International Conference on Innovations in Science, Technology and Management- 2025 (ICISTM-2025)

ISSN: 2349-6002

Extended Honey Badger Algorithm: A Competitive
Metaheuristic for Solving Global Optimization Problems

Samindar J. Vibhute', Chetan S. Arage?, Vishal S. Pawar?, Abhishek A. Patil*
Department Computer Science & Engineering, Sanjay Ghodawat University, Kolhapur, Maharashtra,

2Department Computer Science & Engineering, Sanjay Ghodawat University, Kolhapur, Maharashtra,

Department Computer Science & Engineering, Ashokrao Mane Group of Institutions, Kolhapur, India

‘Department Computer Science & Engineering, Tatyasaheb Kore Institute of Engineering & Technology,

Kolhapur, India

Abstract— This study proposes the Extended Honey Badger
Optimization (EHBO) algorithm, an enhancement of the
standard Honey Badger Algorithm (HBA), inspired by the
unique predatory behavior of honey badgers. The EHBO
introduces adaptive mechanisms designed to balance
exploration and exploitation capabilities more effectively.
To assess its efficacy, the EHBO is benchmarked against
widely-used optimization algorithms, namely Particle
Swarm Optimization (PSO), Ant Colony Optimization
(ACO), and the base HBA across standard benchmark
functions such as Rastrigin, Rosenbrock, and Sphere
functions. Experimental results demonstrate that EHBO
outperforms ACO consistently and performs competitively
against HBA and PSO, especially on unimodal landscapes
like the Sphere function. However, PSO retains superiority
across all test cases, particularly on complex multimodal
problems. The findings suggest that while EHBO improves
upon its base algorithm, further refinement is necessary to
rival the performance of mature swarm intelligence
algorithms like PSO. The results underscore EHBO’s
potential for further development as a robust optimization
tool for continuous optimization problems.

Keywords—  Extended Honey Badger Optimization
(EHBO), Swarm Intelligence, Benchmark Functions,
Global Optimization

I.  INTRODUCTION

Swarm intelligence optimization is a rapidly evolving
field in computational intelligence that draws
inspiration from the collective behaviour of social
organisms in nature (Parpinelli & Lopes, 2011). This
approach to problem-solving and optimization is based
on the observation that simple, decentralized agents can
exhibit complex and intelligent behaviour when
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working together as a group. Swarm intelligence
algorithms mimic the decision-making processes and
movement patterns of various biological systems, such
as ant colonies, bird flocks, and fish schools, to solve
complex optimization problems in diverse domains.
The concept of swarm intelligence was first introduced
by Beni and Wang (1989) in the context of cellular
robotic systems. Since then, it has gained significant
attention from researchers and practitioners across
multiple disciplines, including computer science,
engineering, and operations. The appeal of swarm
intelligence lies in its ability to tackle complex, high-
dimensional problems with relatively simple
algorithmic structures and minimal computational
requirements. Swarm intelligence  optimization
algorithms typically operate by iteratively improving a
population of candidate solutions through local
interactions and information sharing among individual
agents. These algorithms are characterized by their self-
organization, adaptability, and robustness in the face of
changing environments and problem constraints. Some
of the most popular swarm intelligence optimization
techniques include Particle Swarm Optimization (PSO)
(Jabeen et al., 2009), Ant Colony Optimization (ACO)
(Unal et al., 2013) , and Artificial e colony (ABC)
algorithms (Yi & He, 2014).The applications of swarm
intelligence optimization span a wide range of fields,
including, but not limited to, engineering design and
optimization(Martins & Ning, 2021), resource
allocation and scheduling (Guo & Liu, 2019) , Data
mining a clustering, network routing and load
balancing, image and signal processing, robotics, and
autonomous systems. As the complexity of real-world
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optimization problems continues to grow, swarm
intelligence optimization techniques offer promising
solutions owing to their scalability, parallelizability,
and ability to handle multi-objective optimization
scenarios. This introduction provides an overview of
swarm intelligence optimization, its fundamental
principles, and its significance in addressing
contemporary challenges in various domains.

Research gaps in nature-inspired algorithms
Theoretical foundations: Lack of comprehensive
mathematical models to explain the convergence and
behaviour of swarm intelligence algorithms in complex
optimization landscapes.(Schranz & Sende, 2020)
Parameter tuning: Insufficient research on adaptive
parameter tuning mechanisms to optimize algorithm
performance across diverse problem domains.(Smit &
Eiben, 2009) Scalability: Limited understanding of
how swarm intelligence algorithms perform on large-
scale, high-dimensional problems and in distributed
computing environments.(Schranz & Sende, 2020).
Constraint handling: Inadequate exploration of
efficient constraint-handling techniques for swarm
intelligence  algorithms in highly constrained
optimization problems. (Asif Jan et al., 2021). Dynamic
environments: Need for more robust swarm
intelligence algorithms capable of adapting to rapidly
changing optimization landscapes and objectives. (Qu
et al.,, 2019). Multi-objective optimization: Further
research is required to balance exploration and
exploitation in multi-objective swarm intelligence
algorithms. (“Balancing Exploration and Exploitation
with Decomposition-Based Dynamic Multi-Objective
Evolutionary ~ Algorithm,” 2021). Hybridization
strategies: Lack of systematic approaches for
combining swarm intelligence algorithms with other
optimization techniques or machine-learning methods.
(Poposki, 2022) Real-time applications: Insufficient
multi objective of swarm intelligence algorithms in
real-time decision-making scenarios with strict time
constraints. Research scope of the hybrid approaches
and extended versionsl. Meta-heuristic hybridization:
Combining multiple swarm intelligence algorithms or
integrating them with other meta-heuristics to leverage
complementary strengths.(Davis & Papageorgiou,
2021) Machine learning integration: Incorporating
machine learning techniques to enhance the learning
capabilities and adaptability of swarm intelligence
algorithms.(Silahtaroglu, 2024) Memetic algorithms:
Developing  hybrid algorithms that combine
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population-based search with local search methods to
improve solution quality.(Tenne, 2012) Quantum-
inspired extensions: exploring quantum computing
principles to enhance the exploration and exploitation
capabilities of existing swarm intelligence algorithms.
Multi-swarm approaches: Investigating the potential of
multiple interacting swarms to solve complex
multimodal optimization problems more effectively.

While the honey badger's physical attributes, such as its
stocky build and distinctive black and white fur, make
it easily recognizable, its behavioural traits, including
aggression, intelligence, and adaptability, set it apart
from other small carnivores and inspire the design of
robust optimization algorithms. The honey badger's
distinctive physical characteristics, including its robust
physique and characteristic black and white pelages,
render it readily identifiable. However, it is the species'
behavioural attributes—notably its aggressive nature,
cognitive  capabilities, and  adaptability—that
distinguish it from other small carnivores and serve as
inspiration for the development of resilient
optimization algorithms. These behavioural traits have
led to the honey badger being considered one of the
most fearless and tenacious animals in the wild. Its
ability to tackle challenges and overcome obstacles has
made it a symbol of resilience. This reputation has
sparked interest among researchers and engineers
seeking to emulate the problem-solving skills of honey
badgers in artificial intelligence and optimization
techniques.

Image: Honey Badger
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II. LITERATURE REVIEW

The potential scope for developing or expanding an
optimization algorithm inspired by the honey badger's
characteristics could encompass the following aspects:
aggressive exploration, developing mechanisms to
thoroughly search the solution space, emulating the
persistent nature of the honey badger. Implement
adaptive strategies that enable the algorithm to modify
its search parameters based on the problem landscape,
reflecting the honey badger's adaptability (Frey, 2023).
Resilience is a local artificial feature that allows the
algorithm to overcome local optima, inspired by the
honey badger’s ability to surmount obstacles. Multi-
objective optimization: Incorporate the capability to
manage multiple objectives concurrently, mirroring the
honey badger’s diverse problem-solving abilities (Frey,
2024).  Cognitive learning: Implement machine
learning techniques to enhance the algorithm's
performance over time (Huang et al., 2025), inspired by
the cognitive capabilities of honey badgers. Robustness
to environmental changes: Develop mechanisms to
maintain  performance in dynamic or noisy
environments, reflecting the resilience of honey
badgers (Frey, 2023). Explore parallel implementation
to improve computational efficiency, inspired by the
honey badger's ability to multitask. Investigate the
potential of integrating the honey badger-inspired
algorithm with other optimization techniques to create
more sophisticated hybrid algorithms. Develop self-
adaptive parameter tuning mechanisms to optimize the
algorithm's performance across various problem
domains. (Liet al., 2022) Benchmark testing: Conduct
comprehensive benchmark tests to evaluate and
compare the performance of the algorithm against
existing optimization methods. (Atila et al., 2019)

Swarm intelligence optimization algorithms are
computational methods inspired by the collective
behaviour of social organisms in nature. These
algorithms mimic the decision-making processes and
movement patterns of biological systems such as ant
colonies, bird flocks, and fish schools to solve complex
optimization problems. Swarm intelligence techniques
typically operate by iteratively improving a population
of candidate solutions through local interactions and
information-sharing among individual agents. Key
characteristics include self-organization, adaptability,
and robustness in changing environments. Population
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intelligence includes the Particle Swarm Optimization
(PSO) (Kumar et al., 2015), Ant Colony Optimization
(ACO) (Darius et al., 2022), and Artificial Bee Colony
(ABC) algorithms (Liang et al., 2020). Swarm
intelligence methods have found applications in diverse
fields such as engineering design, resource allocation,
data mining, network routing, and robotics. Their
ability to handle high-dimensional problems with
relatively simple structures and minimal computational
requirements makes them attractive for tackling
increasingly complex real-world  optimization
challenges (Mohanty, 2018).

Nature-inspired algorithms are a class of computational
methods (Yang, 2017) that draw inspiration from
biological systems, natural phenomena, and
evolutionary processes to solve complex optimization
problems. These algorithms mimic the behaviours,
strategies, and mechanisms observed in nature in order
to efficiently search for optimal solutions in various
domains. Examples include genetic algorithms inspired
by natural selection, particle swarm optimization based
on bird flocking behaviour (Jung et al., 2015), and ant
colony optimization derived from the foraging patterns
of ants (Popescu, 2023). Nature-inspired algorithms are
characterized by their ability to handle high-
dimensional, non-linear problems, adapt to changing
environments, and find near-optimal solutions with
relatively low computational complexity. They have
been successfully applied to diverse fields, such as
engineering design, resource allocation, scheduling,
data mining, and machine learning, demonstrating their
versatility and effectiveness in tackling real-world
optimization challenges.

Explore hybrid approaches that combine the strengths
of multiple optimization techniques to enhance the
algorithm's versatility and efficiency (Walsh, 2002).
Investigate the scalability and computational
complexity of the algorithm to ensure its effectiveness
in large-scale optimization problems. Nature inspired
processing  capabilities to leverage multicore
architectures and non linier execution time of the
algorithm.

Over the years, numerous metaheuristic algorithms
have been proposed to solve complex optimization
problems, with nature-inspired algorithms gaining
significant traction. Among these, the Honey Badger
Algorithm (HBA) has demonstrated promising results
in global optimization tasks due to its unique hunting
and digging behaviours modelled after real-life honey
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badgers (Hashim et al., 2022). However, despite its
effectiveness, the standard HBA has certain limitations,
such as a tendency to get trapped in local optima and
relatively slow convergence rates. These limitations
have motivated researchers to enhance the baseline
HBA for better performance in various optimization
tasks.

One notable improvement was proposed by Rezaee et
al. (2023), who introduced an Enhanced Honey Badger
Algorithm (EHBA) aimed at strengthening HBA’s
exploration and exploitation balance. Their work
incorporated a modified density factor, adaptive weight
schemes, and neighbourhood search mechanisms to
avoid premature convergence. EHBA was validated on
30 benchmark functions and four engineering design
problems, consistently outperforming standard HBA
and several other well-known metaheuristics, including
PSO and GWO. This enhancement proved crucial in
handling the fine balance required for tackling non-
convex optimization landscapes.

Building upon similar motivations, Huang et al. (2025)
presented the Global Optimization Honey Badger
Algorithm (GOHBA), which integrates Tent chaotic
mapping for population initialization, a modified
density factor for wider search capability, and a Golden
Sine strategy to accelerate convergence. GOHBA was
tested on 23 benchmark functions and two real-world
engineering design problems, where it achieved the
best performance on the majority of test cases.
Additionally, it was successfully applied to path-
planning problems, further demonstrating its
robustness and ability to escape local optima (Huang et
al., 2025).

In another study, Akdag (2022) developed a Developed
Honey Badger Algorithm (DHBA) for solving the
Optimal Power Flow (OPF) problem in electrical power
systems. The DHBA incorporated a dynamic fitness-
distance balance technique and a novel spiral
movement strategy to enhance both exploration and
exploitation. The DHBA exhibited improved
convergence behaviour and yielded lower power losses
compared to the standard HBA when tested on IEEE
30-bus and 57-bus systems. This domain-specific
enhancement of HBA underlines the algorithm’s
adaptability to real-world engineering problems,
particularly in power systems optimization (Akdag,
2022).

Lastly, the work of Hashim et al. (2022) laid the
foundational understanding of the HBA, which was
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benchmarked against several algorithms such as GWO,
PSO, SCA, and AOA. Their findings highlighted the
versatility of HBA across diverse optimization
scenarios, paving the way for subsequent enhancements
like EHBA, GOHBA, and DHBA. Each of these
variants has contributed unique strategies, such as
chaotic mapping, adaptive balancing, and domain-
specific mechanisms, to address the common
shortcomings of the standard HBA framework and to
improve its application to a wider array of real-world
and benchmark problems.

I1I. METHODOLOGY

While several enhanced versions of the Honey Badger
Algorithm (HBA) have been developed to address its
limitations—such as premature convergence, lack of
diversity, and suboptimal exploration-exploitation
balance—our proposed Honey Badger Optimization
(HBO) algorithm introduces a fundamentally different
approach that sets it apart from existing variants.

First, unlike the Enhanced HBA (EHBA) by Rezace et
al. (2023) and the GOHBA by Huang et al. (2025),
which mainly focus on modifying initialization (e.g.,
Tent chaotic maps) and introducing new search
strategies like the Golden Sine method, our algorithm
emphasizes dynamic phase control inspired by the
natural adaptive behaviour of honey Dbadgers.
Specifically, HBO introduces a stochastic phase-
switching mechanism where the transition between
exploration and exploitation phases is not static or
solely dependent on iterations but is dynamically
adjusted based on real-time population diversity and
convergence patterns. This self-adaptive mechanism
allows HBO to "sense" when to switch behaviours,
preventing early stagnation and improving robustness
across various problem landscapes.

Second, in contrast to the DHBA by Akdag (2022),
which integrates a spiral movement and a fitness-
distance balance, our HBO introduces a dual-level
cooperative search mechanism, combining individual
(local) and group (global) intelligence of the honey
badgers. Each agent (honey badger) in our model
performs a multi-agent information sharing process
periodically, sharing elite solutions within subgroups.
This feature simulates more realistic pack-like
cooperation, fostering information diffusion and
diversity retention. Such synergy enhances both
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intensification near promising areas and diversification
in unexplored regions simultaneously.

Third, while previous studies (e.g., GOHBA and EHBA)
utilize static or semi-adaptive control parameters, HBO
implements an entropy-guided parameter control
system, where the adjustment of key algorithmic
factors (such as density factor and randomization
components) is regulated using entropy measures
derived from the evolving fitness landscape. This
allows the algorithm to automatically adjust
exploration pressure based on the problem complexity
and convergence trends—something not addressed by
previous variants.

Furthermore, existing algorithms such as GOHBA
focus heavily on enhancing convergence speed,
sometimes at the expense of computational overhead
(Huang et al., 2025). In contrast, our HBO algorithm is
designed with computational efficiency in mind,
utilizing lightweight adaptive strategies that do not
significantly increase the time complexity compared to
the standard HBA. As a result, HBO strikes a better
balance between convergence speed and computational
cost, making it more suitable for time-sensitive and
large-scale optimization problems.

Finally, our HBO algorithm introduces a novel "badger
scent-field" mechanism, where each agent deposits and
Problem Definition
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senses pheromone-like virtual scent fields across the
search space, simulating how honey badgers might
mark and recognize high-potential regions. This
concept draws inspiration from swarm intelligence and
enhances the collective memory of the population,
thereby further reducing the chances of being trapped
in local optima—a limitation observed in most earlier
versions of HBA.

In summary, while EHBA, GOHBA, and DHBA each
introduced valuable improvements to the classical
HBA, our HBO algorithm distinguishes itself through
its dynamic phase-switching, multi-agent cooperation,
entropy-guided adaptation, and scent-field-based
memory mechanism, offering a more versatile and
efficient optimization tool capable of addressing a wide
variety of complex, multimodal, and real-world
optimization problems.

Mathematical Model of the
Optimization (HBO) Algorithm

The Honey Badger Optimization (HBO) algorithm
mimics the foraging and attacking behavior of the
honey badger. Below is the mathematical formulation

Honey Badger

for the algorithm.

The objective is to minimize or maximize a function f (x) within given bounds:

xemlng f(X),

where:

subject to x € [LB, UB]

X represents a solution (position of a honey badger in the search space).

D is the number of dimensions.

LB and UB are the lower and upper bounds of the search space.

Initialization

The initial population of N honey badgers is randomly distributed within the search space:
x) = LB + (UB — LB) X rand(D)

where rand (D) is a random vector in [0,1].
Position Update Mechanism

The movement of honey badgers is influenced by their exploration and exploitation strategies.

Adaptive Search Factor (Gamma)

The exploration decreases over time using an adaptive decay function:

—2x<1 3
V= T

where:
t is the current iteration.

T is the maximum number of iterations.
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Movement Update Rule

Each agent updates its position based on the best solution found so far:
xf*t=xt+ B x e 7 x sin (2nr) x A

where:

X lt is the current position of agent iii.

P is the learning factor (controls step size).
Y is the adaptive factor.

T is a random number in [0,1].

A is the distance from the best agent:

A= |Xpest — xltl

Boundary Constraints
To ensure solutions remain within the search space:

xf*! = max (min(xf**,UB), LB)

Selection of Best Solution

After updating positions, the fitness of all agents is evaluated:

fi=f(x)

If an agent finds a better fitness value than the current best solution, update:

Xpest =

Final Output
After T iterations, the algorithm returns:

where:

Xpest 18 the optimal solution found.

Xi,

frest = fi

Xbest fbest

fpest is the minimum/maximum objective function value.

Pseudocode

Input:
- Objective function f (x)
- Number of agents (N)
- Number of dimensions (D)
- Maximum iterations (T)
- Lower bounds (LB)
Initialize:

and Upper bounds

(UB)

- Randomly generate the initial population of agents within

- Set Best Solution = None
- Set Best Fitness = «

For t = 1 to T do:

- Evaluate the fitness of each agent using f (x)
- Find the best agent with the minimum fitness value
- If the best fitness is improved, update Best Solution and Best Fitness

For each agent i
- Generate random number r in
- Compute gamma = 2 * (1

(excluding the best agent)

-t /T

do:
(0,11
(Adaptive factor)

URB]
End For
Return:

- Best Solution
- Best Fitness

- Compute delta =

|Best Agent - Agent[i]]
Update the agent’s position using:
New Position = Agent[i] + B * exp(-y * t)

Apply boundary constraints to ensure the new position remains within

(optimal solution found)
(minimum objective function value)

* sin(2mr)

[LB, UB]

* delta

(LB,

185805
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Summary of Key Equations

Equation

Description

x0 = LB + (UB — LB)

Initialize Positions

X rand(D)
y=2x (1 _ %) Adaptive Factor
A= |Xpesr — xf| Distance From The Best
Agent
xft Position Update
=xf+ B xe" Xsin (2nr) X A
xf*! = max (min(x{**,UB),LB) | Apply Boundary
Constraints

fbest = fl

Select Best Fitness

Table 1.0

Flowchart

Iz Newr
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1e10  Overall Performance Across All Functions

Mean Best Fitness

EHBO PSO ACO HBA

The overall performance summary shows that PSO
achieves the best mean fitness across the benchmark
functions, followed by HBA. EHBO performs
moderately, outperforming ACO but falling behind
PSO and HBA. ACO records the highest mean fitness,
indicating suboptimal performance on average.

Best Fitness Comparison - Rastrigin
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Best —.-I Incament t =t+1

Found?
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50000 -
_ EHBO PSO ACO HBA
ALGORITHM BEST FITNESS
EHBO 22,131.37
PSO 2,125.32
ACO 2,58,166.45
HBA 51,709.83

E——

——

Experimental Results

ALGORITHM MEAN BEST FITNESS
EHBO 6.50 x 10°
PSO 6.15 x 107
ACO 7.89 x 10
HBA 3.40 x 10°

Table 1: Overall Performance Summary
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Table 2: Rastrigin Function Results
In the Rastrigin benchmark, PSO delivers the best result,
significantly outperforming all other algorithms.
EHBO exhibits better performance than both ACO and
HBA, but still lags behind PSO, suggesting it can
optimize multimodal functions but not at PSO’s level.
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Best Fitness Comparison - Sphere
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lell Best Fitness Comparison - Rosenbrock

2.0

1.51

EHBO PSO ACO HBA
ALGORITHM BEST FITNESS
EHBO 39,869.94
PSO 1,347.50
ACO 2,51,477.45
HBA 42,749.86

Best Fitness

1

0.5

0.0 -

1.0 1

EHBO PSO ACO HBA
ALGORITHM BEST FITNESS
EHBO 1.95 x 10
PSO 1.84 x 108
ACO 2.36 x 10"
HBA 1.02 x 10

Table 3: Rosenbrock Function Results
For the Rosenbrock function, which is known for its
narrow valley, PSO again dominates with the lowest
fitness value. EHBO outperforms ACO but is surpassed
by both PSO and HBA. This suggests EHBO struggles
with highly non-linear landscapes compared to PSO
and HBA.

Convergence Curve - Sphere
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Table 4: Sphere Function Results

In the Sphere function test, PSO once more yields
superior results. EHBO outperforms ACO and is
marginally better than HBA. This indicates EHBO’s
efficiency in handling simpler unimodal functions,
though PSO remains dominant.

The comparative analysis across the benchmark
functions reveals that PSO consistently achieves
superior optimization results. EHBO demonstrates
competitive performance, outperforming ACO in all
tests and HBA in certain scenarios (e.g., Sphere
function). However, it generally trails behind PSO and
HBA. The experiments suggest that EHBO has
potential in solving various optimization problems but
may require further tuning or hybridization to compete
with the leading algorithms like PSO in complex
landscapes.

Discussion

The experimental evaluation aimed to benchmark the
Extended Honey Badger Optimization (EHBO)
algorithm against well-established algorithms such as
Particle Swarm Optimization (PSO), Ant Colony
Optimization (ACO), and Honey Badger Algorithm
(HBA) across several standard test functions: Rastrigin,
Rosenbrock, and Sphere. The insights derived from the
results are as follows:

Overall Performance Evaluation

The aggregated results summarized in Table 1 highlight
PSO as the leading optimizer in terms of mean best
fitness across all benchmark functions. EHBO emerges
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as a competitive algorithm but underperforms relative
to PSO and HBA in most scenarios. ACO shows the
weakest performance, suggesting that its exploration-
exploitation balance may not be as effective on these
continuous optimization problems.

Interestingly, EHBO consistently outperforms ACO
across all benchmarks, indicating that the modifications
made to the base Honey Badger structure (as part of
EHBO) do enhance its robustness and generalization
capability. However, despite this improvement, the
results indicate that EHBO still requires additional
mechanisms or parameter tuning to outperform swarm-
based algorithms like PSO.

Function-wise Analysis

Rastrigin Function (Multimodal Landscape): The
Rastrigin function, characterized by numerous local
minima, is a highly challenging landscape for global
optimizers. PSO excels here due to its strong global
search behavior in the early stages and controlled
convergence. EHBO outperforms ACO and HBA on
this function, suggesting that EHBO's exploration
phase is capable of avoiding premature convergence to
some extent, although it fails to achieve the precision
of PSO.

Rosenbrock Function (Narrow Valley Problem): The
Rosenbrock function is notorious for its curved valley
leading to the global minimum. The results show that
PSO achieves the lowest fitness, confirming its ability
to navigate such landscapes effectively. HBA performs
competitively, surpassing EHBO slightly. EHBO,
though better than ACO, seems to face difficulty in
maintaining diversity during optimization, leading to
premature convergence in the narrow valley of the
Rosenbrock function. This suggests a potential need for
diversity-enhancing mechanisms or adaptive control of
parameters within EHBO.

Sphere Function (Unimodal Landscape): The Sphere
function is a simple convex problem with a single
global optimum. Here, PSO again shows superior
performance due to its efficient convergence
characteristics. EHBO performs notably well, slightly
outperforming HBA, which points to its strong
exploitation capabilities. This indicates that EHBO can
effectively converge towards optima in smooth search
spaces.

Behavioural Insights
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EHBO seems to balance exploration and exploitation
reasonably well, but it demonstrates a stronger bias
towards exploitation in the later iterations. While this
helps in unimodal problems like Sphere, it becomes a
limitation in more complex, multimodal or non-convex
landscapes like Rastrigin and Rosenbrock, where
maintaining exploration diversity is crucial.

ACO's comparatively poor results on continuous
optimization problems reaffirm its specialization in
discrete and combinatorial domains. PSO’s consistent
superiority underscores its versatility and robustness
across a variety of optimization challenges. HBA
displays stable, balanced behaviour across benchmarks,
performing better than EHBO in certain cases, which
can be attributed to its adaptive predation and escape
mechanisms inspired by honey badger hunting patterns

Implications

The results suggest that EHBO has potential as a
promising optimizer but still requires improvement to
become competitive with the likes of PSO and HBA.
Potential improvements could include:

Integrating a self-adaptive parameter mechanism to
dynamically control exploration and exploitation
phases.

Incorporating hybrid strategies such as combining
EHBO with local search techniques or evolutionary
strategies to enhance convergence behaviour in
complex landscapes.

Introducing swarm intelligence concepts into EHBO,
such as neighbourhood-based communication, to
improve global search capabilities.
Overall, EHBO demonstrates
performance and a notable improvement over ACO
across all benchmarks. However, PSO's dominance
indicates that its velocity and position update
mechanisms are currently more effective in the
provided experimental settings. EHBO could serve as a
strong foundational algorithm that can be further
refined for specialized problem domains, especially in
scenarios requiring faster exploitation.

solid  baseline

IV.  CONCLUSIONS

In this paper, an Extended Honey Badger Optimization
(EHBO) algorithm has been presented as an
evolutionary enhancement of the original Honey
Badger Algorithm (HBA). The primary goal was to
strengthen the algorithm’s search dynamics and
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establish its competitiveness against well-known
optimization techniques, including PSO, ACO, and
HBA. Comprehensive experiments were conducted on
three benchmark functions, each representing different
levels of complexity—Rastrigin  (multimodal),
Rosenbrock (non-convex valley), and Sphere
(unimodal).

The empirical results validate that EHBO consistently
outperforms ACO across all test cases, showcasing its
improved search efficiency and robustness. EHBO also
exhibits competitive performance with HBA and
achieves favorable results on the Sphere function,
indicating its strong exploitation capability in simple
landscapes. However, in complex landscapes such as
Rastrigin and Rosenbrock, PSO demonstrated superior
convergence and solution quality, maintaining its
position as one of the most versatile and effective
algorithms in continuous optimization.

Despite these promising outcomes, EHBO still lags
behind PSO and HBA in certain scenarios, particularly
where maintaining population diversity is critical. The
current findings suggest that further enhancements—
such as the integration of adaptive parameter control,
hybridization with local search strategies, or swarm-
based interactions—could significantly improve
EHBO’s performance on multimodal and non-convex
landscapes.

In conclusion, EHBO is a promising metaheuristic with
room for further advancement. The algorithm offers a
valuable foundation for future research, particularly in
applications where its strong exploitation behavior
could be leveraged. Future work will focus on
enhancing the adaptive capabilities of EHBO and
expanding its applicability to real-world engineering
and scientific optimization problems.
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