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Abstract- We study a deterministic 2D grid navigation 

task with “hot–cold” sign feedback. The agent observes 

whether its last move decreased or increased the 

Manhattan distance to a hidden goal. The observation is 

non-Markov. A worst-case optimal strategy reaches the 

goal in at most 𝑫𝟎 + 𝟔 steps, where 𝑫𝟎 is the start–goal 

Manhattan distance. We evaluate Proximal Policy 

Optimization with an LSTM backbone (Recurrent PPO). 

The learned policy approaches the theoretical bound on 

many episodes but shows gaps due to axis 

misidentification and turn dithering. The task provides a 

minimal, interpretable benchmark for reinforcement 

learning under partial observability. 

 

I.INTRODUCTION 

Many navigation settings are partially observable. In 

hot–cold search, the agent receives a binary sign after 

each action: +1 if the last move reduced the distance 

to the goal and −1 otherwise. The goal location is 

hidden. Despite the sparse signal, there exists a simple 

worst-case optimal strategy: probe both axes, then 

march to the goal, which takes at most 𝐷0 + 6 steps. 

Feed-forward PPO struggles because the state is not 

Markov. The agent must retain a memory of actions 

and signs to infer hidden goal directions. We deploy 

Recurrent PPO (PPO–LSTM) and measure how 

closely it matches the theoretical upper bound. 

II.PROBLEM FORMULATION 

Grid and goal. The environment is a 𝑊 ×𝐻 grid. At 

episode start, the agent is at 𝑠 = (𝑥𝑠 , 𝑦𝑠); the goal is at 

𝑔 = (𝑥𝑔, 𝑦𝑔). Define Manhattan distance 

𝐷0 = |𝑥𝑠 − 𝑥𝑔| + |𝑦𝑠 − 𝑦𝑔|. 

Actions and dynamics. The action set is 

{𝑢𝑝, 𝑟𝑖𝑔ℎ𝑡, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡}. Transitions are deterministic 

with clamping at borders. The episode ends on 

reaching the goal or on a step limit. 

Observation. At time 𝑡 the agent receives 

𝑜𝑡 = [ 𝑠𝑖𝑔𝑛𝑡 ,  𝑥̂𝑡 ,  𝑦̂𝑡 ,  𝑜𝑛𝑒ℎ𝑜𝑡(𝑎𝑡−1) ], 

where 𝑠𝑖𝑔𝑛𝑡 ∈ {−1,+1} reports whether the previous 

move reduced the true Manhattan distance, (𝑥̂𝑡 , 𝑦̂𝑡) ∈

[−1,1]2 are normalized coordinates, and 

𝑜𝑛𝑒ℎ𝑜𝑡(𝑎𝑡−1) ∈ {0,1}4 encodes the previous action. 

Reward. The per-step reward equals 𝑠𝑖𝑔𝑛𝑡. A small 

terminal bonus is added on success. During training, 

episodes may be truncated after a fixed number of 

consecutive non-improving steps to avoid endless 

wandering. Evaluation uses deterministic policies 

without shaping. 

Baseline policy. A worst-case optimal deterministic 

strategy: (i) probe one axis; if sign is negative, reverse 

once; (ii) march along that axis until overshoot, then 

correct by one step; (iii) repeat for the remaining axis. 

If both axes are nonzero, the worst-case steps are 𝐷0 +

6; if only one axis is nonzero, 𝐷0 + 2. 

III.REINFORCEMENT LEARNING SETUP 

We employ Recurrent PPO with an LSTM backbone 

(MlpLstmPolicy) to allow memory over action–

feedback sequences. Policy and value networks 

consist of two fully connected layers (64 units each), 

followed by a single LSTM layer with hidden size 128. 

Eight parallel environments stabilize updates. Key 

hyperparameters include learning rate 3 × 10−4, 

𝑛_𝑠𝑡𝑒𝑝𝑠 = 512, batch size 2048, clip range 0.15, 𝛾 =

0.99, 𝜆 = 0.95, target KL 0.03, entropy coefficient 

0.01, and value coefficient 0.3. 

PPO training statistics (good runs). 

Metric Typical Range 

Approx. KL 0.015–0.025 

Clip fraction 0.10–0.20 

Entropy loss -1.3 → -0.6 

Explained variance 0.6–0.8 
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IV.RESULTS 

The recurrent policy approaches the theoretical bound 

in many episodes. Success rates exceed 90%; median 

gaps to the bound are ≈ 4 steps. Failure cases include 

axis misidentification, dithering near turns, and rare 

loops. 

Example evaluation episodes. Ideal = 𝐷0 + 6 for 2D cases. 

Ep Start Goal 𝐷0 Ideal Steps Gap 

165 (12,3) (3,9) 15 21 25 +4 

166 (13,16) (9,20) 8 14 28 +14 

169 (4,4) (6,7) 5 11 21 +10 

170 (18,16) (10,12) 12 18 500 Timeout 

174 (16,19) (7,5) 23 29 25 -4 

V.ANALYSIS 

The observation is not Markov; single sign feedback 

conflates multiple hidden goal positions. Recurrent 

PPO learns to integrate sequences, but failures reveal 

where this integration is incomplete. Dithering 

dominates the gap. Early truncation reduces loops but 

not dithering. 

VI.RELATED WORK 

Hot–cold navigation tasks highlight memory and 

inference from minimal feedback. POMDPs require 

history integration; recurrent networks such as DRQN 

and PPO–LSTM address this. Our environment 

isolates partial observability without perceptual 

confounds. 

VII.CONCLUSION 

We presented a deterministic hot–cold navigation task 

with a known optimal bound. PPO–LSTM learns 

policies approaching the bound but exhibits 

characteristic failures. The environment provides a 

clean benchmark for studying partial observability in 

reinforcement learning, focusing on memory and 

reasoning rather than perception. Future work includes 

richer memory architectures and hierarchical option 

discovery. 
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