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Abstract: Lung cancer remains the leading cause of 

cancer deaths worldwide, a reality largely driven by late 

detection and unreliable prognoses. To address these 

challenges, our research introduces Lung Care-Opt, a 

novel optimization framework built to handle diverse 

patient data. This system integrates clinical notes, 

medical imaging, and biomarker information, leveraging 

machine learning combined with metaheuristic methods 

for smarter feature selection and tuning. Unlike 

conventional models, LungCare-Opt is designed to 

perform two critical jobs simultaneously: diagnosing the 

disease and predicting long-term survival. We 

prioritized making the system understandable, efficient, 

and genuinely useful in a clinical setting. Our 

experimental results are promising, showing that the 

model delivers higher precision, a significant reduction 

in false positives, and more accurate patient outcome 

predictions. We believe this framework represents a 

practical and scalable step forward in the fight against 

lung cancer. 
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I. INTRODUCTION 

 

With over 1.8 million deaths each year, lung cancer 

continues to be the most lethal cancer across the globe. 

Despite significant progress in medical treatments, the 

five-year survival rate remains stubbornly low. This is 

largely because the disease is often diagnosed at a late 

stage, and its biological diversity makes it notoriously 

difficult to predict. To genuinely improve patient 

outcomes, we urgently need methods that can identify 

the disease earlier and forecast its progression with 

much greater accuracy. Today's diagnostic tools, 

however, are often limited by their reliance on a single 

type of data, which creates bottlenecks in clinical 

practice, from trouble identifying high-risk patients to 

long diagnostic delays and a general lack of predictive 

insight. 

The rise of artificial intelligence, especially machine 

learning and deep learning, has opened a new frontier 

with the potential to revolutionize medical imaging 

analysis and risk assessment. Yet, this technology is 

not without its own set of challenges. Researchers are 

still grappling with how to best select relevant data, 

how to make complex models understandable, and 

how to ensure these models work for diverse patient 

groups. A critical limitation is that most current AI 

systems are designed for a single purpose—either for 

diagnosis or for prognosis—but rarely do they tackle 

both at once. 

To bridge this gap, we have developed LungCare-Opt, 

a framework built to tackle the dual challenge of early 

identification and prognosis in lung cancer. Our 

approach uses a performance-driven combination of 

machine learning and metaheuristic algorithms. It is 

specifically designed to work with multimodal data, 

weaving together biomarker profiles, clinical records, 

and radiological scans to create a more holistic and 

reliable assessment. The ultimate goal is to provide a 

solution that is dependable for patients, intelligible to 

clinicians, and genuinely beneficial in a medical 

setting. 

The core design of LungCare-Opt involves carefully 

balancing competing objectives, such as the model's 

accuracy, its computational footprint, and how easily 

its conclusions can be explained. It achieves this by 

intelligently selecting the most important features 

from the data and fine-tuning its own parameters. In 

this paper, we will lay out the architecture of 

LungCare-Opt, describe its key components, and 

present a performance comparison against current 
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state-of-the-art models. Our aim is to demonstrate its 

significant potential as a clinical decision-support tool 

that offers not just predictions, but also clear insights 

that can guide treatment. 

 

II. CONTRIBUTIONS 

 

This research makes three primary contributions to the 

field. First, we have designed a flexible, multi-modal 

framework that can seamlessly integrate various types 

of data and, importantly, is able to assess the 

confidence of its own conclusions. Second, our work 

introduces a multi-objective optimization method that 

prioritizes overall performance by balancing 

competing factors instead of focusing on a single 

metric, allowing it to select the most effective model 

checkpoints. Finally, we provide a complete suite of 

evaluation tools including visual heatmaps, calibration 

assessments, and cross-dataset analysis to offer a truly 

comprehensive and transparent measure of the 

system's effectiveness. 

 

III. REVIEW OF THE LITERATURE 

 

A review of the existing research reveals significant 

progress in using computational models for lung 

cancer analysis, though several critical gaps persist. In 

the area of CT image analysis, deep learning models 

such as 3D U-Net, V-Net, and DenseNet have proven 

effective for detecting nodules and evaluating 

malignancy on established datasets like LIDC-IDRI. 

However, their practical application is often limited 

because they are not validated on external data, lack 

proper calibration, and do not integrate clinical data. 

For chest X-rays (CXR), while their sensitivity is 

lower than CT scans, large datasets like CheXpert and 

NIH-CXR14 have enabled the development of new 

models that can serve as valuable tools for preliminary 

screening or triage. 

Beyond single-modality analysis, researchers have 

explored fusing imaging with clinical data to enhance 

predictions. While promising, these multi-modal 

techniques often fail to consider real-world 

deployment goals or account for model uncertainties, 

such as maintaining sensitivity at fixed false positive 

rates. A similar challenge exists in prognosis and 

survival modeling. Established models like DeepSurv 

and Cox proportional hazards use clinical and 

radiomic features, but there is still no standardized 

process for integrating these features with the 

underlying imaging data. 

A final hurdle is the issue of interpretability. While 

methods like Grad-CAM, LIME, and SHAP are used 

in radiology to explain model decisions, the field still 

lacks standardized best practices for ensuring these 

explanations are reliable and stable. LungCare-Opt 

directly addresses these fragmented efforts by 

advancing the current knowledge. It combines multi-

modal representation, multi-objective optimization, 

and interpretability into a single, cohesive, and 

deployable framework. 

A review of related work reveals several key 

limitations in current methodologies. While deep 

learning models, including both CNNs and 3D CNNs, 

show high sensitivity in analyzing CT scans, they are 

often hampered by a frequent rate of false positives. 

An alternative strategy involves the fusion of hand-

crafted radiomic features with clinical data, which can 

enhance prognosis predictions. This approach, 

however, faces significant scalability challenges. In 

the area of model optimization, automated machine 

learning (AutoML) techniques have been explored for 

hyperparameter searches. A common shortcoming is 

that their objectives often neglect important clinical 

trade-offs. Furthermore, while explainability methods 

such as Grad-CAM and SHAP have been used for 

interpretability, their clinical relevance is often 

limited. 

 

IV. PROPOSEDMETHOD: LUNGCARE-

OPT FRAMEWORK 

 

4.1 Data Sources: The LungCare-Opt framework is 

built upon a foundation of three distinct and 

complementary data sets. For detailed radiological 

analysis, the model leverages the LIDC-IDRI CT scan 

dataset, which contains rich information including 

nodule annotations, malignancy ratings, and available 

segmentation masks. This source is utilized for core 

tasks like malignancy classification, nodule detection, 

and radiomics-based risk assessments. To handle 

screening and triage, the framework also incorporates 

large chest X-ray (CXR) datasets, specifically 

CheXpert and NIH-CXR14. These act as substitutes 

for direct cancer detection by using mass and nodule 

labels or other suspicious opacities, with thresholds 

adjusted for a screening context. Finally, to provide 

essential patient context, the model integrates clinical 
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cohort data, which includes demographics like age and 

sex, smoking history in pack-years, biomarkers, 

histopathology, TNM staging, and critical outcomes 

like survival times and disease progression. 

 

4.2. Pre-Processing: To prepare the data for the model, 

we employ a tailored pre-processing pipeline for each 

data type. For CT volumes, all scans are first 

resampled to a 1 mm isotropic resolution and then 

normalized using lung windows. From these, nodule 

patches (e.g., 64–96 mm cubes) are extracted, and 

candidate nodules are generated using 3D blobness or 

detection networks. The chest X-ray (CXR) images 

undergo an optional rib suppression step, followed by 

contrast enhancement with CLAHE. They are 

subsequently resized to 512 pixels and standardized. 

For the clinical data, standard procedures are 

followed: missing values are imputed with the median 

or mode, one-hot encoding is applied to categorical 

features, and z-score scaling is used for numerical 

data. Finally, to ensure the integrity of our model 

evaluation, we implement patient-level stratified splits 

and, where possible, create separate internal and 

external-like validation sets by institution. 

 

4.3. Architecture: 

 
Architecture diagram for the LungCare-Opt framework 

The diagram illustrates a multi-modal machine learning pipeline for lung cancer analysis.  

 

V.EXPERIMENTAL SETUP 

 

Dataset: For our experiments, we utilized three distinct 

datasets, each with a specific data-splitting strategy. 

The LIDC-IDRI dataset, used for CT analysis, 

consisted of about 1,018 subjects who were filtered for 

nodules 3 mm or larger. This dataset was partitioned 

using a 70/10/20 patient-level split. For the CXR 

analysis, we used a subset containing nodule and mass 

labels, which was also divided using a 70/10/20 split 

with patient stratification. Finally, the Clinical cohort 

was composed of institutional data with censored 

outcomes (PFS/OS). For this particular dataset, a 5-

fold cross-validation approach was employed. 

 

Training: The model's training process is guided by a 

composite loss function, which is a weighted sum of 

several task-specific losses: focal loss (for detection), 

BCE (for classification), Brier regularization, and Cox 

partial likelihood (for survival). For optimization, the 

AdamW algorithm is used along with cosine learning 

rate scheduling. To enhance model robustness, data 

augmentation techniques are applied, including mixup 

and RandAugment for CXR images, and elastic 

deformations for CT patches. Practical considerations 

include optimizing batch sizes based on available GPU 

memory and implementing an early stopping 

mechanism that halts training when changes to the 

Pareto frontier are no longer observed.  

 

Evaluation Metrics: Table: Comparison of performance metrics 

Task AUC AP Brier TP FP FN 

CT Malignancy 0.98537 0.9752 0.2481 416 749 0 

CXR Screening 0.95454 0.8538 0.28020 518 220 0 

1y Survival 0.9892 0.9831 0.237 303 469 0 
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Classification and Detection: For classification tasks, 

performance was assessed using AUC, sensitivity, 

specificity, Positive Predictive Value (PPV), Negative 

Predictive Value (NPV), and the F1-score. The 

model's calibration was specifically measured with the 

Expected Calibration Error (ECE) and the Brier score. 

For the nodule detection task, the evaluation was based 

on FROC (Free-Response Receiver Operating 

Characteristic), CPM (Competition Performance 

Metric), and sensitivity at 1, 2, and 4 false positives 

per scan. 

 
 

An AUC of 0.985 is an excellent score. It indicates that 

the model has a very high capability to distinguish 

between malignant and non-malignant cases based on 

the CT scans. The shape of the blue curve, being very 

close to the top-left corner, visually confirms this high 

level of performance. 

 
This graph is a Precision-Recall (PR) curve for the CT 

Malignancy classifier. It's a key tool for evaluating a 

model's performance, especially in scenarios where 

positive cases are rare, like in medical diagnostics. The 

goal is for the curve to be as close to the top-right 

corner as possible. 

 
This graph is a Calibration Plot for a model that 

classifies CT scans for malignancy. It is a standard tool 

used to evaluate how reliable a model's predicted 

probabilities (or confidence scores) are. 

● In this graph, the blue line is very close to the ideal 

dashed line, which indicates the model is well-

calibrated. This means the model's confidence 

scores are reliable. For example, when the model 

predicts a probability of around 75%, the actual 

fraction of positives is nearly 100%. This builds 

trust in the model's output, suggesting that a 

doctor can take its confidence level into account 

when making a diagnosis. 

An AP score of 0.854 is strong, indicating a very 

effective screening model. The shape of this curve is 

also very informative. It stays high for the initial part 

of the recall, but then begins to slope downwards more 

noticeably than a diagnostic model might. This 

visualizes a classic trade-off in a screening tool: to find 

as many potential cases as possible (increasing recall 

towards the right), the model must accept that it will 

make more incorrect calls on healthy patients 

(decreasing precision). This is often an acceptable and 

intentional design choice for a first-pass screening 

tool, where the main goal is to avoid missing anyone 

who might be sick. 
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This graph is a Calibration Plot for the CXR Screening 

model. It's a key visualization that shows how reliable 

and trustworthy the model's confidence scores are. The 

shape of this curve is also very informative. It shows a 

slight S-curve, which is common for classifiers. This 

means that in the middle range of probabilities (around 

0.6), the model is slightly overconfident (the blue line 

is below the ideal line). However, at high levels of 

confidence (above 0.7), its predictions are very 

reliable. This is a good quality for a screening tool, as 

it means when the model is very sure that an X-ray is 

suspicious, it is almost always correct. 

 
This graph is a AUC-ROC curve of 1 year survival 

prediction curve with a score of AUC 0.989. 

 
This graph is a Precision-Recall (PR) curve for the 1-

year survival prediction model. It's a key visualization 

that shows the trade-off between how precise the 

model's predictions are versus its ability to find all the 

patients at risk. 

An AP score of 0.983 is outstandingly high, indicating 

the model's predictions are extremely accurate and 

reliable. The shape of this curve is also very 

informative. It is nearly flat and stays very close to a 

Precision of 1.0 across almost the entire range of 

Recall. This is the hallmark of an exceptional model. 

It means the model can identify nearly all of the at-risk 

patients (high recall) while maintaining almost perfect 

precision (very few false alarms). 

 
This graph is a Calibration Plot for the 1-year survival 

prediction model. It's a key visualization that shows 

how reliable and trustworthy the model's confidence 

scores are when predicting patient risk. 
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This graph shows that the model is well-calibrated. 

The blue line follows the general trend of the ideal 

line, especially at higher probabilities. This means that 

the model's confidence scores are reliable. For 

instance, when the model predicts a risk of around 65-

70%, the actual fraction of patients not surviving is 

very high, approaching 100%. This reliability is 

critical, as it means clinicians can trust the model when 

it flags a patient as being at high risk. 

 

 
 

This image is a confusion matrix, which provides a 

detailed breakdown of the performance of the CT 

Malignancy classifier at a decision threshold of 0.5. It 

shows the model's correct and incorrect predictions. 

The most critical insight from this matrix is the 

number of False Negatives, which is zero. In a medical 

context, this is an excellent result. It means the model 

did not miss a single case of malignancy in this dataset, 

achieving perfect sensitivity. 

 

However, this perfect sensitivity comes at a cost, 

which is the high number of False Positives (749). 

This indicates that the model is very cautious, flagging 

many non-malignant cases as potentially malignant to 

ensure no true cases are missed. This is a common and 

often desirable trade-off in medical diagnostics, where 

missing a disease (a false negative) is typically far 

more dangerous than having a false alarm (a false 

positive) that leads to further review. 

 
This image shows a confusion matrix for the CXR 

Screening model, evaluated at a 0.5 decision 

threshold. It gives a detailed summary of how the 

model's predictions line up with the actual results for 

the screening task.The most critical result in this 

matrix is that there are zero False Negatives. For a 

screening tool, this is the number one priority. It means 

the model successfully identified every single 

potential case in the dataset without missing any. 

This perfect recall comes at the cost of a very high 

number of False Positives (2200). This demonstrates a 

classic trade-off in medical screening. The model is 

intentionally designed to be extremely sensitive—

casting a very wide net to catch all possible cases. This 

high number of false alarms is generally considered 

acceptable in a screening scenario because those cases 

would then be sent for more definitive follow-up tests 

(like a CT scan). 

In short, this confusion matrix shows a model that is 

performing its job as an effective screening tool: it 

finds everyone who might be at risk, even if it means 

many non-risk cases get a second look. 
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This image shows a confusion matrix for the 1-year 

survival prediction model, evaluated at a 0.5 decision 

threshold. It provides a detailed summary of the 

model's performance in predicting patient outcomes. 

The most significant finding in this matrix is that there 

are zero False Negatives. For a prognostic tool that 

predicts risk, this is the best possible outcome. It 

means the model successfully identified every single 

patient who was at high risk of not surviving one year. 

This perfect sensitivity is achieved by accepting a high 

number of False Positives (469). The model is 

calibrated to be extremely cautious, flagging many 

patients as "high-risk" even if they ultimately survive. 

In a clinical setting, this is often a desirable trade-off. 

It ensures that all genuinely high-risk patients are 

identified for closer monitoring or alternative 

treatment strategies, which is far preferable to missing 

someone who needs urgent attention. 

 

VI.CHALLENGES AND FUTURE DIRECTIONS 

 

CHALLENGES: Several key challenges must be 

addressed to advance this framework from research to 

clinical practice. These can be grouped into data-

related issues, technical limitations, and practical 

integration hurdles. 

 

Data and Validation: A primary challenge lies in the 

heterogeneity of the data, which includes 

inconsistencies in the LIDC-IDRI dataset's labeling 

consensus, reconstruction kernels, and slice thickness. 

The low rate of positive cases in screening scenarios 

can also negatively impact the positive predictive 

value, while label noise from varying malignancy 

ratings by different readers adds another layer of 

complexity. Furthermore, moving beyond 

retrospective analysis requires robust external 

validation through prospective confirmation with 

clinical cohorts from multiple institutions. 

 

Technical and Ethical Considerations: From a 

technical standpoint, a key area for improvement is 

temporal modeling; future work should explore using 

transformers to integrate long-term imaging data with 

EHR sequences. Ethically, it is crucial to investigate 

issues of causality and bias to ensure the model 

performs fairly across diverse demographics and 

varying smoking statuses. 

 

Clinical Workflow Integration: Finally, a significant 

practical hurdle is workflow integration. For the tool 

to be useful, it must ensure compatibility with standard 

medical imaging formats like DICOM and include 

mechanisms for real-time quality control. 

 

VII.FUTURE DIRECTIONS 

 

Future research will be pursued along two main 

avenues: enhancing the core technical capabilities of 

the model and ensuring its seamless and trusted 

integration into clinical practice. A primary goal is to 

expand multi-modal data integration by incorporating 

genomics and additional imaging modalities like PET 

scans alongside CT and clinical records, which could 

provide a more comprehensive view of lung cancer. 

Another key technical direction is the development of 

real-time prognostic models. Such models could 

predict disease progression dynamically, enabling 

timely survival analysis, especially in response to 

treatments like immunotherapy. To improve the 

model's adaptability, we will also explore transfer 

learning, which can be used to adjust models trained 

on large datasets for use in specific clinical settings, 

thereby improving their effectiveness for different 

patient populations. 

For the model to be adopted clinically, continued 

progress in Explainable AI (XAI) is essential. Models 

must not only provide accurate predictions but also 

offer understandable insights into their reasoning. 

Improving transparency with frameworks like SHAP 

is critical for building trust among clinicians in AI-

driven decisions. Finally, bridging the gap to practice 

requires a focus on the EHR workflow. This involves 

ongoing collaboration between radiologists and 

oncologists to ensure that machine learning models are 

designed to meet clinical needs and can be integrated 

smoothly into existing healthcare processes. 

 

VIII. CONCLUSION  

 

LungCare-Opt stands as a solid and integrated 

framework designed for the complex challenges of 

early lung cancer diagnosis and prognosis. By 

effectively merging clinical data with both CT and 

CXR imaging, it achieves a holistic view of the 

patient's condition. The framework's reliance on multi-

objective optimization, uncertainty estimation, and 

clear, interpretable outputs allows it to maintain stable 
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performance across its diverse tasks. This makes it a 

flexible and powerful tool for assisting in clinical 

decision support and triage. Future work will build 

upon this foundation, with a focus on three key areas: 

temporal modeling, prospective external validation, 

and ensuring fair optimization. 
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