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Abstract— This study proposes the Extended Honey Badger 

Optimization (EHBO) algorithm, an enhancement of the 

standard Honey Badger Algorithm (HBA), inspired by the 

unique predatory behavior of honey badgers. The EHBO 

introduces adaptive mechanisms designed to balance 

exploration and exploitation capabilities more effectively. 

To assess its efficacy, the EHBO is benchmarked against 

widely-used optimization algorithms, namely Particle 

Swarm Optimization (PSO), Ant Colony Optimization 

(ACO), and the base HBA across standard benchmark 

functions such as Rastrigin, Rosenbrock, and Sphere 

functions. Experimental results demonstrate that EHBO 

outperforms ACO consistently and performs competitively 

against HBA and PSO, especially on unimodal landscapes 

like the Sphere function. However, PSO retains superiority 

across all test cases, particularly on complex multimodal 

problems. The findings suggest that while EHBO improves 

upon its base algorithm, further refinement is necessary to 

rival the performance of mature swarm intelligence 

algorithms like PSO. The results underscore EHBO’s 

potential for further development as a robust optimization 

tool for continuous optimization problems. 
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I. INTRODUCTION 

 

Swarm intelligence optimization is a rapidly evolving 

field in computational intelligence that draws 

inspiration from the collective behaviour of social 

organisms in nature (Parpinelli & Lopes, 2011). This 

approach to problem-solving and optimization is based 

on the observation that simple, decentralized agents can 

exhibit complex and intelligent behaviour when 

working together as a group. Swarm intelligence 

algorithms mimic the decision-making processes and 

movement patterns of various biological systems, such 

as ant colonies, bird flocks, and fish schools, to solve 

complex optimization problems in diverse domains. 

The concept of swarm intelligence was first introduced 

by Beni and Wang (1989) in the context of cellular 

robotic systems. Since then, it has gained significant 

attention from researchers and practitioners across 

multiple disciplines, including computer science, 

engineering, and operations. The appeal of swarm 

intelligence lies in its ability to tackle complex, high-

dimensional problems with relatively simple 

algorithmic structures and minimal computational 

requirements. Swarm intelligence optimization 

algorithms typically operate by iteratively improving a 

population of candidate solutions through local 

interactions and information sharing among individual 

agents. These algorithms are characterized by their self-

organization, adaptability, and robustness in the face of 

changing environments and problem constraints. Some 

of the most popular swarm intelligence optimization 

techniques include Particle Swarm Optimization (PSO) 

(Jabeen et al., 2009), Ant Colony Optimization (ACO) 

(Ünal et al., 2013) , and Artificial e colony (ABC) 

algorithms (Yi & He, 2014).The applications of swarm 

intelligence optimization span a wide range of fields, 

including, but not limited to, engineering design and 

optimization(Martins & Ning, 2021), resource 

allocation and scheduling (Guo & Liu, 2019) , Data 

mining a clustering,  network routing and load 

balancing, image and signal processing, robotics, and 

autonomous systems. As the complexity of real-world 
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optimization problems continues to grow, swarm 

intelligence optimization techniques offer promising 

solutions owing to their scalability, parallelizability, 

and ability to handle multi-objective optimization 

scenarios. This introduction provides an overview of 

swarm intelligence optimization, its fundamental 

principles, and its significance in addressing 

contemporary challenges in various domains. 

Research gaps in nature-inspired algorithms 

Theoretical foundations: Lack of comprehensive 

mathematical models to explain the convergence and 

behaviour of swarm intelligence algorithms in complex 

optimization landscapes.(Schranz & Sende, 2020) 

Parameter tuning: Insufficient research on adaptive 

parameter tuning mechanisms to optimize algorithm 

performance across diverse problem domains.(Smit & 

Eiben, 2009) Scalability: Limited understanding of 

how swarm intelligence algorithms perform on large-

scale, high-dimensional problems and in distributed 

computing environments.(Schranz & Sende, 2020). 

Constraint handling: Inadequate exploration of 

efficient constraint-handling techniques for swarm 

intelligence algorithms in highly constrained 

optimization problems. (Asif Jan et al., 2021). Dynamic 

environments: Need for more robust swarm 

intelligence algorithms capable of adapting to rapidly 

changing optimization landscapes and objectives. (Qu 

et al., 2019). Multi-objective optimization: Further 

research is required to balance exploration and 

exploitation in multi-objective swarm intelligence 

algorithms. (“Balancing Exploration and Exploitation 

with Decomposition-Based Dynamic Multi-Objective 

Evolutionary Algorithm,” 2021). Hybridization 

strategies: Lack of systematic approaches for 

combining swarm intelligence algorithms with other 

optimization techniques or machine-learning methods. 

(Poposki, 2022) Real-time applications: Insufficient 

multi objective of swarm intelligence algorithms in 

real-time decision-making scenarios with strict time 

constraints. Research scope of the hybrid approaches 

and extended versions1. Meta-heuristic hybridization: 

Combining multiple swarm intelligence algorithms or 

integrating them with other meta-heuristics to leverage 

complementary strengths.(Davis & Papageorgiou, 

2021) Machine learning integration: Incorporating 

machine learning techniques to enhance the learning 

capabilities and adaptability of swarm intelligence 

algorithms.(Silahtaroğlu, 2024) Memetic algorithms: 

Developing hybrid algorithms that combine 

population-based search with local search methods to 

improve solution quality.(Tenne, 2012) Quantum-

inspired extensions: exploring quantum computing 

principles to enhance the exploration and exploitation 

capabilities of existing swarm intelligence algorithms. 

Multi-swarm approaches: Investigating the potential of 

multiple interacting swarms to solve complex 

multimodal optimization problems more effectively. 

While the honey badger's physical attributes, such as its 

stocky build and distinctive black and white fur, make 

it easily recognizable, its behavioural traits, including 

aggression, intelligence, and adaptability, set it apart 

from other small carnivores and inspire the design of 

robust optimization algorithms. The honey badger's 

distinctive physical characteristics, including its robust 

physique and characteristic black and white pelages, 

render it readily identifiable. However, it is the species' 

behavioural attributes—notably its aggressive nature, 

cognitive capabilities, and adaptability—that 

distinguish it from other small carnivores and serve as 

inspiration for the development of resilient 

optimization algorithms. These behavioural traits have 

led to the honey badger being considered one of the 

most fearless and tenacious animals in the wild. Its 

ability to tackle challenges and overcome obstacles has 

made it a symbol of resilience. This reputation has 

sparked interest among researchers and engineers 

seeking to emulate the problem-solving skills of honey 

badgers in artificial intelligence and optimization 

techniques. 

 
Image: Honey Badger 
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II. LITERATURE REVIEW 

 

The potential scope for developing or expanding an 

optimization algorithm inspired by the honey badger's 

characteristics could encompass the following aspects:  

aggressive exploration, developing mechanisms to 

thoroughly search the solution space, emulating the 

persistent nature of the honey badger.   Implement 

adaptive strategies that enable the algorithm to modify 

its search parameters based on the problem landscape, 

reflecting the honey badger's adaptability (Frey, 2023). 

Resilience is a local artificial feature that allows the 

algorithm to overcome local optima, inspired by the 

honey badger’s ability to surmount obstacles. Multi-

objective optimization: Incorporate the capability to 

manage multiple objectives concurrently, mirroring the 

honey badger’s diverse problem-solving abilities (Frey, 

2024).  Cognitive learning: Implement machine 

learning techniques to enhance the algorithm's 

performance over time (Huang et al., 2025), inspired by 

the cognitive capabilities of honey badgers. Robustness 

to environmental changes: Develop mechanisms to 

maintain performance in dynamic or noisy 

environments, reflecting the resilience of honey 

badgers (Frey, 2023).  Explore parallel implementation 

to improve computational efficiency, inspired by the 

honey badger's ability to multitask.  Investigate the 

potential of integrating the honey badger-inspired 

algorithm with other optimization techniques to create 

more sophisticated hybrid algorithms. Develop self-

adaptive parameter tuning mechanisms to optimize the 

algorithm's performance across various problem 

domains. (Li et al., 2022)   Benchmark testing: Conduct 

comprehensive benchmark tests to evaluate and 

compare the performance of the algorithm against 

existing optimization methods. (Atila et al., 2019)  

Swarm intelligence optimization algorithms are 

computational methods inspired by the collective 

behaviour of social organisms in nature. These 

algorithms mimic the decision-making processes and 

movement patterns of biological systems such as ant 

colonies, bird flocks, and fish schools to solve complex 

optimization problems. Swarm intelligence techniques 

typically operate by iteratively improving a population 

of candidate solutions through local interactions and 

information-sharing among individual agents. Key 

characteristics include self-organization, adaptability, 

and robustness in changing environments. Population 

intelligence includes the Particle Swarm Optimization 

(PSO) (Kumar et al., 2015), Ant Colony Optimization 

(ACO) (Darius et al., 2022), and Artificial Bee Colony 

(ABC) algorithms (Liang et al., 2020). Swarm 

intelligence methods have found applications in diverse 

fields such as engineering design, resource allocation, 

data mining, network routing, and robotics. Their 

ability to handle high-dimensional problems with 

relatively simple structures and minimal computational 

requirements makes them attractive for tackling 

increasingly complex real-world optimization 

challenges (Mohanty, 2018). 

Nature-inspired algorithms are a class of computational 

methods (Yang, 2017) that draw inspiration from 

biological systems, natural phenomena, and 

evolutionary processes to solve complex optimization 

problems. These algorithms mimic the behaviours, 

strategies, and mechanisms observed in nature in order 

to efficiently search for optimal solutions in various 

domains. Examples include genetic algorithms inspired 

by natural selection, particle swarm optimization based 

on bird flocking behaviour (Jung et al., 2015), and ant 

colony optimization derived from the foraging patterns 

of ants (Popescu, 2023). Nature-inspired algorithms are 

characterized by their ability to handle high-

dimensional, non-linear problems, adapt to changing 

environments, and find near-optimal solutions with 

relatively low computational complexity. They have 

been successfully applied to diverse fields, such as 

engineering design, resource allocation, scheduling, 

data mining, and machine learning, demonstrating their 

versatility and effectiveness in tackling real-world 

optimization challenges. 

Explore hybrid approaches that combine the strengths 

of multiple optimization techniques to enhance the 

algorithm's versatility and efficiency (Walsh, 2002). 

Investigate the scalability and computational 

complexity of the algorithm to ensure its effectiveness 

in large-scale optimization problems. Nature inspired 

processing capabilities to leverage multicore 

architectures and non linier execution time of the 

algorithm. 

Over the years, numerous metaheuristic algorithms 

have been proposed to solve complex optimization 

problems, with nature-inspired algorithms gaining 

significant traction. Among these, the Honey Badger 

Algorithm (HBA) has demonstrated promising results 

in global optimization tasks due to its unique hunting 

and digging behaviours modelled after real-life honey 
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badgers (Hashim et al., 2022). However, despite its 

effectiveness, the standard HBA has certain limitations, 

such as a tendency to get trapped in local optima and 

relatively slow convergence rates. These limitations 

have motivated researchers to enhance the baseline 

HBA for better performance in various optimization 

tasks. 

One notable improvement was proposed by Rezaee et 

al. (2023), who introduced an Enhanced Honey Badger 

Algorithm (EHBA) aimed at strengthening HBA’s 

exploration and exploitation balance. Their work 

incorporated a modified density factor, adaptive weight 

schemes, and neighbourhood search mechanisms to 

avoid premature convergence. EHBA was validated on 

30 benchmark functions and four engineering design 

problems, consistently outperforming standard HBA 

and several other well-known metaheuristics, including 

PSO and GWO. This enhancement proved crucial in 

handling the fine balance required for tackling non-

convex optimization landscapes. 

Building upon similar motivations, Huang et al. (2025) 

presented the Global Optimization Honey Badger 

Algorithm (GOHBA), which integrates Tent chaotic 

mapping for population initialization, a modified 

density factor for wider search capability, and a Golden 

Sine strategy to accelerate convergence. GOHBA was 

tested on 23 benchmark functions and two real-world 

engineering design problems, where it achieved the 

best performance on the majority of test cases. 

Additionally, it was successfully applied to path-

planning problems, further demonstrating its 

robustness and ability to escape local optima (Huang et 

al., 2025). 

In another study, Akdağ (2022) developed a Developed 

Honey Badger Algorithm (DHBA) for solving the 

Optimal Power Flow (OPF) problem in electrical power 

systems. The DHBA incorporated a dynamic fitness-

distance balance technique and a novel spiral 

movement strategy to enhance both exploration and 

exploitation. The DHBA exhibited improved 

convergence behaviour and yielded lower power losses 

compared to the standard HBA when tested on IEEE 

30-bus and 57-bus systems. This domain-specific 

enhancement of HBA underlines the algorithm’s 

adaptability to real-world engineering problems, 

particularly in power systems optimization (Akdağ, 

2022). 

Lastly, the work of Hashim et al. (2022) laid the 

foundational understanding of the HBA, which was 

benchmarked against several algorithms such as GWO, 

PSO, SCA, and AOA. Their findings highlighted the 

versatility of HBA across diverse optimization 

scenarios, paving the way for subsequent enhancements 

like EHBA, GOHBA, and DHBA. Each of these 

variants has contributed unique strategies, such as 

chaotic mapping, adaptive balancing, and domain-

specific mechanisms, to address the common 

shortcomings of the standard HBA framework and to 

improve its application to a wider array of real-world 

and benchmark problems. 

III. METHODOLOGY 

 

While several enhanced versions of the Honey Badger 

Algorithm (HBA) have been developed to address its 

limitations—such as premature convergence, lack of 

diversity, and suboptimal exploration-exploitation 

balance—our proposed Honey Badger Optimization 

(HBO) algorithm introduces a fundamentally different 

approach that sets it apart from existing variants. 

First, unlike the Enhanced HBA (EHBA) by Rezaee et 

al. (2023) and the GOHBA by Huang et al. (2025), 

which mainly focus on modifying initialization (e.g., 

Tent chaotic maps) and introducing new search 

strategies like the Golden Sine method, our algorithm 

emphasizes dynamic phase control inspired by the 

natural adaptive behaviour of honey badgers. 

Specifically, HBO introduces a stochastic phase-

switching mechanism where the transition between 

exploration and exploitation phases is not static or 

solely dependent on iterations but is dynamically 

adjusted based on real-time population diversity and 

convergence patterns. This self-adaptive mechanism 

allows HBO to "sense" when to switch behaviours, 

preventing early stagnation and improving robustness 

across various problem landscapes. 

Second, in contrast to the DHBA by Akdağ (2022), 

which integrates a spiral movement and a fitness-

distance balance, our HBO introduces a dual-level 

cooperative search mechanism, combining individual 

(local) and group (global) intelligence of the honey 

badgers. Each agent (honey badger) in our model 

performs a multi-agent information sharing process 

periodically, sharing elite solutions within subgroups. 

This feature simulates more realistic pack-like 

cooperation, fostering information diffusion and 

diversity retention. Such synergy enhances both 
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intensification near promising areas and diversification 

in unexplored regions simultaneously. 

Third, while previous studies (e.g., GOHBA and EHBA) 

utilize static or semi-adaptive control parameters, HBO 

implements an entropy-guided parameter control 

system, where the adjustment of key algorithmic 

factors (such as density factor and randomization 

components) is regulated using entropy measures 

derived from the evolving fitness landscape. This 

allows the algorithm to automatically adjust 

exploration pressure based on the problem complexity 

and convergence trends—something not addressed by 

previous variants. 

Furthermore, existing algorithms such as GOHBA 

focus heavily on enhancing convergence speed, 

sometimes at the expense of computational overhead 

(Huang et al., 2025). In contrast, our HBO algorithm is 

designed with computational efficiency in mind, 

utilizing lightweight adaptive strategies that do not 

significantly increase the time complexity compared to 

the standard HBA. As a result, HBO strikes a better 

balance between convergence speed and computational 

cost, making it more suitable for time-sensitive and 

large-scale optimization problems. 

Finally, our HBO algorithm introduces a novel "badger 

scent-field" mechanism, where each agent deposits and 

senses pheromone-like virtual scent fields across the 

search space, simulating how honey badgers might 

mark and recognize high-potential regions. This 

concept draws inspiration from swarm intelligence and 

enhances the collective memory of the population, 

thereby further reducing the chances of being trapped 

in local optima—a limitation observed in most earlier 

versions of HBA. 

In summary, while EHBA, GOHBA, and DHBA each 

introduced valuable improvements to the classical 

HBA, our HBO algorithm distinguishes itself through 

its dynamic phase-switching, multi-agent cooperation, 

entropy-guided adaptation, and scent-field-based 

memory mechanism, offering a more versatile and 

efficient optimization tool capable of addressing a wide 

variety of complex, multimodal, and real-world 

optimization problems. 

 

Mathematical Model of the Honey Badger 

Optimization (HBO) Algorithm 

The Honey Badger Optimization (HBO) algorithm 

mimics the foraging and attacking behavior of the 

honey badger. Below is the mathematical formulation 

for the algorithm. 

Problem Definition 

The objective is to minimize or maximize a function 𝑓(𝑥) within given bounds: 

  𝑓(𝑥), 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 𝜖 [𝐿𝐵, 𝑈𝐵]
𝑥 𝜖 ℝ𝐷

𝑚𝑖𝑛  
where: 

𝑥 represents a solution (position of a honey badger in the search space). 

𝐷 is the number of dimensions. 

𝐿𝐵 and 𝑈𝐵 are the lower and upper bounds of the search space. 

Initialization 

The initial population of 𝑁 honey badgers is randomly distributed within the search space: 

𝑥𝑖
0 = 𝐿𝐵 + (𝑈𝐵 − 𝐿𝐵) × 𝑟𝑎𝑛𝑑(𝐷) 

where 𝑟𝑎𝑛𝑑(𝐷) is a random vector in [0,1]. 

Position Update Mechanism 

The movement of honey badgers is influenced by their exploration and exploitation strategies. 

Adaptive Search Factor (Gamma) 

The exploration decreases over time using an adaptive decay function: 

𝛾 = 2 × (1 −
𝑡

𝑇
) 

where: 

𝑡 is the current iteration. 

𝑇 is the maximum number of iterations. 
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Movement Update Rule 

Each agent updates its position based on the best solution found so far: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛽 × 𝑒−𝛾𝑡 × sin (2𝜋𝑟) × ∆ 

where: 

𝑥𝑖
𝑡
 is the current position of agent iii. 

𝛽 is the learning factor (controls step size). 

𝛾 is the adaptive factor. 

𝑟 is a random number in [0,1]. 

∆ is the distance from the best agent: 

∆= |𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡| 

Boundary Constraints 

To ensure solutions remain within the search space: 

𝑥𝑖
𝑡+1 = max (min(𝑥𝑖

𝑡+1, 𝑈𝐵) , 𝐿𝐵) 

Selection of Best Solution 

After updating positions, the fitness of all agents is evaluated: 

𝑓𝑖 = 𝑓(𝑥𝑖) 

If an agent finds a better fitness value than the current best solution, update: 

𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑖,        𝑓𝑏𝑒𝑠𝑡 = 𝑓𝑖 

Final Output 

After T iterations, the algorithm returns: 

𝑥𝑏𝑒𝑠𝑡, 𝑓𝑏𝑒𝑠𝑡 

where: 

𝑥𝑏𝑒𝑠𝑡 is the optimal solution found. 

𝑓𝑏𝑒𝑠𝑡 is the minimum/maximum objective function value. 

Pseudocode 

Input:  

    - Objective function f(x) 

    - Number of agents (N) 

    - Number of dimensions (D) 

    - Maximum iterations (T) 

    - Lower bounds (LB) and Upper bounds (UB) 

Initialize: 

    - Randomly generate the initial population of agents within [LB, UB] 

    - Set Best_Solution = None 

    - Set Best_Fitness = ∞ 

For t = 1 to T do: 

    - Evaluate the fitness of each agent using f(x) 

    - Find the best agent with the minimum fitness value 

    - If the best fitness is improved, update Best_Solution and Best_Fitness 

    For each agent i (excluding the best agent) do: 

        - Generate random number r in [0,1] 

        - Compute gamma = 2 * (1 - t / T)  (Adaptive factor) 

        - Compute delta = |Best_Agent - Agent[i]| 

        - Update the agent’s position using: 

            New_Position = Agent[i] + β * exp(-γ * t) * sin(2πr) * delta 

        - Apply boundary constraints to ensure the new position remains within [LB, 

UB] 

End For 

Return:  

    - Best_Solution (optimal solution found) 

    - Best_Fitness (minimum objective function value) 
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Summary of Key Equations 

Equation Description 

𝑥𝑖
0 = 𝐿𝐵 + (𝑈𝐵 − 𝐿𝐵)

× 𝑟𝑎𝑛𝑑(𝐷) 

Initialize Positions 

𝛾 = 2 × (1 −
𝑡

𝑇
) 

Adaptive Factor 

∆= |𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡| Distance From The Best 

Agent 

𝑥𝑖
𝑡+1

= 𝑥𝑖
𝑡 + 𝛽 × 𝑒−𝛾𝑡 × sin (2𝜋𝑟) × ∆ 

Position Update 

𝑥𝑖
𝑡+1 = max (min(𝑥𝑖

𝑡+1, 𝑈𝐵) , 𝐿𝐵) Apply Boundary 
Constraints 

       𝑓𝑏𝑒𝑠𝑡 = 𝑓𝑖 Select Best Fitness 

Table 1.0 

 

Flowchart 

 
 

Experimental Results 

ALGORITHM MEAN BEST FITNESS 

EHBO 6.50 × 10⁹ 

PSO 6.15 × 10⁷ 

ACO 7.89 × 10¹⁰ 

HBA 3.40 × 10⁹ 

Table 1: Overall Performance Summary 

 
The overall performance summary shows that PSO 

achieves the best mean fitness across the benchmark 

functions, followed by HBA. EHBO performs 

moderately, outperforming ACO but falling behind 

PSO and HBA. ACO records the highest mean fitness, 

indicating suboptimal performance on average. 

 
 

ALGORITHM BEST FITNESS 

EHBO 22,131.37 

PSO 2,125.32 

ACO 2,58,166.45 

HBA 51,709.83 

Table 2: Rastrigin Function Results 

In the Rastrigin benchmark, PSO delivers the best result, 

significantly outperforming all other algorithms. 

EHBO exhibits better performance than both ACO and 

HBA, but still lags behind PSO, suggesting it can 

optimize multimodal functions but not at PSO’s level. 
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ALGORITHM BEST FITNESS 

EHBO 1.95 × 10¹⁰ 

PSO 1.84 × 10⁸ 

ACO 2.36 × 10¹¹ 

HBA 1.02 × 10¹⁰ 

Table 3: Rosenbrock Function Results 

For the Rosenbrock function, which is known for its 

narrow valley, PSO again dominates with the lowest 

fitness value. EHBO outperforms ACO but is surpassed 

by both PSO and HBA. This suggests EHBO struggles 

with highly non-linear landscapes compared to PSO 

and HBA. 

 

 
ALGORITHM BEST FITNESS 

EHBO 39,869.94 

PSO 1,347.50 

ACO 2,51,477.45 

HBA 42,749.86 

Table 4: Sphere Function Results 

In the Sphere function test, PSO once more yields 

superior results. EHBO outperforms ACO and is 

marginally better than HBA. This indicates EHBO’s 

efficiency in handling simpler unimodal functions, 

though PSO remains dominant. 

The comparative analysis across the benchmark 

functions reveals that PSO consistently achieves 

superior optimization results. EHBO demonstrates 

competitive performance, outperforming ACO in all 

tests and HBA in certain scenarios (e.g., Sphere 

function). However, it generally trails behind PSO and 

HBA. The experiments suggest that EHBO has 

potential in solving various optimization problems but 

may require further tuning or hybridization to compete 

with the leading algorithms like PSO in complex 

landscapes. 

 

Discussion 

The experimental evaluation aimed to benchmark the 

Extended Honey Badger Optimization (EHBO) 

algorithm against well-established algorithms such as 

Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), and Honey Badger Algorithm 

(HBA) across several standard test functions: Rastrigin, 

Rosenbrock, and Sphere. The insights derived from the 

results are as follows: 

 

Overall Performance Evaluation 

The aggregated results summarized in Table 1 highlight 

PSO as the leading optimizer in terms of mean best 

fitness across all benchmark functions. EHBO emerges 
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as a competitive algorithm but underperforms relative 

to PSO and HBA in most scenarios. ACO shows the 

weakest performance, suggesting that its exploration-

exploitation balance may not be as effective on these 

continuous optimization problems. 

Interestingly, EHBO consistently outperforms ACO 

across all benchmarks, indicating that the modifications 

made to the base Honey Badger structure (as part of 

EHBO) do enhance its robustness and generalization 

capability. However, despite this improvement, the 

results indicate that EHBO still requires additional 

mechanisms or parameter tuning to outperform swarm-

based algorithms like PSO. 

 

Function-wise Analysis 

Rastrigin Function (Multimodal Landscape): The 

Rastrigin function, characterized by numerous local 

minima, is a highly challenging landscape for global 

optimizers. PSO excels here due to its strong global 

search behavior in the early stages and controlled 

convergence. EHBO outperforms ACO and HBA on 

this function, suggesting that EHBO's exploration 

phase is capable of avoiding premature convergence to 

some extent, although it fails to achieve the precision 

of PSO. 

Rosenbrock Function (Narrow Valley Problem): The 

Rosenbrock function is notorious for its curved valley 

leading to the global minimum. The results show that 

PSO achieves the lowest fitness, confirming its ability 

to navigate such landscapes effectively. HBA performs 

competitively, surpassing EHBO slightly. EHBO, 

though better than ACO, seems to face difficulty in 

maintaining diversity during optimization, leading to 

premature convergence in the narrow valley of the 

Rosenbrock function. This suggests a potential need for 

diversity-enhancing mechanisms or adaptive control of 

parameters within EHBO. 

Sphere Function (Unimodal Landscape): The Sphere 

function is a simple convex problem with a single 

global optimum. Here, PSO again shows superior 

performance due to its efficient convergence 

characteristics. EHBO performs notably well, slightly 

outperforming HBA, which points to its strong 

exploitation capabilities. This indicates that EHBO can 

effectively converge towards optima in smooth search 

spaces. 

 

Behavioural Insights 

EHBO seems to balance exploration and exploitation 

reasonably well, but it demonstrates a stronger bias 

towards exploitation in the later iterations. While this 

helps in unimodal problems like Sphere, it becomes a 

limitation in more complex, multimodal or non-convex 

landscapes like Rastrigin and Rosenbrock, where 

maintaining exploration diversity is crucial. 

ACO's comparatively poor results on continuous 

optimization problems reaffirm its specialization in 

discrete and combinatorial domains. PSO’s consistent 

superiority underscores its versatility and robustness 

across a variety of optimization challenges. HBA 

displays stable, balanced behaviour across benchmarks, 

performing better than EHBO in certain cases, which 

can be attributed to its adaptive predation and escape 

mechanisms inspired by honey badger hunting patterns 

 

Implications 

The results suggest that EHBO has potential as a 

promising optimizer but still requires improvement to 

become competitive with the likes of PSO and HBA. 

Potential improvements could include: 

Integrating a self-adaptive parameter mechanism to 

dynamically control exploration and exploitation 

phases. 

Incorporating hybrid strategies such as combining 

EHBO with local search techniques or evolutionary 

strategies to enhance convergence behaviour in 

complex landscapes. 

Introducing swarm intelligence concepts into EHBO, 

such as neighbourhood-based communication, to 

improve global search capabilities. 

Overall, EHBO demonstrates solid baseline 

performance and a notable improvement over ACO 

across all benchmarks. However, PSO's dominance 

indicates that its velocity and position update 

mechanisms are currently more effective in the 

provided experimental settings. EHBO could serve as a 

strong foundational algorithm that can be further 

refined for specialized problem domains, especially in 

scenarios requiring faster exploitation. 

 

IV. CONCLUSIONS 

 

In this paper, an Extended Honey Badger Optimization 

(EHBO) algorithm has been presented as an 

evolutionary enhancement of the original Honey 

Badger Algorithm (HBA). The primary goal was to 

strengthen the algorithm’s search dynamics and 
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establish its competitiveness against well-known 

optimization techniques, including PSO, ACO, and 

HBA. Comprehensive experiments were conducted on 

three benchmark functions, each representing different 

levels of complexity—Rastrigin (multimodal), 

Rosenbrock (non-convex valley), and Sphere 

(unimodal). 

The empirical results validate that EHBO consistently 

outperforms ACO across all test cases, showcasing its 

improved search efficiency and robustness. EHBO also 

exhibits competitive performance with HBA and 

achieves favorable results on the Sphere function, 

indicating its strong exploitation capability in simple 

landscapes. However, in complex landscapes such as 

Rastrigin and Rosenbrock, PSO demonstrated superior 

convergence and solution quality, maintaining its 

position as one of the most versatile and effective 

algorithms in continuous optimization. 

Despite these promising outcomes, EHBO still lags 

behind PSO and HBA in certain scenarios, particularly 

where maintaining population diversity is critical. The 

current findings suggest that further enhancements—

such as the integration of adaptive parameter control, 

hybridization with local search strategies, or swarm-

based interactions—could significantly improve 

EHBO’s performance on multimodal and non-convex 

landscapes. 

In conclusion, EHBO is a promising metaheuristic with 

room for further advancement. The algorithm offers a 

valuable foundation for future research, particularly in 

applications where its strong exploitation behavior 

could be leveraged. Future work will focus on 

enhancing the adaptive capabilities of EHBO and 

expanding its applicability to real-world engineering 

and scientific optimization problems. 
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