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Abstract—This research addresses the integrated 

problem of production planning and scheduling in a 

complex multi-stage, multi-product, multi-machine 

batch production environment, typical of industries such 

as chemicals, food, glass, pharmaceuticals and tyres. 

These industries are increasingly challenged by high 

product variety, low volumes, variable demand and short 

planning cycles, often resulting in excess inventory and 

poor capacity utilisation. The study considers production 

settings where raw materials, intermediate products, by-

products and recycled materials interact across multiple 

stages, with equipment shared across products. The 

environment is characterised by perishability of 

products, high set-up times, transfer lot sizes, and 

deterministic demand over a finite horizon. The decisions 

involve determining production quantities, inventory 

levels, aggregate capacity requirements and detailed 

schedules at minimum cost. 

A sequence of mathematical models is developed to 

address these decisions. A mixed-integer programming 

(MIP) model is proposed for production planning with 

the objective of minimising inventory, set-up and raw 

material costs, while determining aggregate capacity 

needs. A variant model integrates sales and production 

planning under market constraints. For scheduling, an 

MIP model is formulated to generate equipment-wise 

schedules, minimising earliness and tardiness penalties. 

Heuristics and analytical results are developed for flow 

shop scheduling problems with common due dates, while 

intermediate products are scheduled using job shop 

heuristics with re-entrant flows. 

 

I. INTRODUCTION 

 

In the present industrial scenario, business competition 

has intensified to a great extent. Manufacturing 

enterprises are compelled to release the importance of 

adopting structured manufacturing strategies to remain 

viable in both domestic and international markets. 

They are under constant pressure to reduce customer 

response time, expand product range, and manage 

fluctuating demand while maintaining competitive 

prices. In the absence of proper planning, many firms 

face situations where some products are in critical 

shortage while others pile up in excess inventory, 

thereby blocking capital and reducing efficiency. This 

imbalance not only affects customer satisfaction but 

also impacts profitability and long-term growth. Thus, 

the challenge for industry today lies in maintaining a 

balance between minimizing costs and ensuring 

responsiveness to customers. Internally, organizations 

are under further pressure to enhance profitability by 

increasing manufacturing efficiency, reducing 

operational expenditure, and utilizing resources 

optimally. These factors bring the focus on production 

planning and scheduling, which are vital for ensuring 

stability and competitiveness in the present 

environment.  

 

1.1 Production Planning and Scheduling Problem  

In this section, the production planning and scheduling 

problem undertaken in this research is presented in 

detail. The discussion begins with a description of the 

production environment, motivated primarily by 

observations on the operational characteristics of 

chemical plants. The inherent complexities of this 

environment are then highlighted, particularly those 

arising from the nature of multi-stage processing and 

the interdependence of resources. Finally, attention is 

directed towards the key decisions to be addressed in 

the production planning and scheduling problem, 

which form the central focus of this study. 

 

1.2 Production Environment 

The research considers a multi-stage production 

environment in which both intermediate products and 

finished goods are produced. Each stage in the 
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production process corresponds either to the 

manufacture of an intermediate product or to the final 

production of a finished good. The concept of multi-

stage production, as examined in this study, is 

analogous to a multi-level product structure. For 

illustration, Figure 1.1 presents a typical product 

structure where level 0 represents the finished goods 

(E1, E2, E3), while levels 1 and 2 represent 

intermediate products (I1, I2, …, I6). The different 

levels in the diagram correspond to the various stages 

of the production process. Specifically, the 

intermediate products at level 2 serve as inputs for the 

intermediate products at level 1, which in turn act as 

inputs for the level 0 products. The level 0 products 

constitute the finished goods, and their production 

represents the final stage in the multi-stage 

environment. 

 

The production environment under consideration 

consists of multiple plants engaged in the manufacture 

of both intermediate products and finished goods. 

Each production plant comprises a set of equipment, 

referred to as ‘machines’, on which the processing 

activities are carried out. Products, whether 

intermediate or finished, undergo processing on these 

machines in a specified sequence. The processing of a 

product on an individual machine is termed an 

‘operation’. A sequence of such operations required 

for producing a product defines its ‘route’. To illustrate 

these concepts, Figure 1.2 presents an example of a 

product ‘P’, which requires four operations in a 

production plant comprising five machines (M1, M2, 

…, M5). As shown in the figure, there exists a choice 

of machines for the third operation, which may be 

carried out either on machine M3 or on machine M4. 

Accordingly, two alternate routes are available for 

manufacturing product P. Route 1 consists of the 

sequence M1–M2–M3–M5, whereas Route 2 consists 

of the sequence M1–M2–M4–M5. This illustration 

highlights the flexibility and complexity inherent in 

determining routes in a multi-machine production 

environment. 

Fig: 1.1 Multi-level Product Structure and Concept of Stage 

 
Fig 1.2 Machines, Operations and Routes of a Product 

 

1.2.1 Complexities in the Production Environment 

In this sub-section, the major complexities associated 

with the production environment are described. These 

complexities, along with the features of the production 

environment discussed earlier, form the foundation for 

the production planning and scheduling decisions 

considered in this research. As shown in Figure 1.3, 

raw materials are recovered from by-products through 

a recycling process and reused in the production 

plants. Since raw materials account for a significant 
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proportion of production costs, maximum recovery of 

reusable materials is essential to minimize the 

consumption of fresh raw materials. This introduces 

the need for close coordination between production 

and recycling plants. Recycling is most effective when 

undertaken simultaneously with production, as the 

storage capacities of by-products and reusable raw 

materials are limited. By synchronizing these 

processes, the requirement for fresh raw materials is 

reduced, resulting in overall cost savings. 

 

II. PRODUCTION PLANNING MODEL 

 

The production-planning model is formulated to 

address medium-range time horizon decisions in the 

production environment. The primary objective of this 

model is to minimise overall production costs. These 

costs comprise inventory costs of finished goods, 

intermediate products, by-products, and recovered raw 

materials, as well as setup costs incurred for end 

products and intermediate products. Additionally, the 

cost of procuring fresh raw materials is included in the 

objective function. The production-planning model 

thus integrates all these cost components to provide an 

optimal plan that balances production quantities, 

inventory levels, and resource utilisation. The detailed 

mathematical formulation of the production-planning 

model is presented in the following section. 

min z    hi. Iit    Sij.Oijt    hs.ISst    hm.IMmt    fs.Fst 

The production-planning model is subject to a set of 

constraints that ensure feasibility and practical 

applicability in the production environment. 

Constraint 1 ensures that the demand for each end 

product is satisfied in every time period. Constraint 2 

relates to the derived demand of intermediate 

products, indicating that their demand in each period 

depends on the production of intermediate and end 

products in which they serve as inputs. Constraint 3 

specifies the capacity constraint of dedicated 

production plants by limiting the production of 

intermediate and end products based on plant capacity 

in each time period. 

 

 2.1 Production Scheduling Model: 

 In this section, we present the formulations of the 

scheduling models used to derive detailed scheduling 

decisions for the production planning and scheduling 

problem. The scheduling decisions specify, for each 

job and each machine, the start time and the 

completion time. The aggregate production plan 

generated by the production-planning model serves as 

input to the scheduling models and imposes feasibility 

constraints on them. The overall scheduling task is 

divided into two parts: finished goods scheduling and 

intermediate products scheduling. These are treated 

separately because the production environments differ 

for finished goods and for intermediate products. As 

discussed in Chapter 1, finished goods follow a 

flowshop pattern in which every product undergoes 

the same sequence of operations. When all machines 

process jobs in an identical sequence, the environment 

is termed a permutation flowshop. Determining an 

optimal schedule for a general flowshop, where job 

sequences may differ across machines, is significantly 

harder than for a permutation flowshop (Baker, 1974; 

Pinedo, 1998); therefore, we adopt the permutation 

flowshop setting for finished goods. 

Min z   Ei  Ti   Cie
Li 

 d 

 

 2.1.1 Solution Procedure for Production Planning 

Problem: 

 

The production-planning model is solved using the 

branch and bound algorithm. The demand for finished 

goods in each period of the planning horizon serves as 

a key input to the model. Aggregate capacity is 

incorporated in the planning stage, with different 

considerations for dedicated and flexible plants. For 

dedicated plants, the capacity of the bottleneck 

machine is taken as the overall plant capacity, while 

for flexible plants, the capacity of each machine that 

processes multiple products is considered individually. 

 

To implement and solve the mathematical model, we 

employ the General Algebraic Modelling System 

(GAMS), version 19.8, along with the solvers 

integrated in the compiler. Specifically, the branch and 

bound algorithm available in the CPLEX solver is 

utilized for obtaining optimal solutions to the 

production-planning problem 
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Fig 1.3 Schematic of Solution Procedure for Production Planning and Scheduling Problem 

 

2.1.2 Solution Procedure for Finished Goods 

Scheduling Problem 

The finished goods scheduling problem is modelled as 

a permutation flow shop with a common due date. The 

primary objective of this scheduling model is to 

minimize earliness and tardiness (E/T) penalties. In 

Chapter 2, we reviewed existing results on E/T 

scheduling, noting that most of the literature has 
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focused on single-machine scheduling problems. 

Specifically, Baker and Scudder (1990) examined the 

case of unrestricted due dates in single-machine 

scheduling. Let us denote the unrestricted due date for 

a single-machine problem as d0d_0, and let dd 

represent the common due date for all jobs in our 

problem. 

2.1.3 Procedure for Generating Alternate Optimal 

Sequences at d=d0d = d_0d=d0 (GAOS): 

Step 1: Initialize j=1j = 1j=1. 

Step 2: Set x=j+1x = j + 1x=j+1. 

Step 3.1: Is pxm = pjm 

 

Yes  Create new sequence by interchanging j and x 

x = x + 1 

is x = n +1 

yes  j = j + 1 and go to step 3.2 no   

repeat step 3.1 

No  x = x + 1 and repeat step 3.1 

 

Step 3.2 if j = n 

STOP else got step 2 

 

2.1.4 Procedure for Removing Idle Time at Last Machine 

(RIT) 

 

Let the sequence s be 1, 2…. n 

. 

Step 1: i = n 

Step 2: t = Sim-Ci-1m 

Step 3: If t > 0 

Yes  for x = 1 to i-1 

Sxm = Sxm + t Cxm = Sxm + pxm 

If i = 1, STOP else 

i = i –1 and go to Step 2  

No  If i = 1, STOP else 

i = i –1 and go to Step 2 

 

2.2 Heuristic Algorithm 

The proposed heuristic for solving sub-problem 2 is 

based on constructing a permutation sequence of jobs 

at the bottleneck machine. The bottleneck machine is 

identified as the machine with the maximum total 

processing time across all jobs among all machines. 

In solving multi-machine scheduling problems, it is 

often effective to decompose the problem into an 

equivalent single-machine problem. Accordingly, we 

reformulate the flow shop E/T problem into a single-

machine E/T problem at the bottleneck machine 

Thus, the problem reduces to a single-machine E/T 

problem with release dates and distinct due dates, 

denoted as: 

n/1/ri/∑(Ei+Ti). n/1/r_i / \sum (E_i + T_i). n/1/ri/∑(Ei

+Ti) 

To solve this problem, we draw upon the results of 

Chu (1992) and Chu and Portmann (1992), who 

proposed sequencing rules for the n/1/ri/∑(Ei+Ti) 

n/1/r_i / \sum (E_i + T_i) n/1/ri/∑(Ei+Ti) problem. In 

our heuristic, a priority function (defined in the 

subsequent steps) is used to iteratively select a job, 

which is then appended to a partial sequence 

 

2.2.1 Dedicated Plant Scheduling Heuristic: 

Dedicated production plants are facilities that produce 

only one type of product, which simplifies the 

production environment compared to multiproduct or 

flexible plants. Since the plant is restricted to a single 

product, sequencing across different product types is 

not required. However, scheduling remains important 

to align production runs with customer orders and 

available inventory. The main challenge lies in 

deciding the number and timing of batches to ensure 

demand is satisfied without creating unnecessary 

earliness, tardiness, or excessive inventory holding 

costs. 

 

III. RESULTS OF PRODUCTION PLANNING 

AND SCHEDULING PROBLEM 

 

we present the results obtained from the solution 

procedures developed for addressing the production 

planning and scheduling problem, along with a 

sensitivity analysis of these results. The data for this 

study has been sourced from a pharmaceutical 

company in India. The solution methods applied were 

introduced in Chapter 4, where the production-

planning problem is solved using the branch-and-

bound algorithm of a commercial solver, while 

analytical results are derived for sub-problem 1 of 

finished goods scheduling. Prior to applying these 

methods to the complete production planning and 

scheduling framework, we evaluate the performance 

of the heuristic algorithms for sub-problems 2 and 3 

using benchmark instances from the flow shop 

scheduling literature. 

LBCi is considered a weak lower bound (Kim, 1995). 

As discussed earlier, estimating a reliable lower bound 

on earliness is challenging, which makes LBETi a very 
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weak measure of earliness and tardiness. This 

weakness is evident from the results on small problem 

instances (n = 5, 10; m = 5), where the average 

percentage deviation of the optimal solution from the 

lower bound is extremely high. Specifically, for n = 5, 

m = 5 with 50 instances, the deviation is 326 percent, 

while for n = 10, m = 5, it is 284 percent. Figures 5.1 

and 5.2 illustrate the average percentage deviation of 

heuristic solutions from the lower bound for 5-

machine and 10-machine problems, respectively. 

Although the deviations remain high, this is expected 

since the lower bound itself deviates significantly from 

the optimal solution. Importantly, for smaller 

problems, both the heuristic and optimal solutions 

show nearly the same deviation from the lower bound, 

indicating that the heuristic solutions are close to the 

optimal ones. 

 

 
Fig 1.4 Average % Deviation of Heuristic Solution 

from Lower Bound: 5 Machines 

 

The heuristic’s performance for smaller problems is 

further evaluated by comparing it with the optimal 

solution using a random common due date selected 

between d1d_1 and d2d_2. This approach helps in 

assessing the quality of the heuristic across the full 

range of intermediate due dates. For n=5,m=5n = 5, m 

= 5 with 50 instances, the heuristic solution shows an 

average deviation of 0.846 percent from the optimal 

solution. Similarly, for n=10,m=5n = 10, m = 5 with 

50 instances, the average deviation is 1.247 percent, 

confirming that the heuristic remains consistently 

close to the optimal solution across varying due dates. 

 
Fig 1.5 Average of Deviation of Heuristic Solution 

from Lower Bound: 10 Machines 

 

As noted earlier, the lower bound of sub-problem 2 is 

quite weak; therefore, the performance of the heuristic 

for larger problems is evaluated using the common due 

date value d1d_1 (derived in sub-problem 1). This 

approach is chosen because the optimal solution of the 

flow shop E/T problem with common due date d1d_1 

can be obtained in polynomial time. Table 5.2 presents 

the results of this comparison, showing the average 

percentage deviation of the heuristic solution from the 

optimal solution at d=d1d = d_1 for each job–machine 

combination considered in the experiment design. 

Fig1.6. Average Percentage of Deviation of Optimal Solution from Heuristic Solution 

 

Finally, we presented results for the production 

planning and scheduling problem using real-world 

data from a pharmaceutical company in India. We 

analysed the production plan generated by the 

planning model and examined machine-wise 

schedules produced by the scheduling model. These 

results provided insights into production quantities, 

setups, inventory levels, and overall scheduling 

 Machines 

Jobs 5 10 15 20 

5 0.000 0.000 0.235 0.000 

10 0.084 0.081 0.099 0.276 

20 0.074 0.020 0.012 0.023 

50 0.323 0.153 0.152 0.146 

80 0.865 0.642 0.617 0.644 

100 1.744 1.168 1.175 1.129 
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outcomes. In the next chapter, we extend this analysis 

through a case study application in the pharmaceutical 

company, where we apply the proposed models, report 

solution results, and conduct sensitivity analysis to 

evaluate their practical effectiveness. 

3.1 Application of Production Planning and 

Scheduling Models 

we apply the production planning and scheduling 

models developed in Chapter 3 to a real-life case study. 

The application is carried out in a pharmaceutical 

company in India that was experiencing operational 

challenges such as excess inventories, frequent 

stockouts, and low-capacity utilization while 

attempting to meet fluctuating demand forecasts. The 

frequent demand variations led to constant revisions in 

production plans and shop floor schedules, making the 

process of adjusting schedules to meet changing 

market requirements both time-consuming and 

complex. To address these issues, we develop a 

decision support system aimed at effectively solving 

the company’s production planning and scheduling 

problem. 

3.1.1 Application of Production Planning Model 

The production environment described in Section 6.1 

is modelled in two steps. In the first step, a mixed-

integer linear programming (MILP) model is 

developed for production planning, where demand is 

forecast over the planning horizon and plant capacities 

are incorporated. For dedicated plants, the model 

considers the monthly available capacity of the entire 

plant, while for flexible plants with shared machines, 

machine-wise monthly available capacities are taken 

into account. The key decisions of the model include 

determining production quantities of finished and 

intermediate products, the number of setups required, 

and the inventory levels of finished and intermediate 

products across the planning horizon, with the 

objective of generating a cost-effective and feasible 

production plan. 

1. Quantity of each product to be produced on each 

plant in each time period of the planning horizon 

2. Inventory levels of end products, intermediate 

products, solvents and by-products in each time 

period of the planning horizon 

3. Quantity of fresh raw material consumed in each time 

period of the planning horizon. 

 

3.1.2 Results of Production Planning Model 

We compare the actual production plan developed by 

the company with the production plan proposed by the 

cost minimization model (production-planning model) 

over a given period. The problem instance in this 

application consists of 10 finished goods, 30 

intermediate products, 50 by-products, and 40 

reusable raw materials, processed across 15 

production plants—8 dedicated and 7 flexible. The 

planning model formulated for this instance includes 

576 discrete variables, 5974 continuous variables, and 

3016 constraints. To evaluate the model, five months 

of data from January 2002 to May 2002 were 

considered, with each month treated as one time 

period.  

 Cost Difference (%) 

(Actual Production Plan – Production Plan Proposed by the 

Model) 

Cost Scenario 1 Scenario 2 

Inventory Carrying Cost of Intermediates 

and End Products. 

61.20 60.90 

Setup Cost of Intermediates and End 

Products. 

38.46 24.79 

Fresh Raw Materials Cost 20.50 6.38 

Inventory Carrying Cost of By-Products 

and Reusable Raw Materials 

8.58 6.69 

Total Cost 33.87 24.65 

Fig 1.7 Comparison of Model Results with Actual Production Plan Costs 

3.2 Application of Scheduling Model 

the scheduling problem using the solution procedures 

developed in chapter 4. The production-planning 

model serves as the input to the detailed scheduling 

model. As illustrated in the product structure diagram, 

products at level 0 represent finished goods. These 

finished goods are scheduled using the flow shop E/T 

(Earliness/Tardiness) procedures outlined earlier. 
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Their due dates are determined based on customer 

orders and demand forecasts. Since finished goods are 

shipped multiple times within a month in response to 

customer requirements, the flow shop E/T scheduling 

problem is applied weekly. The common due date for 

finished goods is set at the end of each week, and the 

objective of their scheduling is to minimize penalties 

associated with earliness and tardiness. 

 

3.2.1 Sensitivity Analysis on Production Planning and 

Scheduling Results 

we conduct sensitivity analysis on the production 

planning and scheduling results discussed earlier. The 

analysis focuses on four key factors: demand of 

finished goods, initial inventory of finished goods and 

intermediates, capacity of dedicated and flexible 

plants, and the ratio of setup cost to inventory cost for 

intermediate products and finished goods. Demand is 

chosen due to inherent variability in the environment, 

making its sensitivity critical for aligning marketing 

and production decisions. Initial inventory is analysed 

to assess the trade-off between purchasing 

intermediates externally versus in-house production. 

The solved instance from the previous section serves 

as the base case. Since scheduling costs are relatively 

small compared to production costs, they are excluded 

from the analysis. 

 

3.2.2 Implementation Issues 

The benefits of the production planning model were 

demonstrated to the company using five months of 

operational data. These results encouraged 

management to consider wider implementation of the 

models, though the long-term savings remain difficult 

to estimate. Currently, the company is in the process 

of applying both production planning and scheduling 

models across its full operations, with the scheduling 

model still not completely functional. To support 

adoption, on-site training was provided for personnel 

engaged in planning and shop floor scheduling. In 

addition, a Decision Support System (DSS) was 

developed and documented, covering problem 

definition, key decisions, model structure, 

interpretation of results, and sensitivity analysis. The 

planning model built in GAMS was also integrated 

with Microsoft Excel to simplify parameter input and 

adjustments. 

During implementation, one major observation was 

that managers did not easily internalize the benefits of 

optimization tools. In particular, many plant managers 

were initially resistant to the idea that maximizing 

capacity utilization could lead to significantly higher 

operational costs. However, the results of the models 

provided concrete evidence, helping managers 

recognize the importance of demand-driven planning 

rather than relying solely on capacity-based 

production decisions. This shift in perspective was 

crucial in highlighting how structured production 

planning can lead to cost savings and efficiency 

improvements. 

 

IV. SUMMARY, CONTRIBUTION AND FUTURE 

RESEARCH 

 

In this research, we investigate the potential of 

production planning and scheduling in reducing 

operational costs for manufacturing firms operating in 

complex production environments. Manufacturing 

industries today face increasing challenges such as 

greater product variety, declining product volumes, 

fluctuating demand, and shorter customer response 

times. As a result, operating costs have become a 

critical concern for firms. In this context, we argue that 

effective production planning and scheduling can play 

a significant role in minimizing costs and improving 

efficiency. Motivated by the complexities of chemical 

plants, we focus on production planning and 

scheduling problems in both process industries and 

discrete parts manufacturing, considering multi-stage, 

multi-product, multi-machine, and batch-processing 

settings. Our approach models decision-making in two 

stages: first, a mixed integer linear programming 

(MIP) model for production planning, and second, 

MIP-based  

scheduling models for finished and intermediate 

goods. The production-planning model determines 

product quantities, inventory levels, and aggregate 

resource capacities, with the objective of minimizing 

production costs. The scheduling models determine 

the start and completion times of products on 

machines, with the objective of minimizing earliness 

and tardiness penalties, while ensuring consistency 

with the production plan. 

 

4.1.1 Contribution 

In this research, we address complex production 

planning and scheduling problems arising in discrete 

parts manufacturing and process industries. The study 
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considers a multi-stage, multi-product, multi-machine, 

batch-processing environment, reflecting the 

complexities typically found in real-world 

manufacturing systems. Unlike traditional studies, our 

work incorporates additional challenges in the 

production environment. Specifically, we model the 

production of both finished goods and intermediate 

products, along with by-products that are recycled to 

recover reusable raw materials. This recycling process 

introduces a unique level of complexity not generally 

addressed in the literature. Further, the production 

system operates with flexible machines that are used 

to process both finished and intermediate products, 

significantly complicating scheduling decisions. 

Demand forecasts are considered over a finite 

planning horizon, with finished goods following a 

flow shop production process and intermediate 

products following a general job shop process with re-

entrant flows. 

 

To tackle these challenges, we model production 

planning and scheduling decisions through a 

hierarchical sequence of mixed integer programming 

(MIP) models. The first model addresses production 

planning decisions with the objective of minimizing 

costs associated with inventories, setups, by-products, 

reusable raw materials, and fresh raw materials. The 

second and third models address scheduling decisions 

for finished goods and intermediate products, 

respectively. In particular, the objective of the 

scheduling models is to minimize the absolute 

deviation of job completion times from a common due 

date. The production-planning problem is solved using 

the branch-and-bound algorithm. For scheduling, we 

report several new results. The finished goods 

scheduling problem, modelled as a flow shop problem 

of minimizing the deviation of job completion times 

from a common due date, has not been studied 

previously in the literature. We derive analytical 

solutions for specific ranges of due dates and propose 

heuristic algorithms for cases where analytical 

solutions are intractable. For special structures in flow 

shop scheduling, including problems of minimizing 

tardiness, flow time, and completion time, we develop 

new heuristics that show superior computational 

performance compared to existing methods. Similarly, 

we design heuristic algorithms for solving 

intermediate products scheduling problems in job shop 

environments. 

 4.1.2 Future Research 

In this research, we decomposed the overall 

production planning and scheduling problem and 

developed sequential models to address the associated 

decision-making processes. A natural extension of this 

work would be to further explore the benefits of 

hierarchical production planning. In particular, we did 

not consider product aggregation, as discussed in 

Bitran and Tirupati (1993). Products can be aggregated 

into families and families into types, where a type is a 

collection of products with similar demand patterns 

and production rates, and a family is a subset of 

products within a type that share a common setup. The 

aggregation of products offers significant advantages, 

including reduced dimensionality of mathematical 

programs and reduced dependence on detailed demand 

forecasts (since only type-level forecasts would be 

required). Subsequent stages would then involve 

disaggregation models to derive production plans for 

product families, followed by further disaggregation to 

determine the exact production quantities for 

individual products. 

Another promising extension of this research would be 

to incorporate uncertainties that are common in real-

world production environments. Practical situations 

often involve stochastic factors such as machine 

breakdowns, demand forecast errors, variability in job 

processing times, and fluctuations in process yields, 

particularly in process industries. Our research has 

focused primarily on deterministic scheduling, where 

problem parameters are assumed to be known with 

certainty. Extending the models to incorporate 

stochastic parameters would allow a more realistic 

representation of production environments, thereby 

improving the robustness of scheduling decisions. In 

addition, while this work has examined finished goods 

scheduling under a permutation flow shop setting with 

common due dates, extending the analysis to general 

flow shop configurations with distinct due dates would 

be another valuable contribution. 
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