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Abstract—Air pollution has become one of the most
pressing environmental concerns, making accurate Air
Quality Index (AQI) prediction vital for public health
and policymaking. In this work, we propose a hybrid
forecasting framework that combines deep learning and
boosting-based machine learning for AQI prediction.
Historical datasets from the Central Pollution Control
Board (CPCB) of India, covering 2021-2024, were used.
These datasets include key pollutants such as PM2.5,
PM10, NOz, SOz, and CO, along with meteorological
parameters like temperature, humidity, wind speed, and
rainfall. After data cleaning, interpolation of missing
values, and scaling, four predictive models were
developed and compared: Random Forest, Temporal
Fusion Transformer (TFT), LightGBM, and a hybrid
TFT + LightGBM model. While TFT effectively captured
temporal dependencies and LightGBM performed well
on structured data, the hybrid model achieved the
highest accuracy across MAE, RMSE, MAPE, and R?
metrics. The proposed approach demonstrates the
strength of hybrid architectures in providing more
reliable AQI forecasts.

Index Terms—Air Quality Index (AQI), Deep Learning,
Environmental Data Analysis, Hybrid Model, Light
Gradient Boosting Machine (LightGBM), Machine
Learning, Pollution Prediction, Public Health, Temporal
Fusion Transformer (TFT), Time-Series Forecasting.

I. INTRODUCTION

Air pollution has become one of the most pressing
global concerns because of its severe consequences on
human  health, ecosystems, and economic
development. The Air Quality Index (AQI) is widely
used as a benchmark to describe air quality by
combining multiple pollutant concentrations into a
single representative value. Reliable AQI prediction is
crucial, as it can help authorities implement
precautionary policies, guide citizens in reducing
exposure, and support sustainable urban planning. Yet,
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forecasting AQI remains highly challenging, since
pollution levels are influenced not only by chemical
pollutants but also by meteorological conditions such
as wind, rainfall, humidity, temperature, and solar
radiation. These factors are nonlinear, highly dynamic,
and often dependent on seasonal cycles, which makes
traditional statistical models insufficient for precise
forecasting. To overcome these challenges, data-
driven approaches have received significant attention
in recent years. Machine learning methods,
particularly ensemble-based models, are capable of
handling large, structured datasets and extracting
meaningful patterns. Similarly, Deep learning models
designed for sequential data are effective in capturing
temporal variations and long-range dependencies.
Among these, the Temporal Fusion Transformer (TFT)
has shown notable promise for time-series
applications, as it integrates attention mechanisms and
gating layers to focus on relevant features across time.
At the same time, boosting algorithms such as the
Light Gradient Boosting Machine (LightGBM) have
proven to be efficient in managing complex structured
data while maintaining strong predictive performance.
Despite their advantages, each approach has
limitations when applied independently deep learning
may lack interpretability, while boosting methods
cannot fully capture long-term dependencies.

This research introduces a hybrid framework that
unites the strengths of both approaches. Using
historical datasets from the Central Pollution Control
Board (CPCB) of India covering 2021-2024, which
include pollutant measurements such as PM2.5,
PM10, NO:, SO, CO, and Ozone, alongside
meteorological indicators, we design and compare
four predictive models: Random Forest, TFT,
LightGBM, and a novel hybrid TFT + LightGBM
architecture. The hybrid model integrates temporal
representations from TFT with the predictive
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efficiency of LightGBM, resulting in more accurate
and reliable AQI forecasts. Experimental evaluation
demonstrates that this model surpasses both classical
machine learning and standalone deep learning
approaches across performance metrics including
Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), Mean Absolute Percentage Error
(MAPE), and R The outcomes of this work confirm
that combining temporal deep learning with boosting-
based machine learning leads to significant
improvements in AQI forecasting. Beyond its
technical contribution, the proposed framework offers
practical value by enabling more informed decision-
making for environmental management, urban
planning, and public health protection. Future
developments of this study may incorporate real-time
data streams from IoT-enabled sensors, satellite
imagery, and explainable Al techniques to further
enhance performance and transparency.
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Fig.1: Year Wise Time Series of Major Pollutants
(2021-2024)

II. LITERATURE REVIEW

Forecasting the Air Quality Index (AQI) has
traditionally been approached using statistical models
such as ARIMA and seasonal decomposition, which
are effective for short-term trends but limited in
capturing nonlinear dependencies and external
influences. To overcome these shortcomings, classical
machine learning methods such as Random Forest,
Support Vector Regression, and Gradient Boosting
have been applied. These models can manage high-
dimensional pollutant and meteorological data, yet
they typically rely on handcrafted temporal features
and fail to fully capture long-range dependencies.

With the rise of deep learning, models such as LSTMs,
GRUs, and CNNs have shown strong capabilities in
modeling temporal sequences, while attention-based
architectures like the Temporal Fusion Transformer
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(TFT) further enhance multi-horizon forecasting by
dynamically selecting relevant variables. Despite these
strengths, deep learning approaches are often data-
intensive and less interpretable compared to tree-based
methods.

To balance temporal learning with tabular robustness,
recent studies have explored hybrid models that
combine deep sequence encoders with ensemble
learners. However, many existing hybrids remain
limited either by weak integration of temporal
embeddings or by interpretability challenges.
Addressing this gap, our study introduces a hybrid
TFT + LightGBM framework, where TFT captures
complex temporal dynamics and LightGBM leverages
these embeddings alongside pollutant and
meteorological features, providing both high
predictive accuracy and improved interpretability.

III. METHODOLOGY

The following section outlines the dataset,
preprocessing procedures, and modeling approaches
employed in this research.
3.1. Dataset Description
We utilized four years of data (2021-2024) from the
Central Pollution Control Board (CPCB), which
provides hourly measurements of pollutants and
environmental factors. The pollutants included PM2.5,
PM10, NO, NO., NOy, NHs, SO, CO, Ozone,
Benzene, Toluene, and Xylene. Climatic variables
such as temperature, humidity, wind characteristics,
rainfall, solar exposure, and pressure were integrated
into the dataset. These features were chosen because
they influence pollutant concentration, dispersion, and
chemical interactions. The primary prediction target
was PM2.5, a critical pollutant that significantly
contributes to the AQI and directly affects human
health.

3.2. Data Preprocessing

Several steps were performed to prepare the dataset for

modeling:

e Data Cleaning: Erroneous values, unit
mismatches, and formatting inconsistencies were
corrected.

e Handling Missing Records: Missing entries were
filled using time-series interpolation, preserving
temporal continuity.
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e Feature Construction: Derived features such as
lagged variables and moving averages were
generated to capture temporal dependencies.

e Normalization: Outliers were managed, and
continuous values were scaled with a robust
normalization technique. The dataset was
partitioned in a time-ordered manner, with 70%
allocated for training, 15% for validation, and the
remaining 15% for testing, ensuring that future
data did not leak into earlier stages.

3.3. Models Implemented:

Four approaches were evaluated:

3.3.1. Random Forest:

In this study, Random Forest was used as a baseline

machine learning model for AQI prediction. It

constructed multiple independent decision trees on
different subsets of features and samples and then
aggregated their outputs. Within the project, it
captured pollutant interactions such as the combined
influence of PM10, NO2, and SO. on PM2.5 levels.

Although it provided a reasonably good approximation

(R2 = 0.69), its inability to exploit temporal

dependencies in the sequential CPCB data limited its

predictive power compared to deep learning
approaches.

Fig.2: Actual vs Predicted PM2.5(Random Forest)

3.3.2. LightGBM:

LightGBM was applied to handle the high-
dimensional and heterogeneous structure of pollutant
and meteorological data. It built decision trees in a
leaf-wise manner, which allowed it to efficiently
identify non-linear relationships among features such
as temperature, wind speed, and humidity alongside
pollutants. However, in this project, LightGBM
struggled to learn temporal patterns, resulting in lower
accuracy (R? = 0.63) and higher error values than
Random Forest and TFT. Its role was primarily to
benchmark boosting methods against sequential deep
learning models.
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LightGBM: Prediction Error Distribution
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Fig.3: LightGBM Prediction Error
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Fig.4: Actual vs Predicted PM 2.5(LightGBM)

3.3.3. Temporal Fusion Transformer (TFT):

The Temporal Fusion Transformer was the core deep

learning model implemented in this project. It was

employed to extract temporal patterns from the hourly

CPCB dataset (2021-2024). TFT performed several

key tasks:

e Feature selection: It automatically prioritized
influential ~ variables (e.g., PMI10, NOs.,
temperature, humidity).

e Temporal modeling: It captured both short-term
fluctuations (daily cycles of pollutants) and long-
term seasonal trends.

e Context integration: It combined pollutant data
with meteorological factors to provide richer
predictive representations.

By doing this, TFT achieved high accuracy (R?=0.96)

and significantly outperformed traditional machine
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learning models. It was particularly effective in
modeling dependencies where pollutant
concentrations were influenced by simultaneous
weather changes.

Actual vs Predicted PM2.5 - TFT Model
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Fig.5: Actual vs Predicted PM2.5(TFT Model)

3.8. Hybrid TFT + LightGBM (Proposed Model):
The hybrid model was the novel contribution of this
project. In this design:

1. The TFT model first learned temporal embeddings
that captured dynamic pollutant—-meteorology
interactions over time.

2. These learned representations were then combined
with exogenous features and passed to LightGBM,
which acted as the final predictor.

This two-stage approach allowed the system to exploit
TFT’s strength in temporal sequence learning and
LightGBM’s efficiency in tabular feature-based
prediction. As a result, the hybrid achieved near-
perfect accuracy (R* = 0.98, MAPE = 5.96%),
demonstrating the synergy between deep sequential
modeling and gradient boosting.
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Fig.6: Actual vs Predicted PM 2.5(TFT +
LightGBM)
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Fig.7: Model Development

3.4. Evaluation Metrics:

The models were assessed using multiple performance
indicators:

e  Mean Absolute Error (MAE):

Represents the average of the absolute differences
between predicted and actual TEC values, reflecting
overall prediction error magnitude. A reduced MAE
indicates improved model accuracy.

n
1
MAE=—Zlyi — il
n
i=1

e  Mean Squared Error (MSE):

Emphasizes larger errors by squaring the differences,
which is useful for penalizing large deviations in TEC
predictions.

1 n
MSE = HZ(yi — $i)?
i=1

e Root Mean Squared Error (RMSE):
The square root of MSE provides an interpretable

measure of average prediction error in the same unit as
TEC.

RMSE =

e R?Score (Coefficient of Determination):
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Indicates how well the model explains the variance in
the observed data. A higher R? denotes a better model
fit.
_ Yi, (i —gi)?

s (yi —¥)?
e  Mean Absolute Percentage Error (MAPE):
Expresses prediction accuracy as a percentage, helpful
for understanding relative errors across varying TEC.

MAPE = 100/n2|(yi -y /yil

RZ=1

IV. RESULTS AND DISCUSSION

4.1. Model Performance:

e The predictive performance of the four models
was evaluated using MAE, RMSE, R? and
MAPE. The results are presented in Table 1.

Table.1: Model Evaluation Results

MODEL MAE | RSME R? MAPE
Random 6.464 | 8.327 | 0.696 | 19.55

Forest 0 5 8 %
Temporal 3.015 | 4.431 | 0967 | 7.85%
Fusion 4 4 9

Transforme

r
LightGBM | 7.096 | 9.150 | 0.633 | 22.64

0 9 9 %
Hybrid 2.197 |3.406 | 0.980 | 5.96%
(TFT+ 0 1 9

LightGBM)

4.2. Comparative Analysis

e Random Forest achieved moderate accuracy (R?=
0.69), indicating its ability to capture pollutant
trends but its limitations in modeling temporal
dependencies.

o LightGBM performed slightly worse than
Random Forest (R?=0.63), showing that although
gradient boosting can handle complex feature
interactions, it struggles with sequential
dependencies in air quality data.

e  Temporal Fusion Transformer (TFT) substantially
improved performance, reaching R? = 0.96, as it
effectively learned both short- and long-term
temporal patterns while integrating pollutant and
meteorological factors.
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e  Hybrid TFT + LightGBM model achieved the best
performance with R? = 0.98 This demonstrates the
advantage of combining TFT’s temporal
representation learning with LightGBM’s strong
predictive power on structured tabular data.

4.3. Key Insights

e The hybrid approach consistently outperformed
standalone models, validating its role as a more
generalized solution for AQI forecasting.

e The significant performance gap between
traditional ML models (RF, LightGBM) and deep
learning methods (TFT, Hybrid) highlights the
importance of sequence modeling in air quality
prediction.

e The very low prediction error of the hybrid model
suggests its strong potential for real-world
deployment in monitoring systems, where high
accuracy is critical for public health applications.

V. CONCLUSION

This study presented a comprehensive approach to
forecasting the Air Quality Index (AQI) using machine
learning and deep learning techniques. Four models—
Random Forest, LightGBM, Temporal Fusion
Transformer (TFT), and a proposed hybrid TFT +
LightGBM—were developed and evaluated on CPCB
datasets spanning 2021-2024. The experimental
results demonstrated that traditional models like
Random Forest and LightGBM could capture
pollutant—AQI relationships but were limited in
handling temporal dependencies. In contrast, TFT
effectively modeled both short- and long-term
temporal trends, achieving high predictive accuracy.
The major contribution of this study was the design of
a hybrid TFT + LightGBM model, which combined
the temporal representation power of TFT with the
structured learning efficiency of LightGBM. This
integration achieved accuracy (R? = 0.98, MAE =
2.1970, RMSE = 3.4061, MAPE = 5.96%), far
surpassing the standalone models. These results
demonstrate that hybrid frameworks are highly
effective for AQI forecasting, offering a more reliable
solution than using deep learning or boosting models
individually.

In summary, this research confirms that integrating
temporal deep learning with boosting-based machine
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learning provides a powerful pathway for advancing
air quality forecasting. The hybrid model developed in
this study stands out as both technically innovative and
practically impactful, paving the way for more reliable
environmental decision-support systems.

VI. FUTURE WORK

Although the hybrid TFT + LightGBM model
delivered excellent performance, several avenues
remain for further research. The framework can be
extended to real-time forecasting by integrating loT-
based sensor streams, meteorological forecasts, and
satellite imagery, thereby improving its practical
utility. Evaluating the model across diverse regions
and climatic zones will strengthen its generalizability.
In addition, incorporating explainable AI methods
such as SHAP values and attention visualizations will
enhance transparency and interpretability.

From an algorithmic perspective, future studies may
investigate transformer variants such as Informer and
FEDformer for long-sequence modeling, as well as
advanced boosting methods like CatBoost or XGBoost
to complement LightGBM. Ensemble learning and
meta-learning strategies that dynamically integrate
multiple predictors could further refine accuracy.
Collectively, these enhancements would enable the
framework to evolve into a deployable decision-
support system for smart city air quality management
and public health protection.
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