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Abstract— The increasing adoption of electric vehicles 

(EVs) has necessitated the development of secure and 

efficient energy management systems to address the 

challenges in energy trading between vehicles (V2V). This 

study introduced a Blockchain-Assisted Secure 

Framework for Intelligent Transportation Systems 

(BASF-ITS) designed to enhance V2V energy trading by 

integrating blockchain technology and machine learning. 

The framework addresses security vulnerabilities, lack of 

standardization, and transaction processing inefficiencies 

through the use of blockchain for decentralized, 

immutable transaction records and a hybrid CNN-LSTM 

model for real-time anomaly detection. The methodology 

involved implementing the framework in a simulated 

environment using Hyperledger Fabric for blockchain 

execution and TensorFlow for machine-learning model 

development. Evaluated using the VANET dataset, 

BASF-ITS demonstrated a high accuracy (99.30%) in 

anomaly detection and robust performance in handling 

large-scale transactions. A comparative analysis with 

baseline models highlighted the framework's superior 

performance in terms of accuracy, AUC-ROC, precision, 

recall, and computational efficiency. These results 

underscore the potential of BASF-ITS to significantly 

enhance the security and efficiency of intelligent 

transportation systems, particularly in facilitating secure 

and transparent V2V energy trading, while also 

highlighting areas for future research and development in 

terms of scalability and real-world implementation. 
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I. INTRODUCTION 

 

The rapid adoption of electric vehicles (EVs) has 

revolutionized transportation, offering a sustainable 

alternative to fossil fuel-based vehicles. However, this 

transition has introduced challenges in energy 

management and distribution [1], [2]. The trading of 

energy between vehicles (V2V) has surfaced as a 

potential solution that enables EVs to exchange energy 

directly, enhance efficiency, and promote a 

decentralized energy ecosystem. Despite these benefits, 

implementing V2V energy-trading systems faces 

hurdles in ensuring security, privacy, and efficiency [3], 

[4]. The Internet of Electric Vehicles (IoEV) integrates 

EVs with smart grid technologies, enabling 

communication and energy exchange between vehicles 

and infrastructure. Although IoEV offers benefits, it 

introduces vulnerabilities, such as cyberattacks, data 

tampering, and fraudulent transactions. Traditional 

energy trading systems lack mechanisms to address 

these challenges, rendering them unsuitable for large-

scale deployment in IoEV environments. To overcome 

these limitations, this study proposes a blockchain-

assisted lightweight security framework for secure, 

transparent, and efficient V2V energy trading [5], [4]. 

The rapid adoption of electric vehicles (EVs) has 

revolutionized transportation, offering a sustainable 

alternative to fossil fuel-based vehicles. However, this 

transition has introduced challenges in energy 

management and distribution [21], [22]. The trading of 

energy between vehicles (V2V) has surfaced as a 

potential solution that enables EVs to exchange energy 

directly, enhance efficiency, and promote a 

decentralized energy ecosystem. Despite these benefits, 

implementing V2V energy-trading systems faces 

hurdles in ensuring security, privacy, and efficiency 

[27], [34]. The Internet of Electric Vehicles (IoEV) 

integrates EVs with smart grid technologies, enabling 

communication and energy exchange between vehicles 

and infrastructure. Although IoEV offers benefits, it 

introduces vulnerabilities, such as cyberattacks, data 

tampering, and fraudulent transactions. Traditional 
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energy trading systems lack mechanisms to address 

these challenges, rendering them unsuitable for large-

scale deployment in IoEV environments. To overcome 

these limitations, this study proposes a blockchain-

assisted lightweight security framework for secure, 

transparent, and efficient V2V energy trading [29], [34]. 

The proposed framework, a Blockchain-Assisted 

Secure Framework for Intelligent Transportation 

Systems (BASF-ITS), integrates blockchain 

technology and machine-learning algorithms to address 

security and efficiency challenges in V2V energy 

trading. Blockchain acts as a decentralized, immutable 

ledger, ensuring tamper-proof, transparent energy 

transactions. This enhances efficiency and security by 

eliminating intermediaries and preventing fraudulent 

activities. Smart contracts automate trading processes, 

reduce human intervention, and minimize errors. 

Techniques in machine learning, including 

Convolutional Neural Networks (CNN) and Long 

Short-Term Memory (LSTM), detect suspicious 

activities in V2V energy trading. These models analyze 

transaction patterns in real time and identify anomalies 

indicating fraudulent behaviour. By integrating AI-

driven classification, the framework enhances its ability 

to prevent cyber threats and ensure a secure energy 

exchange. 

II. LITERATURE REVIEW 

The swift expansion of electric vehicles (EVs) and the 

Internet of Electric Vehicles (IoEV) has spurred 

extensive research into developing secure and efficient 

systems for energy trading. This section reviews 

existing solutions, limitations, and advancements in 

vehicle-to-vehicle (V2V) energy trading, focusing on 

blockchain technology and machine learning 

applications. 

A. Existing Solutions and Technologies 

Traditional energy-trading systems often rely on 

Centralized Architectures prone to single points of 

failure and security vulnerabilities [3], [4]. Researchers 

have explored decentralized solutions to address these 

issues. They emphasized the need for decentralized 

authentication in vehicular ad hoc networks (VANETs) 

to ensure secure communication and data integrity [5], 

[6]. A blockchain-based lightweight authentication 

protocol for vehicle-to-infrastructure (V2I) 

communication has been proposed, highlighting the 

potential of blockchain to enhance security and 

scalability in intelligent transportation systems [7] – [9]. 

In anomaly detection, machine learning techniques 

have been crucial for identifying security threats [10], 

[11]. A blockchain-based access control protocol with 

handover authentication was introduced, demonstrating 

the benefits of integrating blockchain with machine 

learning [12], [13]. Certificateless cryptography has 

been explored for secure key agreement in the Internet 

of Vehicles (IoV), highlighting the importance of 

adaptive learning in dynamic environments [14], [15]. 

B. Limitations of Current Systems 

Despite these advancements, the current systems are 

facing challenges. Dependence on unstructured textual 

log data for anomaly detection was reported by Bagiwa 

et al. [5], [6]. The resulting computational overhead and 

the lack of a standardized framework for vehicle-to-

vehicle (V2V) energy trading hinder interoperability 

and scalability. These limitations underscore the need 

for a comprehensive solution integrating blockchain 

technology with advanced machine-learning 

algorithms to ensure secure, efficient, and scalable 

energy trading in Internet of Electric Vehicles (IoEV) 

environment. 

C. Advancements in Blockchain and Machine 

Learning Integration 

Recent scholarly investigations have integrated 

blockchain with machine learning to enhance the 

security and efficiency of energy-trading systems. A 

blockchain-assisted handover authentication protocol 

for Vehicular Ad Hoc Networks (VANETs) was 

proposed, demonstrating the blockchain's potential to 

improve authentication and secure vehicular 

communication [16], [6]. This study highlights 

decentralized authentication benefits while ensuring 

high security. Similarly, [7] introduced a lightweight 

vehicle-to-infrastructure (V2I) authentication protocol 

using blockchain, demonstrating its efficacy in secure 

vehicle and roadside infrastructure communication. 

Their research underscored the blockchain's role in 

addressing security challenges, such as identity 

spoofing and unauthorized access, which are crucial in 

intelligent transportation systems. Researchers have 

explored analytical detection methodologies to bolster 

network security in machine learning. [17] – [19] 

introduced Hyper Tester, a high-performance network 

testing system using machine learning for real-time 
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anomaly detection. Their research emphasized adaptive 

learning mechanisms' importance in identifying and 

mitigating complex threats in evolving cyber 

environments. [20], [21] examined Support Vector 

Machines (SVM) and Random Forests for anomaly 

detection in programmable network environments, 

offering insights into the strengths and limitations of 

classification algorithms, and highlighting trade-offs 

between accuracy, computational efficiency, and 

adaptability in detecting fraudulent activities. 

D. Contributions of the Proposed Framework 

Building on recent advancements, the proposed 

Blockchain-Assisted Secure Framework for Intelligent 

Transportation Systems (BASF-ITS) combines 

blockchain technology with machine learning to create 

a secure framework for energy trading between 

vehicles (V2V) within the Internet of Electric Vehicles 

(IoEVs). Leveraging the blockchain's decentralized, 

tamper-resistant nature, the system boosts transparency 

and trust in energy transactions, addressing data 

integrity and unauthorized modification concerns. 

Machine learning-based anomaly detection enhances 

the system's ability to classify transactions as legitimate 

or suspicious, proactively identifying fraud. The 

framework uses advanced cryptographic techniques, 

including the Elliptic Curve Integrated Encryption 

Scheme (ECCIES) and ASCON lightweight encryption 

to protect data transmission and ensure privacy and 

integrity. A hybrid machine learning model combining 

Convolutional Neural Networks (CNN) and Long 

Short-Term Memory (LSTM) classifies energy-trading 

interactions as normal or suspicious, enhancing real-

time fraud detection and bolstering security and 

reliability. 

E. Integration of Recent Research 

Recent research has explored blockchain and machine 

learning integration in energy-trading systems. [22], 

[13], [23] suggested a decentralized energy trading 

system for vehicle-to-vehicle (V2V) interactions that 

utilizes effective sharding services to improve 

transaction throughput. [24], [25] introduced a secure 

data and energy trading model utilizing blockchain 

within the Internet of Electric Vehicles, emphasizing 

privately protected mechanisms. [26] – [28] presented 

a blockchain-based reverse auction system for V2V 

electricity trading in a smart grid. [29], [30] developed 

a scalable consensus mechanism for a V2V energy-

trading blockchain that integrates a hash graph with 

sharding. Salah et al. [31], [32], [13] introduced a 

system for V2V energy trading among electric vehicles, 

emphasizing sustainable practices and reverse auction 

mechanisms. A related study proposed a consensus 

mechanism for blockchain-enabled V2V energy 

trading within the Internet of Electric Vehicles (IoEV) 

by combining Practical Byzantine Fault Tolerance 

(PBFT) and Proof of Reputation (PoR). These studies 

have advanced the development of robust energy 

trading systems, addressing the challenges of security, 

privacy, and efficiency within electric vehicles and 

smart grids. 

F. Blockchain Consensus Mechanisms 

Blockchain consensus mechanisms are crucial for 

ensuring the security and efficiency of decentralized 

systems. Various consensus algorithms have been 

developed to address the challenges in vehicle-to-

vehicle (V2V) energy trading. The Block Alliance 

Consensus (BAC) mechanism proposed by [33], [13] 

combines Hash Graph’s high-throughput with sharding 

techniques, enabling dynamic node management while 

maintaining a centralized component for 

macroeconomic oversight by governments [35]. This 

mechanism enhances scalability and efficiency while 

ensuring security through Leader elections based on 

cryptography and a reputation incentive system for 

electric vehicles (EVs). Practical Byzantine Fault 

Tolerance (PBFT) combined with Proof of Reputation 

(PoR) provides a solution to the shortcomings of 

conventional consensus algorithms, creating a strong 

foundation for secure energy transactions. 

G. Machine Learning in Energy Trading 

Machine learning is a powerful tool for enhancing the 

security and efficiency of energy-trading systems. 

Scientists have investigated machine learning methods, 

including Convolutional Neural Networks (CNN) and 

Long Short-Term Memory (LSTM), to detect 

anomalies and classify transactions in real time. [17], 

[34], [18] developed Hyper Tester, a high-performance 

network testing system that uses machine learning for 

real-time anomaly detection. Their study highlighted 

the role of adaptive learning mechanisms in identifying 

complex security threats in rapidly evolving cyber 

environments. In addition, [20], [21] investigated 

Support Vector Machines (SVM) and Random Forests 

for anomaly detection in programmable network 
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environments, offering insights into the advantages and 

limitations of classification algorithms and 

emphasizing trade-offs between accuracy, 

computational efficiency, and adaptability in 

identifying fraudulent activities. 

H. Security and Privacy in Energy Trading 

The protection of security and privacy in energy trading 

systems is vital, especially for electric vehicles and 

smart grids. Scholars have investigated ways to 

improve the security and privacy of energy exchanges. 

[24], [25] suggested a blockchain-based solution for 

safe data and energy trading within the Internet of 

Electric Vehicles (IoEV) framework, emphasizing 

privately protected mechanisms in energy management. 

Their study demonstrated that blockchain protects the 

identity and security of energy transactions. Similarly, 

[26], [36] suggested a blockchain-driven reverse 

auction platform for vehicle-to-vehicle electricity 

transactions within a smart-grid framework, 

showcasing how decentralized systems can improve 

security and adaptability. Their research underscores 

the importance of secure communication and data 

integrity in energy-trading systems. 

I. Scalability and Efficiency in Energy Trading 

Scalability and efficiency are crucial for the 

development of energy-trading systems. Researchers 

have explored methods to enhance these aspects, 

particularly for electric vehicles and smart grids. [22] 

proposed a decentralized vehicle-to-vehicle (V2V) 

energy trading system using efficient sharding services, 

highlighting the effectiveness of blockchain sharding 

and parallel architecture in improving transaction 

throughput. Their research demonstrated the potential 

of decentralized systems to enhance scalability and 

efficiency in energy-trading systems, thereby providing 

a robust framework for secure transactions. Similarly, 

[30], [13], [37] proposed a scalable, efficient, and 

secure consensus mechanism for a V2V energy-trading 

blockchain by integrating hash graph with sharding 

techniques. Their research emphasizes the critical role 

of consensus mechanisms in ensuring the scalability 

and efficiency of energy-trading systems, offering 

valuable insights into developing robust frameworks. 

III. METHODOLOGY 

The BASF-ITS framework facilitates secure and 

efficient vehicle-to-vehicle (V2V) energy trading, 

comprising essential components that enhance the 

system functionality and security. The Data Plane 

Layer collects and manages data from electric vehicles 

(EVs) and smart grid infrastructure, incorporating data 

insight gatherers and refiners. It captures real-time 

energy consumption and transaction data, forming the 

foundation for informed decision making. The Control 

Layer manages data partitioning, model training, and 

anticipation of energy trading patterns using machine 

learning algorithms to analyze the data in real time. 

This layer manages the data flow between the Data 

Plane and Application Layers, ensuring efficient and 

secure processing. The Application Layer focuses on 

practical applications, including metric analysis and 

visualization of network performance. It provides 

stakeholders with interfaces and dashboards that offer 

real-time analytics and decision-making support. The 

system architecture is modular and scalable, allowing 

the integration of new components and technologies, 

ensuring adaptability to evolving requirements and 

advancements in transportation systems. 

 
Fig 1: Network Simulation and Mobility Analysis 

A. Data Collection and Preprocessing 

The data collection process involved acquiring real-

time energy trading data from electric vehicles (EVs) 

and smart grid infrastructure. The dataset includes 

parameters such as energy consumption, transaction 

details, and network metrics, providing a 

comprehensive view of energy trading activities within 

the Internet of Electric Vehicles (IoEV) ecosystem. 

This data collection strategy captures the nuances of the 

energy trading dynamics. 
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Data preprocessing is crucial for effective analysis and 

modeling. The process begins with data cleaning to 

eliminate or estimate missing data, manage outliers, 

and ensure uniform data. This step preserves dataset 

integrity. Normalization was then performed to adjust 

the data scale, ensure consistency, and enhance the 

performance of the machine-learning model. 

Normalization standardizes data and facilitates variable 

comparisons. Encoding the integrity of the dataset for 

the categorical data into numerical formats suitable for 

analysis. These preprocessing steps are essential for 

preparing data for training and assessing machine 

learning models, ensuring precise outcomes. 

B. Blockchain Implementation 

The blockchain component of the BASF-ITS 

framework is crucial in enabling secure and transparent 

energy transactions. Implementation involves several 

essential elements, each of which contributes to the 

robustness and reliability of the system. Central to 

blockchain implementation is the consensus 

mechanism, which utilizes the Practical Byzantine 

Fault Tolerance (PBFT) protocol. This protocol was 

selected for its ability to manage Byzantine faults, 

allowing the system to endure malicious nodes without 

compromising the network integrity. PBFT ensures 

system resilience and trustworthiness by authenticating 

transactions and maintaining data integrity. Another 

significant aspect is the development of smart contracts 

that automate energy-trading operations and ensure 

compliance with established rules. Smart contracts are 

agreements that execute themselves, with conditions 

written into the code that allow for automatic 

performance when specific criteria are satisfied. This 

reduces reliance on intermediaries, minimizes human 

involvement, and streamlines the trading process. In 

addition, advanced cryptographic techniques, such as 

the Elliptic Curve Integrated Encryption Scheme 

(ECIES) and ASCON lightweight encryption, protect 

data during transmission. These methods ensure that 

the data remain encrypted and secure, safeguarding it 

from unauthorized access and tampering. The 

decentralized nature of blockchain ensures that 

transactions are immutable and transparent, thereby 

providing a robust framework for secure energy trading. 

In general, the adoption of blockchain technology 

improves the security, clarity, and effectiveness of 

energy trading, establishing it as a fundamental element 

of the BASF-ITS framework. 

C. Machine Learning Models 

Machine learning models are crucial in the Blockchain-

Assisted Secure Framework for Intelligent Trading 

Systems (BASF-ITS) as they facilitate the precise 

identification and categorization of interactions in 

energy trading. A combined Convolutional Neural 

Network-Long Short-Term Memory (CNN-LSTM) 

model was used to understand both the spatial and 

temporal relationships within the trading data. CNNs 

were employed for feature extraction, utilizing their 

capability to detect spatial patterns in organized 

datasets. Mathematically, a CNN extracts hierarchical 

features by using convolutional operations. 

𝐹(𝑙) = σ(𝑊(𝑙) ∗ 𝑋(𝑙−1) + 𝑏(𝑙)) 

Where 𝐹𝑙  represents the feature map at layer 𝑙; 

𝑋𝑙−1 is the input from the previous layer; 

𝑊𝑙  is the convolution kernel; 

𝑏𝑙  is the bias term; 

σ is an activation function such as ReLU. 

                            

These feature maps serve as input to the next layer. 

LSTM networks have been integrated for anomaly 

detection in real-time energy transactions, effectively 

capturing long-term dependencies in sequential data. 

An LSTM unit consists of three key gates: input, forget, 

and output gates, which are mathematically represented 

as: 

𝑓𝑡 = σ(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑖𝑡 = σ(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝑜𝑡 = σ(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) 

Where 

𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡  represent the forget, input, and output gates, respectively; 

𝐶𝑡  is the cell state at time step 𝑡; 

ℎ𝑡  is the hidden state; 

𝑊𝑓 , 𝑊𝑖 , 𝑊𝑜 , 𝑊𝐶  are weight matrices; 

𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜, 𝑏𝐶  are bias terms; 

σ is the sigmoid activation function; 

tanh  is the hyperbolic tangent activation function. 

𝐿 = − ∑ 𝑦𝑖

𝑁

𝑖=1

log(𝑦𝑖̂) 

Where 𝐿 is the loss function; 

𝑁 is the total number of samples; 
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𝑦𝑖  is the actual value for sample 𝑖; 

𝑦𝑖̂ is the predicted probability for sample 𝑖; 

log  is the natural logarithm function. 

The mathematical integration of machine learning 

algorithms enhances anomaly detection and security 

features within the BASF-ITS. The model 

demonstrated high accuracy in detecting fraudulent 

energy trades, offering a robust and proactive approach 

for securing energy transactions. The incorporation of 

CNNs for feature extraction and LSTMs for sequential 

learning ensures that complex trading patterns and 

anomalies are effectively captured and analyzed. This 

hybrid architecture not only improves the system 

reliability but also provides a scalable solution for 

secure and intelligent energy trading. 

D. Evaluation Metrics 

The performance of the BASF-ITS framework is 

evaluated using key metrics to ensure a comprehensive 

assessment of its effectiveness and efficiency in 

practical applications. Accuracy determines the 

frequency of correct model predictions and serves as a 

fundamental indicator of predictive success. Precision 

and recall assessed the model's ability to correctly 

identify true positive cases and its sensitivity to positive 

instances, with precision focusing on the accuracy of 

positive predictions and recall evaluating the model's 

effectiveness in recognizing relevant cases. The F1 

score offered a balanced evaluation of precision and 

recall, which is valuable in scenarios with uneven class 

distribution, by providing a single measure that 

integrates both metrics. The computational efficiency 

was assessed to evaluate the model's performance in 

terms of processing speed and resource utilization, 

ensuring that the system can manage real-time energy 

trading interactions without significant delays. These 

metrics offer a thorough assessment of the framework's 

advantages and highlight potential areas for 

enhancement, especially in relation to current solutions. 

E. Experimental Setup 

The experimental configuration implemented the 

BASF-ITS framework in a simulated environment 

emulating actual energy trading contexts. This setup 

incorporates Hyperledger Fabric for blockchain 

execution and TensorFlow for machine learning model 

development, establishing a robust foundation for 

system component creation and evaluation. High-

performance computing resources and software 

frameworks facilitate data processing and analysis, 

thereby enabling the management of substantial data 

volumes and complex computations for efficient real-

world operations. The framework was assessed across 

various scenarios, including diverse network conditions 

and energy-trading volumes, to evaluate its robustness, 

scalability, and adaptability to evolving conditions. 

This setup provides a realistic, controlled environment 

for evaluating framework performance and identifying 

areas for improvement, yielding valuable insights. 

IV. EXPERIMENTAL RESULTS 

 

The network simulation examined a vehicle-to-vehicle 

(V2V) energy trading system situated within an 

intelligent transportation framework. It constructed a 

network graph of 50 nodes, representing electric 

vehicles (EVs) and smart grid components, 

interconnected through edges simulating 

communication and energy exchange pathways. The 

source node (node 10) and destination node (node 40) 

are designated as the energy transaction initiation and 

termination points, respectively. Node mobility was 

simulated in two stages to reflect the dynamic nature of 

the system by observing network connectivity and 

energy trading efficiency. The setup included 50 nodes, 

with node 10 as the source and node 40 as the 

destination, and an energy threshold of 20 to evaluate 

performance. Dijkstra's algorithm assesses the BASF-

ITS framework, ensuring optimal energy routing, 

minimizing energy loss, and maximizing the V2V 

transaction efficiency. The network graph visualization 

depicted the structure, highlighting connectivity and 

mobility patterns, with red nodes for the source and 

destination and blue nodes for intermediary facilitators. 
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                      a)                                                                          b)                                                                           c)  

Fig 2: Network Simulation and Mobility Analysis 
 

This composite figure illustrates the impact of network 

simulations and mobility on energy trading in an 

intelligent transportation system. (a) The initial 

network graph shows the connectivity between nodes 

before mobility, with red nodes as the source and 

destination and blue nodes as intermediaries, 

highlighting the network structure and shortest path 

using Dijkstra's algorithm. (b) The network graph after 

the mobility steps shows changes in node positions, 

illustrating the dynamic nature of vehicular networks. 

(c) The shortest path visualization emphasizes the 

optimal route for energy transactions, calculated using 

Dijkstra's algorithm, with the red path indicating 

minimal energy loss and maximized efficiency. 

Visualization is key to understanding network behavior 

and performance. Analyzing the network graph reveals 

node interactions and energy routing. The shortest path 

ensures efficient energy transactions by minimizing 

losses and optimizing resource use. Mobility 

simulations demonstrate the dynamic nature of 

vehicular networks, with nodes frequently changing 

positions, challenging stable connections, and efficient 

energy routing. Visual representation aids in 

recognizing possible obstacles and opportunities for 

enhancement in network architecture and energy 

management. Network simulation and visualization 

provide valuable insights into V2V energy trading 

networks' structure and dynamics, crucial for 

developing robust energy management systems in 

intelligent transportation frameworks. 

A. Performance Metrics 

To evaluate the Blockchain-Assisted Secure 

Framework for Intelligent Transportation Systems 

(BASF-ITS), the following key performance metrics 

were analyzed: accuracy, precision, recall, F1 score, 

and computational efficiency. Accuracy indicates how 

correct the predictions are. Precision evaluates the 

correctness of positive predictions, while recall 

measures the model’s capability to recognize all 

pertinent positive instances, which is crucial for 

detecting anomalies. The F1 score provides a balanced 

assessment of precision and recall, valuable in 

scenarios with uneven class distribution. 

Computational efficiency evaluates processing speed 

and resource usage, ensuring the system can handle 

real-time energy trading interactions without 

significant delays. A bar chart (Figure 4) illustrates 

these metrics, displaying packet drop rate, total energy, 

delay, throughput, and cost, offering a comprehensive 

overview of the framework's performance. 

 
Fig 3: Key Performance Metrics for Network 

Simulation 

Performance metric visualization is crucial for 

understanding the framework's efficiency and 

effectiveness. High accuracy and low packet drop rates 

indicate robust performance, while delay and 

throughput metrics reveal real-time capabilities. These 

metrics collectively evaluate the performance of the 

framework and highlight its potential in transportation 

systems. The analysis demonstrates the framework's 

ability to handle large-scale transactions efficiently 

while maintaining high security standards, 
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underscoring its potential to enhance V2V energy 

trading security and efficiency. 

B. Machine Learning Model Evaluation 

Table I: Hyperparameter Settings for Neural Network Training 

Parameter Description 
Range of Values 

Considered 

Learning Rate 
The size of the step is established at every iteration as we progress towards 

minimizing the loss function. 
0.001, 0.01, 0.1 

Group Size Number of samples processed before the model was updated. 16, 32, 64 

Count of 

Epochs 
Number of complete passes through the training dataset. 50, 100, 150 

Optimizer 
The algorithm was used to change the attributes of the neural network to reduce 

losses. 
Adam, SGD 

Dropout Rate Proportion of neurons to be ignored during training to prevent overfitting. 0.2, 0.3, 0.4 

Hidden Units Number of neurons in the hidden layers of the neural network. 64, 128, 256 

To mitigate overfitting and ensure model generalization 

to the novel data, a distinct validation set was employed. 

This set continuously evaluates the model during 

training, informing adjustments, and refinements. The 

evaluation metrics included accuracy and loss curves, 

which monitored the learning progress over the epochs. 

These curves provided insights into the alignment of 

model predictions with actual data and indicated the 

error rates during training and validation. A confusion 

matrix offered a detailed view of classification 

performance, displaying true positives, false positives, 

true negatives, and false negatives for each class, 

highlighting areas of excellence and needing 

improvement. The hybrid CNN-LSTM model's ability 

to capture spatial and temporal dependencies within the 

data makes it effective in identifying complex patterns 

and anomalies in energy trading interactions. This 

ability is crucial for improving the reliability and 

effectiveness of the BASF-ITS framework, as well as 

for ensuring its adaptability to ever-changing energy-

trading conditions. By analyzing these metrics and 

refining the model, its strengths were maximized, and 

weaknesses were addressed, facilitating the 

development of a robust anomaly detection system 

within the BASF-ITS framework. 

 
Fig 4: Simulation Training and Validation 

Performance of the Hybrid CNN-LSTM Model 

 

Fig 5: Confusion Matrix for Anomaly Detection in 

Energy Trading 

The accuracy and loss graphs displayed in Figure 5 

offer valuable information about the model's learning 

path, highlighting its capacity to generalize from 
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training data to previously unseen test data. The 

confusion matrix in Figure 6 offers a comprehensive 

analysis of the classification performance of the model 

and identifies the strengths and areas for improvement. 

The hybrid CNN-LSTM model demonstrated robust 

efficacy in detecting anomalies within energy trading 

interactions, achieving high accuracy while minimizing 

loss. This evaluation underscores the potential 

applicability of the model in real-world intelligent 

transportation systems, where reliable anomaly 

detection is essential for security and operational 

efficiency. 

C. Comparative Analysis 

To contextualize the performance of the Blockchain-

Assisted Secure Framework for Intelligent 

Transportation Systems (BASF-ITS), a comparative 

analysis was conducted with existing solutions and 

baseline models. This analysis elucidates the 

advancements offered by the BASF-ITS framework 

and their strengths in real-world applications. Baseline 

Models: This comparison includes several baseline 

models used in energy trading and anomaly detection. 

Fig 6: Comparative Performance of BASF-ITS and 

Baseline Models.  

These models were selected on the basis of their 

relevance and performance in similar contexts. 

Performance Comparison: A detailed comparison of 

key performance metrics, including accuracy, AUC-

ROC, precision, recall, and computational efficiency, 

was conducted. The results are shown in a comparative 

chart (Figure 6), which visually represents the 

differences between the BASF-ITS framework and 

baseline models. Accuracy: The BASF-ITS framework 

demonstrated superior accuracy compared with the 

baseline models, indicating its ability to correctly 

classify energy trading interactions. AUC-ROC: The 

Area Under the Receiver Operating Characteristic 

Curve (AUC-ROC) was significantly higher for the 

BASF-ITS framework, demonstrating its robustness for 

distinguishing normal and anomalous activities. 

Precision and Recall: The framework exhibited 

improved precision and recall, highlighting its 

efficiency in recognizing genuine positive cases while 

reducing the occurrence of false positives and negatives.  

 

Fig 6: Comparative Performance of BASF-ITS and 

Baseline Models 

Computational Efficiency: The BASF-ITS framework 

showed enhanced computational efficiency, ensuring 

its ability to handle real-time energy-trading 

interactions without significant delays. Comparative 

analysis results highlight the superior performance of 

the BASF-ITS framework. Improvements in accuracy, 

AUC-ROC, precision, recall, and computational 

efficiency demonstrate its potential for real-world 

applications. These advancements are crucial for 

maintaining reliable and secure energy trading systems. 

The analysis also reveals areas where the framework 

outperforms existing solutions, emphasizing the 

importance of integrating blockchain technology with 

advanced machine learning models. This integration 

ensures secure and transparent energy transactions 

while enhancing the system's ability to detect and 

mitigate anomalies effectively. 

V. DISCUSSION 

 

The experimental results provide compelling evidence 

for the efficacy of the Blockchain-Assisted Secure 

Framework for Intelligent Transportation Systems 

(BASF-ITS) in augmenting the security and efficiency 

of vehicle-to-vehicle (V2V) energy trading. The hybrid 

CNN-LSTM model, a key component of BASF-ITS, 

exhibited exceptional performance in anomaly 

detection, achieving high accuracy and minimizing loss. 

These findings are significant for intelligent 

transportation systems, where the reliability and 

security of energy transactions are of paramount 

importance. 
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A. Interpretation of Results 

The incorporation of blockchain technology within the 

BASF-ITS framework ensures secure and transparent 

energy transactions, addressing critical security 

concerns such as data integrity and unauthorized 

modifications. Smart contracts automate the trading 

process, reduce human intervention, and minimize 

error. This decentralized approach enhances security 

and improves efficiency by eliminating intermediaries 

and streamlining transactions. Comparative analysis 

with baseline models emphasizes the advancements in 

the BASF-ITS framework. Its superior performance in 

terms of accuracy, AUC-ROC, precision, recall, and 

computational efficiency underscores its robustness 

and reliability for real-world applications. These 

enhancements are critical for maintaining secure and 

efficient energy-trading systems, where improved 

performance is essential for practical deployment. 

B. Implications for Real-World Applications 

The BASF-ITS framework can transform the energy 

management in transportation systems by providing a 

secure and efficient platform for energy trading. This 

has the potential to promote more decentralized and 

sustainable energy systems while improving the 

efficiency and reliability of transportation networks. 

The framework's capacity to identify and respond to 

anomalies in real-time is vital for ensuring the security 

and integrity of energy transactions. 

C. Limitations and Challenges 

Although the results of this study are promising, several 

limitations and challenges were encountered. The 

simulation environment, although comprehensive, may 

not fully capture real-world complexities and 

variabilities. Future research should prioritize 

validating the framework in diverse and dynamic 

settings to ensure its robustness and adaptability. 

Additionally, the computational efficiency of machine 

learning models, particularly in processing large 

datasets, requires further optimization for real-time 

applications. During development, the challenges in 

data preprocessing and model training were addressed 

using optimized algorithms and high-performance 

computing resources. However, continuous refinement 

was necessary to enhance the scalability and efficiency 

of the framework. 

D. Problems Encountered and Solutions 

Several challenges were encountered during 

implementation of the BASF-ITS framework. The 

primary issue is the computational overhead involved 

in processing large datasets for anomaly detection. This 

was addressed by optimizing machine-learning 

algorithms and using high-performance computing 

resources. Additionally, integrating blockchain 

technology with machine learning models requires 

careful design and testing of a cohesive system. A 

significant challenge is the dynamic nature of vehicular 

networks with frequent positional changes in nodes. 

This variability complicates the maintenance of stable 

connections and the efficient energy routing. To 

address these issues, the framework adapts to 

fluctuating network conditions by using dynamic 

routing algorithms and real-time data processing for 

optimal energy transactions. 

VI. CONCLUSIONS 

 

This study introduces a Blockchain-Assisted Secure 

Framework for Intelligent Transportation Systems 

(BASF-ITS) that enhances vehicle-to-vehicle (V2V) 

energy trading security and efficiency. Integrating 

blockchain technology with machine learning offers 

robust solutions for secure energy transactions. The 

hybrid CNN-LSTM model achieved 99.30% test 

accuracy and 0.91 AUC-ROC, demonstrating its 

proficiency in maintaining transaction integrity. 

Blockchain ensures secure, transparent transactions, 

addresses data integrity, and unauthorized 

modifications, while advanced cryptography enhances 

data security. This study's contributions include a 

comprehensive approach to secure and efficient energy 

trading, highlighting the strengths and limitations of the 

framework. Future research should focus on optimizing 

machine learning models for real-time applications and 

improving computational efficiency through 

techniques such as model pruning and hardware 

acceleration. Exploring advanced consensus 

mechanisms and layer-2 solutions can enhance the 

scalability of blockchain. Integrating additional 

security features and emerging technologies can 

enhance the robustness of the framework further. 

Future research should prioritize advanced encryption 

algorithms and private-preserving techniques. Practical 

implementation, extensive testing, and interdisciplinary 

collaboration can refine this framework and address 
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regulatory challenges. The BASF-ITS framework 

advances secure, efficient energy-trading systems. By 

addressing the identified challenges and pursuing 

future research, it can meet the evolving demands of 

intelligent transportation systems, paving the way for 

innovation. 

REFERENCE 

 

[1]  Gurram, H. (2025). Blockchain Integration in 

Information Systems: Transforming Data 

Security and Transaction Transparency. Journal 

of Information Systems Engineering and 

Management, 10(11s), 272–280. 

https://doi.org/10.52783/jisem.v10i11s.1585 

[2]  Centralized Architectures (p. 264). (2024). 

springer. https://doi.org/10.1007/978-3-031-

23161 2_300210 

[3]  Pandey, P. K., Swaroop, A., & Kansal, V. (2020). 

Vehicular Ad Hoc Networks (VANETs) (pp. 

224–239). igi global. https://doi.org/10.4018/978-

1-7998-2491-6.ch013 

[4]  Lawal Bagiwa, I., Aminu Mu’Azu, A., & Ahmed 

Zayyad, M. (2022). A REVIEW ON 

AUTHENTICATION AND PRIVACY 

PROTECTION SCHEMES IN VEHICULAR 

AD HOC NETWORKS (VANETS). BIMA 

JOURNAL OF SCIENCE AND TECHNOLOGY 

(2536-6041), 6(03), 136–150. 

https://doi.org/10.56892/bima.v6i03.61 

[5]  Guo, X., & Guo, X. (2023). A Research on 

Blockchain Technology: Urban Intelligent 

Transportation Systems in Developing Countries. 

IEEE Access, 11, 40724–40740. 

https://doi.org/10.1109/access.2023.3270100 

[6]  Siddhartha, C., Abha, C., Shiwanee, B., & Prageet, 

K. B. (2023). Secure authentication protocol for 

IoT applications based on blockchain technology. 

I-Manager’s Journal on Computer Science, 11(1), 

12. https://doi.org/10.26634/jcom.11.1.19380 

[7]  Jabbar, R., Said, A. B., Zaidan, E., Dhib, E., 

Krichen, M., Fetais, N., & Barkaoui, K. (2022). 

Blockchain Technology for Intelligent 

Transportation Systems: A Systematic Literature 

Review. IEEE Access, 10, 20995–21031. 

https://doi.org/10.1109/access.2022.3149958 

[8]  Chaudhary, A., & Agarwal, R. (2023). Machine 

Learning Techniques for Anomaly Detection 

Application Domains (pp. 129–147). springer 

nature singapore. https://doi.org/10.1007/978-

981-99-0109-8_8 

[9]  Pardesi, S. (2024). Using Advanced Machine 

Learning Techniques for Anomaly Detection in 

Financial Transactions. Darpan International 

Research Analysis, 12(3), 543–554. 

https://doi.org/10.36676/dira.v12.i3.106 

[10]  Dwivedi, S. K., Vollala, S., Khan, M. K., & Amin, 

R. (2023). B-HAS: Blockchain-Assisted Efficient 

Handover Authentication and Secure 

Communication Protocol in VANETs. IEEE 

Transactions on Network Science and 

Engineering, 1–14. 

https://doi.org/10.1109/tnse.2023.3264829 

[11]  Wang, M., Zhao, D., Yan, Z., Li, T., & Wang, H. 

(2023). XAuth: Secure and Privacy-Preserving 

Cross-Domain Handover Authentication for 5G 

HetNets. IEEE Internet of Things Journal, 10(7), 

5962–5976. 

https://doi.org/10.1109/jiot.2022.3223223 

[12]  Alghanem, H., & Abdallah, S. (2024). The Future 

of the Internet of Vehicles (IoV) (pp. 301–309). 

springer nature switzerland. 

https://doi.org/10.1007/978-3-031-56121-4_29 

[13]  Alalwany, E., & Mahgoub, I. (2024). Security and 

Trust Management in the Internet of Vehicles 

(IoV): Challenges and Machine Learning 

Solutions. Sensors (Basel, Switzerland), 24(2), 

368. https://doi.org/10.3390/s24020368 

[14]  Farooq, S. M., Ustun, T. S., & Hussain, S. M. S. 

(2020). A Survey of Authentication Techniques in 

Vehicular Ad-Hoc Networks. IEEE Intelligent 

Transportation Systems Magazine, 13(2), 39–52. 

https://doi.org/10.1109/mits.2020.2985024 

[15]  Sun, J., Shi, Q., Jin, G., Xu, H., & Liu, E. (2024). 

Blockchain-Enabled IoV: Secure Communication 

and Trustworthy Decision-Making. 

https://doi.org/10.48550/arxiv.2409.11621 

[16]  N Asgarov, K. (2024). UNSUPERVISED 

MACHINE LEARNING METHODS FOR 

REAL-TIME ANOMALY DETECTION IN 

ENDPOINTS. Journal of Modern Technology 

and Engineering, 9(3), 141–155. 

https://doi.org/10.62476/jmte93141 

[17]  Karne, N. (2023). Hybrid Machine Learning 

Models for Real-Time Anomaly Detection in 

Complex Deployment Environments. 

International Journal of Scientific Research in 

https://doi.org/10.52783/jisem.v10i11s.1585
https://doi.org/10.1007/978-3-031-23161%202_300210
https://doi.org/10.1007/978-3-031-23161%202_300210
https://doi.org/10.4018/978-1-7998-2491-6.ch013
https://doi.org/10.4018/978-1-7998-2491-6.ch013
https://doi.org/10.56892/bima.v6i03.61
https://doi.org/10.1109/access.2023.3270100
https://doi.org/10.26634/jcom.11.1.19380
https://doi.org/10.1109/access.2022.3149958
https://doi.org/10.1007/978-981-99-0109-8_8
https://doi.org/10.1007/978-981-99-0109-8_8
https://doi.org/10.36676/dira.v12.i3.106
https://doi.org/10.1109/tnse.2023.3264829
https://doi.org/10.1109/jiot.2022.3223223
https://doi.org/10.1007/978-3-031-56121-4_29
https://doi.org/10.3390/s24020368
https://doi.org/10.1109/mits.2020.2985024
https://doi.org/10.48550/arxiv.2409.11621
https://doi.org/10.62476/jmte93141


International Conference on Innovations in Science, Technology and Management- 2025 (ICISTM-2025) 

  ISSN: 2349-6002 

185804 © October 2025 | Volume 12 Issue 5 | IJIRT | www.ijirt.org 26 

ICISTM 2025 

Science and Technology, 1040–1052. 

https://doi.org/10.32628/ijsrst523102184 

[18]  C, A., & T, R. (2024). Real Time Anomaly 

Detection in Network Traffic: A Comparative 

Analysis of Machine Learning Algorithms. 

International Research Journal on Advanced 

Engineering Hub (IRJAEH), 2(07), 1968–1977. 

https://doi.org/10.47392/irjaeh.2024.0269 

[19]  Irofti, P., Hîji, I.-A., Pătraşcu, A., & Cleju, N. 

(2024). Fusing Dictionary Learning and Support 

Vector Machines for Unsupervised Anomaly 

Detection. 

https://doi.org/10.48550/arxiv.2404.04064 

[20]  Son, N.-T., Chen, C.-F., Chen, C.-R., & Minh, V.-

Q. (2017). Assessment of Sentinel-1A data for 

rice crop classification using random forests and 

support vector machines. Geocarto International, 

33(6), 1–15. 

https://doi.org/10.1080/10106049.2017.1289555 

[21]  Meng, K., Chen, X., Li, S., Sun, L., & Wu, H. 

(2023, December 21). A Decentralized Vehicle-

to-Vehicle Energy Trading System Based on 

Efficient Sharding Services. 

https://doi.org/10.1109/ispa-bdcloud-socialcom-

sustaincom59178.2023.00038 

[22]  Wang, Y., Li, Y., Suo, Y., Qiang, Y., Zhao, J., & 

Li, K. (2023). A scalable, efficient, and secured 

consensus mechanism for Vehicle-to-Vehicle 

energy trading blockchain. Energy Reports, 10, 

1565–1574. 

https://doi.org/10.1016/j.egyr.2023.07.035 

[23]  Xu, Y., Leung, V. C. M., Li, X., Yang, L., Ji, H., 

& Zhang, H. (2022). Transaction Throughput 

Optimization for Integrated Blockchain and MEC 

System in IoT. IEEE Transactions on Wireless 

Communications, 21(2), 1022–1036. 

https://doi.org/10.1109/twc.2021.3100985 

[24]  Kavin, R., & Jayakumar, J. (2025). Energy 

Management System for Distributed Energy 

Resources using Blockchain Technology. Recent 

Patents on Engineering, 19(1).  

[25]  https://doi.org/10.2174/01187221212590442309

20075604 

[26]  Prasad, N. (2025). Blockchain Technology: 

Revolutionizing Data Security in Energy Trading 

Risk Management. International Journal of 

Scientific Research in Computer Science, 

Engineering and Information Technology, 11(2), 

232–241. https://doi.org/10.32628/cseit25112359 

[27]  El Houda, Z. A., Khoukhi, L., & Hafid, A. S. 

(2021). Blockchain-based Reverse Auction for 

V2V charging in smart grid environment. 1–6. 

https://doi.org/10.1109/icc42927.2021.9500366 

[28]  Xu, Y., Wang, S., & Long, C. (2021). A Vehicle-

to-vehicle Energy Trading Platform Using Double 

Auction With High Flexibility. 01–05. 

https://doi.org/10.1109/isgteurope52324.2021.96

40018 

[29]  Wu, K. (2025). Blockchain-Based Secure Vehicle 

Auction System with Smart Contracts. 

https://doi.org/10.48550/arxiv.2501.04841 

[30]  Jayaraman, S., & Borada, D. (2024). Efficient 

Data Sharding Techniques for High-Scalability 

Applications. Integrated Journal for Research in 

Arts and Humanities, 4(6), 323–351. 

https://doi.org/10.55544/ijrah.4.6.25 

[31]  Chakraborty, S., Chakraborty, S., & Majumder, A. 

(2024). Scalability of Blockchain Using Sharding 

(pp. 326–349). igi global. 

https://doi.org/10.4018/979-8-3693-3494-

2.ch018 

[32]  Salah, K., Omar, M., Jayaraman, R., Al-Saif, N., 

Ahmad, R. W., & Yaqoob, I. (2021). Blockchain 

for Electric Vehicles Energy Trading: 

Requirements, Opportunities, and Challenges. 

institute of electrical electronics engineers. 

https://doi.org/10.36227/techrxiv.16825303 

[33]  Abishu, H. N., Ayall, T., Liu, G., Sun, G., Seid, A. 

M., & Yacob, Y. H. (2022). Consensus 

Mechanism for Blockchain-Enabled Vehicle-to-

Vehicle Energy Trading in the Internet of Electric 

Vehicles. IEEE Transactions on Vehicular 

Technology, 71(1), 946–960. 

https://doi.org/10.1109/tvt.2021.3129828 

[34]  Wang, Y., Zhao, J., Li, K., Yuan, L., Qiang, Y., 

Yang, Q., & Jiao, W. (2023). A Fast and Secured 

Vehicle-to-Vehicle Energy Trading Based on 

Blockchain Consensus in the Internet of Electric 

Vehicles. IEEE Transactions on Vehicular 

Technology, 72(6), 7827–7843. 

https://doi.org/10.1109/tvt.2023.3239990 

[35]  Ahn, J., Yi, E., & Kim, M. (2024). Blockchain 

Consensus Mechanisms: A Bibliometric Analysis 

(2014–2024) Using VOSviewer and R 

Bibliometrix. Information, 15(10), 644. 

https://doi.org/10.3390/info15100644 

[36]  Behera, S., Panayiotou, T., & Ellinas, G. (2023). 

Machine Learning for Real-Time Anomaly 

https://doi.org/10.32628/ijsrst523102184
https://doi.org/10.47392/irjaeh.2024.0269
https://doi.org/10.48550/arxiv.2404.04064
https://doi.org/10.1080/10106049.2017.1289555
https://doi.org/10.1109/ispa-bdcloud-socialcom-sustaincom59178.2023.00038
https://doi.org/10.1109/ispa-bdcloud-socialcom-sustaincom59178.2023.00038
https://doi.org/10.1016/j.egyr.2023.07.035
https://doi.org/10.1109/twc.2021.3100985
https://doi.org/10.2174/0118722121259044230920075604
https://doi.org/10.2174/0118722121259044230920075604
https://doi.org/10.32628/cseit25112359
https://doi.org/10.1109/icc42927.2021.9500366
https://doi.org/10.1109/isgteurope52324.2021.9640018
https://doi.org/10.1109/isgteurope52324.2021.9640018
https://doi.org/10.48550/arxiv.2501.04841
https://doi.org/10.55544/ijrah.4.6.25
https://doi.org/10.4018/979-8-3693-3494-2.ch018
https://doi.org/10.4018/979-8-3693-3494-2.ch018
https://doi.org/10.36227/techrxiv.16825303
https://doi.org/10.1109/tvt.2021.3129828
https://doi.org/10.1109/tvt.2023.3239990
https://doi.org/10.3390/info15100644


International Conference on Innovations in Science, Technology and Management- 2025 (ICISTM-2025) 

  ISSN: 2349-6002 

185804 © October 2025 | Volume 12 Issue 5 | IJIRT | www.ijirt.org 27 

ICISTM 2025 

Detection in Optical Networks. cornell university. 

https://doi.org/10.48550/arxiv.2306.10741 

[37]  Huang, H., Yin, Z., Chen, Q., Ye, G., Peng, X., 

Lin, Y., Zheng, Z., & Guo, S. (2024). 

BrokerChain: A Blockchain Sharding Protocol by 

Exploiting Broker Accounts. 

https://doi.org/10.48550/arxiv.2412.07202 

https://doi.org/10.48550/arxiv.2306.10741
https://doi.org/10.48550/arxiv.2412.07202

