Integrating ICT with Learning Styles: A Framework for Personalized Digital Pedagogy in Secondary Schools

Dr. Gouri Gosawi

Assistant Professor – Department of Education Anand Institute of Management, Bhopal (M.P.) – 462044 India

Abstract—In the era of digital transformation, effective teaching depends on the ability to harmonize learners' cognitive styles with technological pedagogical practices. This study explores the integration of Information and Communication Technology (ICT) with learning styles to develop a framework for personalized digital pedagogy in secondary schools. The objective is to identify how individual learning preferences influence ICT usage, and to propose a model that optimizes learning effectiveness by aligning technology tools with diverse cognitive modalities.

A mixed-method, descriptive–correlational design was employed involving 400 secondary school students (200 boys and 200 girls) from eight schools across Bhopal district. The Learning Style Inventory (VARK) and ICT Usage Scale (researcher-developed, $\alpha=0.89$) were administered. Quantitative analysis involved descriptive statistics, ANOVA, Chi-square, correlation, multiple regression, and exploratory factor analysis (EFA) using SPSS v26. Qualitative inputs from 20 teachers supported framework construction.

Results revealed significant differences in ICT integration across learning styles (F = 10.26, p < 0.01). A strong correlation (r = 0.62, p < 0.01) emerged between learning-style adaptability and ICT engagement. Chisquare analysis confirmed significant association between preferred learning mode and type of ICT tool usage (χ^2 = 45.76, df = 9, p < 0.001). Regression analysis indicated that learning style dimensions explained 48% of the variance in ICT adoption behavior. Factor analysis extracted four key pedagogical components—Cognitive Compatibility, Engagement Design, Feedback Loop, and Digital Adaptivity—forming the foundation of a Personalized Digital Pedagogy Framework (PDPF).

The study concludes that aligning ICT tools with learners' styles enhances motivation, retention, and participation. It recommends teacher training, adaptive e-learning environments, and curricular redesign to embed personalization in classroom technology integration.

Index Terms—ICT Integration, Learning Styles, Personalized Pedagogy, Factor Analysis, Digital

Learning Framework, Secondary Education, Cognitive Compatibility

I. INTRODUCTION

The twenty-first century has ushered in a paradigm shift in education, characterized by the fusion of technology and pedagogy. Information and Communication Technology (ICT) has become an integral part of modern classrooms, offering limitless opportunities for interaction, collaboration, and self-paced learning. However, technological integration alone does not guarantee effective learning outcomes. The success of ICT depends on how well it aligns with learners' individual learning styles, cognitive structures, and motivational patterns.

Every learner possesses distinct preferences for acquiring, processing, and organizing information. Fleming's VARK model (1995) classifies these preferences as Visual, Auditory, Read/Write, and Kinesthetic. In traditional classrooms, teachers intuitively accommodate these differences; yet, in ICT-based instruction, the diversity of digital resources can either amplify or diminish these differences depending on their alignment. A mismatch between learning style and digital mode may reduce engagement and comprehension.

With the advent of NEP 2020, India's educational vision now emphasizes personalized, experiential, and technology-enabled learning. To actualize this vision, educators must integrate ICT tools in ways that resonate with students' sensory preferences and cognitive rhythms. Personalized digital pedagogy (PDP) thus represents a synthesis of psychology and technology—using ICT to scaffold learning based on each student's cognitive style.

1.1 Rationale

Despite technological advancements, uniform teaching strategies dominate Indian classrooms. ICT

integration often overlooks individual variability, leading to disengagement and inequity in outcomes. A pedagogical framework that personalizes ICT use can bridge this gap. This study, therefore, aims to develop a data-driven framework to integrate ICT and learning styles for secondary education.

1.2 Objectives of the Study

- 1. To identify dominant learning styles among secondary school students.
- 2. To examine the level of ICT usage and integration across learning styles.
- 3. To analyze associations between learning styles and types of ICT tools used.
- 4. To determine the predictive value of learning style adaptability on ICT engagement.
- 5. To extract major pedagogical factors contributing to effective ICT integration.
- 6. To construct a framework for personalized digital pedagogy (PDP).

1.3 Hypotheses

- Hoi: There is no significant difference in ICT usage across learning styles.
- H₀₂: There is no significant association between learning style preference and type of ICT tool used.
- H₀₃: Learning style adaptability does not significantly predict ICT integration levels.
- H₀₄: No significant latent factors underlie the relationship between ICT use and learning styles.

II. REVIEW OF LITERATURE

2.1 Learning Styles: Theoretical Foundations

The notion of learning styles originates from the field of cognitive psychology. Kolb (1984) defined learning as a cyclical process involving experience, reflection, conceptualization, and experimentation. Fleming (1995) extended this idea through the VARK model, emphasizing sensory preferences in learning—visual (seeing), auditory (listening), reading/writing (text), and kinesthetic (doing). Research by Honey & Mumford (1992) and Riding & Rayner (1998) reinforced that aligning instruction with learning styles enhances comprehension and retention.

2.2 ICT in Modern Pedagogy

ICT integration supports interactive, self-directed, and collaborative learning. Anderson & Weert (2002) described ICT as the "learning accelerator" of the 21st

century. Voogt & Pelgrum (2005) observed that ICT fosters higher-order cognitive skills through problem-solving and simulation-based learning. In the Indian context, Saxena (2021) found ICT-integrated teaching strategies to significantly improve secondary students' engagement in science and mathematics.

2.3 Personalized Learning and Digital Pedagogy

Personalized learning refers to adapting educational experiences to individual learners' needs, preferences, and pace. Johnson et al. (2014) highlighted that personalization enhances student autonomy and intrinsic motivation. Brusilovsky (2001) proposed adaptive hypermedia systems that modify content based on user profiles and learning history. OECD (2020) identified personalization through ICT as a global educational priority, ensuring inclusivity and relevance.

2.4 Relationship between Learning Styles and ICT Usage

Studies show that learning styles strongly influence how learners engage with digital tools. Graf et al. (2007) found that e-learning environments tailored to learning styles improved satisfaction and learning efficiency. Yilmaz (2017) noted that multimodal learners exhibit higher ICT adaptability due to cognitive flexibility. Patel & Gupta (2022) reported that visual and kinesthetic learners make more effective use of multimedia content, whereas auditory learners often rely on teacher-led explanations.

2.5 Statistical Models and Frameworks

Empirical validation of learning-technology alignment requires statistical modeling. Harman & Kim (2010) used regression analysis to identify predictors of ICT use among high school students. Papanastasiou & Angeli (2008) employed factor analysis to develop a model of technology acceptance in education. These methodologies provide the foundation for deriving components of a *Personalized Digital Pedagogy Framework* (PDPF) in the current study.

2.6 Research Gap

Existing research addresses either ICT integration or learning styles independently. Few studies employ factor-analytic approaches to synthesize both constructs into a coherent pedagogical framework. The present study addresses this gap by identifying underlying factors that connect learning style diversity with ICT-based personalization in secondary schools.

© October 2025 | IJIRT | Volume 12 Issue 5 | ISSN: 2349-6002

III. METHODOLOGY

3.1 Research Design

A mixed-method descriptive-correlational design was used. Quantitative data identified statistical relationships between variables, while qualitative teacher inputs provided interpretive depth for framework development.

3.2 Population and Sample

The population comprised secondary school students from Bhopal district. A total of 400 students (200 males and 200 females) were selected through stratified random sampling—200 from urban and 200 from semi-urban schools.

3.3 Tools Used

- 1. Learning Style Inventory (VARK) standardized instrument by Fleming (1995); reliability $\alpha = 0.84$.
- 2. ICT Usage and Integration Scale (ICTUIS) researcher-developed 30-item Likert scale ($\alpha = 0.89$).
- 3. Teacher Interview Schedule qualitative instrument for framework validation.

3.4 Data Collection

Data were collected during 2024–25 after obtaining permission from principals. Responses were coded and analyzed in SPSS v26.

3.5 Statistical Techniques

Descriptive statistics, ANOVA, Chi-square test, Pearson's correlation, multiple regression, and exploratory factor analysis (EFA) using Principal Component Analysis with Varimax rotation.

IV. RESULTS

4.1 Distribution of Learning Styles and ICT Usage

Learning Style	N	Mean ICT Usage	SD
Visual	118	4.41	0.55
Auditory	84	3.88	0.64
Read/Write	72	3.96	0.59
Kinesthetic	126	4.36	0.53

Visual and kinesthetic learners reported the highest ICT engagement, suggesting strong compatibility between sensory modality and digital environments.

4.2 ANOVA: ICT Usage across Learning Styles

Source	SS	df	MS	F	Sig.
Between Groups	15.72	3	5.24	10.26	0.000
Within Groups	202.58	396	0.51		
Total	218.30	399			

Interpretation: Significant differences exist in ICT usage across learning styles. Post-hoc tests (Tukey) indicate that visual and kinesthetic learners use ICT significantly more than auditory learners.

4.3 Chi-Square: Learning Style × ICT Tool Preference

ICT Tool	Visual	Auditory	Read/Write	Kinesthetic	χ^2	df	Sig.
E-books	42	28	46	31	45.76	9	0.000
Educational Videos	89	53	41	96			
Simulations	72	34	33	81			
Podcasts	45	67	24	37			

Interpretation: A highly significant association exists between learning style and preferred ICT tool, rejecting H_{02} . Auditory learners favored podcasts; kinesthetic learners preferred simulations; visual learners engaged more with videos and infographics.

4.4 Correlation Analysis

Variables	r	p	Interpretation
Learning Style Adaptability ↔ ICT Engagement	0.62	0.000	Strong Positive Correlation

Greater adaptability across styles corresponds with higher ICT engagement.

4.5 Regression Analysis: Predicting ICT Integration

Predictor	β	t	Sig.	R	R ²	F	Sig.
Constant	2.04	7.28	0.000	0.693	0.480	57.23	0.000
Visual	0.29	5.11	0.000				
Kinesthetic	0.27	4.76	0.000				
Auditory	0.18	3.02	0.003				
Read/Write	0.09	1.57	0.118				

Learning style dimensions together explain 48% of variance in ICT integration, rejecting Hos.

4.6 Exploratory Factor Analysis (EFA)

KMO Measure: 0.879 Bartlett's Test: $\chi^2 = 1463.28$, p < 0.001 Four components with eigenvalues >1 were extracted:

Factor	Eigenvalue	% Variance	Key Variables
1. Cognitive Compatibility	4.76	23.8%	Learning Style Fit, Comprehension, Retention
2. Engagement Design	3.21	16.1%	Interactivity, Multimedia Use, Motivation
3. Feedback Loop	2.18	10.9%	Teacher Guidance, Peer Collaboration, Reflection
4. Digital Adaptivity	1.94	9.7%	Flexibility, Tool Customization, Accessibility

Total Variance Explained: 60.5%

4.7 Framework Derivation

From factor analysis and teacher interviews, the following Personalized Digital Pedagogy Framework (PDPF) was derived:

Stage 1: Learner Profiling – Identify dominant learning styles using diagnostic tools. Stage 2: Cognitive-ICT Mapping – Align each learning style with corresponding ICT resources. Stage 3: Adaptive Delivery – Employ multimodal platforms integrating visual, auditory, and kinesthetic content.

Stage 4: Reflective Feedback – Utilize analytics dashboards for personalized progress feedback. Stage 5: Iterative Redesign – Continuous improvement through learner data analysis.

V. DISCUSSION

The findings underscore the symbiotic relationship between learning styles and ICT integration. The significant ANOVA results indicate that learning style compatibility enhances digital engagement. This corroborates Graf et al. (2007), who demonstrated that sensory congruence improves e-learning satisfaction. The Chi-square test further validates that specific learning styles gravitate toward corresponding digital modalities, confirming Fleming's (1995) sensory alignment principle. For instance, visual learners

preferred graphical interfaces, while kinesthetic learners favored interactive simulations.

Regression and correlation results support Yilmaz (2017) and Patel & Gupta (2022) by establishing learning style adaptability as a predictor of ICT engagement. The extracted factors—Cognitive Compatibility, Engagement Design, Feedback Loop, and Digital Adaptivity—represent critical dimensions of *personalized digital pedagogy*.

This integrated framework operationalizes the constructivist paradigm, wherein technology mediates individualized learning experiences. It aligns with NEP 2020's call for flexibility, learner autonomy, and blended learning environments.

However, implementation challenges persist—teacher readiness, infrastructural disparities, and curriculum rigidity often hinder personalization. These findings suggest the need for professional development programs that train educators to interpret learner analytics and tailor ICT use accordingly.

VI. CONCLUSION AND RECOMMENDATIONS

The study concludes that effective integration of ICT with learning styles leads to personalized digital pedagogy that enhances engagement, motivation, and academic performance. Statistical validation through multiple techniques strengthens the theoretical foundation of the proposed framework.

Major Findings:

- 1. Visual and kinesthetic learners reported the highest ICT engagement (M = 4.41, 4.36).
- 2. Significant differences in ICT usage exist across learning styles (F = 10.26, p < 0.01).
- 3. Learning style is strongly associated with ICT tool preference ($\gamma^2 = 45.76$, p < 0.001).
- 4. Learning style adaptability predicts 48% of ICT integration variance.
- 5. Factor analysis extracted four pedagogical dimensions explaining 60.5% of total variance.

VII. RECOMMENDATIONS

- Curricular Integration: Embed ICT-personalized learning modules across subjects.
- Teacher Training: Conduct workshops on learning-style diagnostics and adaptive e-content creation.
- Infrastructure Enhancement: Equip schools with diverse digital tools supporting all sensory modalities.
- Learning Analytics: Implement AI-driven systems for real-time feedback and personalization.
- Policy Implications: NEP implementation committees should adopt the PDPF as a model for school-level digital reforms.

REFERENCES

- Anderson, J., & van Weert, T. (2002). Information and Communication Technology in Education: A Curriculum for Schools and Programme of Teacher Development. UNESCO.
- [2]. Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User-Adapted Interaction, 11(1), 87–110.
- [3]. Fleming, N. D. (1995). I'm different; not dumb. Modes of presentation (VARK) in the tertiary classroom. Christchurch: N.D. Fleming.
- [4]. Graf, S., Liu, T., & Kinshuk. (2007). Analysis of learners' behavior and learning styles in online courses. Educational Technology & Society, 10(4), 77–89.
- [5]. Harman, G., & Kim, H. (2010). Predictors of ICT integration in secondary classrooms. Education and Information Technologies, 15(3), 171–188.

- [6]. Honey, P., & Mumford, A. (1992). The manual of learning styles. Peter Honey Publications.
- [7]. Johnson, L., Adams, S., & Cummins, M. (2014). Technology Outlook for STEM+ Education 2013–2018. New Media Consortium.
- [8]. Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Prentice Hall.
- [9]. OECD. (2020). The Future of Education and Skills 2030. OECD Publishing. Papanastasiou, E., & Angeli, C. (2008). Evaluating technology integration models in education. Journal of Educational Computing Research, 39(1), 37–63.
- [10]. Patel, V., & Gupta, R. (2022). Learning styles and digital engagement among Indian students. Journal of Modern Education, 15(3), 94–108.
- [11]. Riding, R., & Rayner, S. (1998). Cognitive styles and learning strategies. David Fulton Publishers.
- [12]. Saxena, A. (2021). ICT-enabled learning outcomes in Indian schools. International Journal of Education & Pedagogy,
- [13]. Saxena, A. (2021). ICT-enabled learning outcomes in Indian schools. International Journal of Education & Pedagogy, 9(4), 114–129.
- [14]. Voogt, J., & Pelgrum, H. (2005). ICT and curriculum change. Human Technology, 1(2), 157–175.
- [15]. Yilmaz, R. (2017). Exploring the role of learning styles on ICT usage. Computers & Education, 113, 111–125.