ( 𝐸𝑠𝑒𝑟𝑣𝑒𝑑𝑦
÷ (1 +  𝑟)𝑦)𝑌

𝑦=1   

     (9) 

 

Where Eservedy
is the energy actually supplied to the 

loads in year y (discounted). 

 

H. Optimization Problem Formulation 

We can write a single aggregated multi-objective 

(weighted) optimization problem to capture 

economics and reliability: 

 

Minimize:   

𝐹 =  𝑤1 ∗  𝑁𝑃𝐶(𝑃𝑝𝑣 , 𝑃𝑤 , 𝐶𝑏𝑎𝑡𝑡 , 𝑃𝑖𝑛𝑣 , 𝑃𝑔𝑒𝑛) +  𝑤2 ∗

 𝐿𝑃𝑆𝑃(𝑃𝑝𝑣 , 𝑃𝑤 , 𝐶𝑏𝑎𝑡𝑡 , 𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ) +  𝑤3 ∗

 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠(𝑃𝑔𝑒𝑛 , 𝑓𝑢𝑒𝑙)  (10) 

 

 

Subject to (for all hours t = 1..T): 

 

1. Energy balance:  

𝑃𝑝𝑣(𝑡) +  𝑃𝑤(𝑡) + 𝑃𝑔𝑒𝑛(𝑡) +  𝑃𝑑𝑖𝑠(𝑡) −  𝑃𝑐ℎ(𝑡)

−  𝐸𝑙𝑜𝑎𝑑(𝑡) +  𝑃𝑢𝑛𝑚𝑒𝑡(𝑡) =  0 

 

2. Storage SOC dynamics and limits:  

SOCmin  ≤  SOC(t) ≤  SOCmax 

 

3. Component capacity limits: 

0 ≤ 𝑃𝑝𝑣(𝑡) ≤ 𝑃𝑝𝑣 ∗  𝑓𝑝𝑣(𝑡);  0 ≤  𝑃𝑤(𝑡) ≤  𝑃𝑤 ∗  𝑓𝑤(𝑡) 

 

4. Inverter and converter limits: 

𝑃𝑑𝑖𝑠(𝑡) ≤  𝑃𝑖𝑛𝑣;  𝑃𝑐ℎ(𝑡) ≤  𝑃𝑖𝑛𝑣  

 

5. Reliability: LPSP ≤ ε (or included in objective via 

weight w2) 

 

6. Discrete/integer constraints: Nw ∈  ℕ if turbines are 

indivisible. 

 

If a single-objective formulation is preferred, 

designers often minimize NPC subject to a reliability 

constraint (LPSP ≤ ε): 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑁𝑃𝐶(𝑃𝑝𝑣 , 𝑃𝑤 , 𝐶𝑏𝑎𝑡𝑡 , 𝑃𝑖𝑛𝑣) 

Subject to LPSP ≤ ε and constraints 1–6 above. 

 

I. Notes on Solution Methods 

• Deterministic solvers (LP / MILP) are efficient 

when the model can be linearized and the search 

space is moderate. 

• Metaheuristics (GA, PSO, MOEA) are well suited 

to non-linear, discontinuous search spaces, and 

mixed discrete-continuous variables. 

• Stochastic programming or robust optimization 

approaches help account for resource uncertainty 

(multiple meteorological years or probabilistic 

scenarios). 

• Sensitivity and uncertainty analyses are essential 

for robust decision making. 

 

J. Case Example – Hypothetical Design (summary) 

For a village with daily load 500 kWh, an optimized 

design might be Ppv= 120 kW, Pw= 60 kW, Cbatt= 

300 kWh. Simulation over an hourly year with the 

above constraints and an LPSP target of 1% can be 

used to compute NPC and LCOE. 

VII. CONCLUSION 

The optimization of solar PV–wind hybrid systems 

for rural electrification involves balancing technical, 

economic, and social factors. By combining 

complementary renewable sources, these systems 

provide reliable electricity to remote communities 

while reducing dependence on diesel. A detailed 

mathematical framework—covering generation 

models, storage dynamics, energy balance, 

reliability, and cost—guides system design and 

evaluation. 

Designers can use this framework to optimize trade-

offs between capital costs, operation and 

maintenance, storage, and reliability, minimizing 

Levelized Cost of Energy (LCOE) while meeting 

reliability targets. Sensitivity analyses help account 

for uncertainties in resources, component 

performance, and financial parameters. Successful 

deployment also depends on socio-economic 

considerations, including community engagement, 

modular scalability, ease of maintenance, and 

capacity building. Environmental benefits, such as 

lower emissions, and economic gains from reliable 

energy access highlight the potential of hybrid 

systems to drive sustainable rural development. 
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