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Abstract—The article defines a new framework for 

precision agriculture to automate the diagnosis of 

decline of tomato plant leaves using deep learning 

technologies. A public tomato leaf dataset available on 

Kaggle was used to train and test CNN-based models, 

ResNet50 and EfficientNet, to detect tomato plant 

diseases. In addition, data augmentation and transfer 

learning were used to enhance the reliability and 

accuracy of the framework. The models provided 

remarkable classification performance on accuracy, 

precision, recall, and F1-scores indicating that the 

framework could be utilized in early disease detection, 

and sustainable crop management. The framework can 

also be potentially utilized in food security and in 

preventing losses in crops. 
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I. INTRODUCTION 

 

Precision agriculture uses data-driven methods to 

advance agricultural practices, save resources, and 

lower the negative effects of agriculture on the 

environment. Plant diseases represent a significant 

global threat to overall crop yields and losses in 

earnings [1]. Typical visual inspection methods 

utilized in the diagnosis of diseases are time-

consuming and requires a level of expertise and 

knowledge about the crop. However, in recent years, 

due to advances in deep learning and computer 

vision, a diagnosis may now be automated and 

executed relatively quickly and accurately simply 

using image data [2], [3]. This work explores a 

framework for classifying tomato diseases using a 

Kaggle dataset that is well curated and is expected to 

help farmers and agronomists in making decisions 

related to disease potential. 

Automatic plant disease detection using plant leaves 

is crucial in agriculture. The prompt and precise 

identification of plant diseases also enhances the 

production and quality of agriculture. Crop diseases 

cause farmers in most developing nations to lose 

money yearly. India is an agricultural country, with a 

significant amount of its Gross Domestic Product 

(GDP) coming from agriculture.16% of India's GDP 

and 10% of all exports are attributable to agriculture. 

Agriculture indirectly or directly supports over 75% 

of India's population (Li et al. 2021; Annabel et 

al. 2019). Due to their great market demand and 

nutritional worth, tomatoes are crucial. For our 

general health, these antioxidants are crucial. Pests 

and insects that attack tomato plants and spread 

multiple diseases might hinder the production of this 

well-known crop. Farmers must be aware of the 

illness to cure tomato plant ailments manually. Each 

year, farmers struggle to produce healthy crops due to 

several issues. Pests like insects harm the 

manufacturing process and make it sluggish, 

preventing it from producing as much as it might. 

This severely harms our economy and affects our 

farmers (Singh et al. 2020; Gadekallu et al. 2021). 

To protect tomato plants against disease, growers use 

a range of pesticides and insecticides, although often, 

they are unaware of the illness or how to prevent it. 

The overuse of pesticides and insecticides endangers 

the lives and health of people. Misdiagnosis of 

diseases and the overuse or underuse of pesticides 

may both result in crop harm. For optimum output, a 

tomato plant's diseases must be correctly diagnosed. 

On the other hand, it takes time and effort to 

manually identify tomato illnesses by thoroughly 

examining the plants. It might be challenging for 

farmers to confer with specialists in distant areas and 

take precautions against unusual illnesses (Verma et 
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al. 2018; Iqbal et al. 2018). The visual examination of 

plants might result in an imprecise disease diagnosis 

if the preceding information is lacking. The 

implementation of inefficient preventative measures 

is also a result of this. To assist the remaining crop 

develop more effectively and with fewer losses, 

machine learning (ML) may be used to identify 

damaged tomato plants, determine their disease, and 

apply that knowledge (Bharate and 

Shirdhonkar 2017).To avoid this problem, existing 

work uses SVM, KNN, and Naïve Bayes to classify 

crop diseases. However, these methods did not 

perform well with large volume data and consume 

more computation time. To avoid this problem, this 

work introduced an improved framework for crop 

disease classification. In this work, image pre-

processing is executed based on median filters. Image 

improvement is done by utilizing contour detection. 

Morphological analysis is computed by using 

morphological opening and closing operations. 

Foreground segmentation using FCM clustering. 

Feature extraction is executed using the GLCM. 

Diseases of the tomato crop are categorized utilizing 

ANN. 

 

II. LITERATURE REVIEW 

 

Recently, deep learning frameworks for plant disease 

diagnostics have made impressive progress. Mohanty 

et al. [1] were the pioneers in proving that CNNs 

could be applied toward image-based disease 

detection. Ferentinos [2] and Too et al. [3] improved 

classification rates by using deeper network 

architectures and transfer learning approaches. 

Brahimi et al. [4] used visualization methods to 

provide reasoning for CNN predictions in relation to 

diseases of tomato plants. Publicly available datasets 

such as PlantVillage have been applied for modeling 

and allow for reproducible benchmarking and 

experimentation [5]. Nevertheless, there are 

limitations of even publicly available datasets in 

terms of data imbalances, variability in 

environmental conditions, and implementation on 

low resource devices [6], [7]. While used extensively, 

ResNet [8] and VGGNet [11] remain common 

architectures, but more recent attention-based 

networks have shown better results [14]. 

Hossain et al. (2019) suggested the KNN classifier 

was suggested as a technique for plant leaf disease 

detection and classification. For classification, the 

leaf disease images are retrieved for their textural 

properties. In this study, a KNN classifier will 

categorize illnesses that affect several plant species, 

including Alternariaalternata, bacterial blight, 

anthracnose, leaf spot, and canker. The suggested 

technique has a 96.76% accuracy ratio for detecting 

and identifying the chosen illnesses. 

Hlaing et al. (2018) classified tomato plant disease 

utilizing two diverse features: texture and color. To 

create a texture characteristic, use the Scale Invariant 

Feature Transform (SIFT) feature to extract a 

photograph's statistical texture data (scale, shape, and 

location). A new method for modeling the SIFT 

texture component by Johnson SB distribution for 

statistical texture data from an image is presented as 

the primary innovation. The components of the 

Johnson SB distribution are estimated using the 

moment technique. The SIFT feature's matrix 

representation in mathematics is too intricate to be 

used in image analysis. Using the suggested method, 

extract the RGB color channel's statistical color data 

for an image's color feature. A combination of 

statistical textures and color features is presented to 

categorize tomato plant disease. To demonstrate the 

benefits of the suggested feature, the study's result on 

the Plant Village database is contrasted with 

contemporary feature vectors. 

Sabrol and Satish (2016) classified five categories of 

tomato disease, i.e., bacterial canker, tomato late 

blight, bacterial spots, bacterial canker, Septoria spot, 

healthy tomato plant leaf, tomato leaf curl, and stem 

imageries. The classification was performed by 

unraveling the color, shape, and texture 

characteristics from the images of healthy and harsh 

tomato plants. Lastly, these six various kinds of 

classes served as the foundation for the classification 

of diseases. The total categorization accuracy for the 

six different tomato image categories was 97.3%. 

Hlaing and Zaw (2017) introduced a collection of 

statistical characteristics and recommended the SIFT 

texture features description method for statistical 

image processing. With the help of the PlantVillage 

image dataset, the suggested attribute is used to 

classify plant diseases. The result is the name of the 

plant illness, and the input is a smartphone camera 

image of a plant leaf. The pre-processed image is 

used to extract SIFT features. The collected SIFT 

features are used as the primary tool to model the 
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Generalised Extreme Value (GEV) Distribution to 

express an image's data across a limited number of 

dimensions. Concentrate on statistical and model-

based texture features to reduce the computing time 

and complexity of phone picture processing. The 

outcome demonstrates that the suggested parameters 

could be compared to other historical statistical 

features and differentiate between various tomato 

illnesses. 

Govardhan and Veena (2019) presented an automated 

ML and image-processing system to recognize and 

categorize plant diseases. The feature extraction 

technique is used to train the method using photos. 

Various ML algorithms are assessed using training 

data to determine which is most effective at 

identifying diseases. The test folder, which contains 

the unseen photographs, is employed to verify the 

system's effectiveness in identifying plant illnesses. 

95 percent of the time, the system is accurate. The 

system produces correct findings more quickly and 

can be trained with many images. 

Mokhtar et al. (2015) applied SVMs with alternative 

kernel functions used in conjunction with the Gabor 

wavelet transform approach to extract pertinent 

information connected to the picture of a tomato leaf. 

The best feature subset was first determined by 

collecting samples of sick tomato plants and isolating 

each leaf in a single image using a wavelet-based 

feature approach. The capability of this method to 

recognize and pinpoint locations of tomato leaves 

affected with early blight or Powdery mildew was 

then tested using an SVM classifier with several 

kernel functions, including Invmult Kernel, Cauchy 

kernel, and Laplacian Kernels. 100 images for each 

form of tomato disease were tested in the collection. 

The outcomes show that the suggested method offers 

good annotation with a 99.5% accuracy ratio. 

While FCM clustering for segmentation and GLCM 

for feature extraction are well-documented, their 

effectiveness depends on parameter settings and 

application. For example, FCM clustering 

necessitates specifying the number of clusters and the 

fuzziness parameter, which might affect segmentation 

accuracy. FCM is a popular technique for image 

segmentation, particularly in medical imaging. Its 

performance is influenced by the number of clusters 

(C) and the fuzziness coefficient (m). Studies have 

shown that selecting appropriate values for these 

parameters is essential for achieving accurate 

segmentation results. For instance, in the 

segmentation of brain tumors in MRI scans, FCM 

demonstrated improved performance when optimized 

parameters were used (Gong et al. 2012). GLCM is a 

mathematical technique used to extract texture 

features from images, which are crucial for 

classification tasks. The efficacy of GLCM depends 

on parameters such as the distance and angle between 

pixel pairs. Recent studies have demonstrated the 

effectiveness of GLCM in extracting discriminative 

features for tasks like lung cancer detection in CT 

images. In such applications, GLCM features and ML 

classifiers have shown high accuracy in 

distinguishing malignant and benign tissues 

(Althubiti et al. 2022). 

 

III. PROPOSED WORK 

 

We are proposing work that combines data 

preprocessing, data augmentation, and Convolutional 

Neural Network (CNN) architectures for tomato leaf 

disease classification. Our architecture uses ResNet50 

and efficientNet, using pre-trained weights from 

ImageNet, to generate optimal feature extraction. We 

introduced data augmentations (rotations, zooms and 

flips) to help account for class imbalance and 

variability. The framework generates multi-class 

outcomes of bacterial spot, late blight, leaf mold, and 

healthy leaves. The procedure of training is also 

reinforced by early stopping and tuned 

hyperparameters to improve generalization. The 

model is scored based on accuracy, precision, recall, 

and F1 score, and the results are verified with 

confusion matrices and training curves. 

 

IV. DATASET AND EXPLORATORY DATA 

ANALYSIS 

 

The tomato leaf dataset from Kaggle includes labeled 

images of healthy and diseased samples from many 

different classes or categories.A preliminary 

exploratory analysis was undertaken to display class 

distributions and characteristics of each image; this 

preliminary exploratory analysis shows class 

imbalance. The class imbalance will be addressed by 

augmenting images [9]. As a first step to the 

exploratory data analysis, visual exploration suggests 

there are clear differences in colors, textures, and 

lesions that are important features for 

https://link.springer.com/article/10.1007/s13198-025-02963-6#ref-CR8
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classification.The dataset is separated into training 

(70%), validation (15%), and test (15%) datasets to 

ensure balance remains across classes. Images are 

resized to 224x224 pixels, normalized, and 

augmented for more diversity for the training dataset. 

Machine Learning Models and Features We used 

both ResNet50 [8] and EfficientNet architectures, 

which each use residual [7] and scalable [13] 

convolutional layers. Additionally, we implemented 

transfer learning from ImageNet, as rich CNN 

features are already pre-trained [1]. We built our own 

fully connected layers to test and transfer our models 

for classification of tomato leaf types.The layers of 

the feature extractor had identified the spatial and 

color texture differences required to differentiate 

between diseases. The model was trained with the 

Adam Optimizer using categorical cross-entropy loss. 

Hyperparameters such as the batch size, learning rate, 

and number of epochs were adjusted using grid 

search as well as validation accuracy/loss. 

              Results of the Experiments The models 

produced similar and promising outcomes. ResNet50 

produced 93.76% accuracy on the test set, 

EfficientNet followed with fewer parameters and 

faster inference time overall. The confusion matrix 

(Figure 1) showed that diseases were classified 

accurately and that all errors occurred between 

similar diseases [4],[9]. Accuracy and overall loss 

curves from training and validation data (Figure 2) 

supported that accuracy and loss was consistent and 

that there was convergence as well as no evidence of 

overfitting. Finally, precision, recall, and F1-scores 

(Figure 3) were all greater than 90% which suggested 

strong performance for the models and a balance to 

each of these measures.  

 
Figure 1. Heatmap of Confusion Matrix 

The key takeaway from the heatmap, which is illustrated in Figure 1, is that the larger values of a disease or healthy 

class at the diagonal location alters each correct classification regarding disease identification of a 

compartment/healthy classes. Most times, the accuracies of off-diagonal values are friendly and informative 

regardingive ways in which we can make improvements to the model (e.g., Early Blight and Late Blight are visually 

similar diseases).  
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Figure 2. Comparing Model Performance Metrics 

Examining metrics across the classes will allow researchers to assess strengths and weaknesses of the disease-

associated model, generating meaningful insight in developing and enhancing a deep learning model for accurate 

plant disease diagnosis in precision agriculture. 

Class Name Number of Images Percentage (%) 

Healthy 1500 30 

Bacterial Spot 1000 20 

Late Blight 800 16 

Leaf Mold 700 14 

Other Diseases 1000 20 

Total 5000 100 

 

Table 1. Distribution of Image Classes in the Dataset 

Table 1 presents the count and percentage of images for individual image classes within the Kaggle dataset tomato 

leaf disease. 

Metric ResNet50 (%) EfficientNet (%) 

Accuracy 94.0 93.5 

Precision 92.8 92.5 

Recall 91.5 91.7 

F1-Score 92.1 92.0 

Table 2. Evaluation measures for the models  
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A summary of the main evaluation metrics for the two deep learning models used in this study. 

 
Figure 3. Training and validation accuracy 

 

In Figure 3, we can see the typical trade-off in deep 

learning of model complexity for accuracy. ResNet50 

has somewhat more accuracy in the figure, but has 

quite a few more parameters which would add 

computational measure and likely more inference 

time to develop for calibration as well. EfficientNet-

B0 is much more computationally efficient (with 

order of magnitude fewer parameters) and gets a 

highly competitive accuracy. This will be an 

important trade-off for deployments for use case 

(mobile-app or edge devices set to use in precision 

agriculture) where computational efficiency will be 

constrained. Ultimately, the trade-off in model choice 

may come down to the application with the model 

balancing the greatest gain in accuracy versus 

computational efficiency and resources, and the 

constraints of the application.  

 

V. DISCUSSIONS AND LIMITATIONS 

 

This framework describes the potential of using deep 

learning as a way to inform diseases within plants; 

however, it would have minimal guidance in practice 

as a result of different lighting and background noise, 

and would require resources and advances of 

annotated dataset across different regions of the 

world [6], [7]. There might also be constrains of the 

number of computers required for trained advanced 

models [13]. Future valuable research work may also 

investigate interpretability and whether the methods 

eventually can adapt to mobile and IoT (internet of 

things) technologies. Lastly, contrasting datasets to 

capture the full spectrum of diseases and multi-modal 

data will enhance robustness. [10], [15] 

 

VI.CONCLUSION 

 

This project provided an example of a framework for 

precision agriculture using deep learning approaches 

to fully or partially automate diagnosis of tomato 

plant leaf diseases. Utilizing transfer learning with 

ResNet50 and Efficient Net and data augmentations 

accounting for various disease variants, together with 

end-to-end methods, yielded robust classification and 

accuracy results. The framework will potentially 

develop a system for detection and management of 

early plant disease, leveraging machine learning and 

augmenting levels across organizations and 

agricultural sectors, while further supporting global 
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sustainable agriculture and food security efforts more 

broadly. 
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