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Abstract—Air pollution has become one of the most 

pressing environmental concerns, making accurate Air 

Quality Index (AQI) prediction vital for public health 

and policymaking. In this work, we propose a hybrid 

forecasting framework that combines deep learning and 

boosting-based machine learning for AQI prediction. 

Historical datasets from the Central Pollution Control 

Board (CPCB) of India, covering 2021–2024, were used. 

These datasets include key pollutants such as PM2.5, 

PM10, NO₂, SO₂, and CO, along with meteorological 

parameters like temperature, humidity, wind speed, and 

rainfall. After data cleaning, interpolation of missing 

values, and scaling, four predictive models were 

developed and compared: Random Forest, Temporal 

Fusion Transformer (TFT), LightGBM, and a hybrid 

TFT + LightGBM model. While TFT effectively captured 

temporal dependencies and LightGBM performed well 

on structured data, the hybrid model achieved the 

highest accuracy across MAE, RMSE, MAPE, and R² 

metrics. The proposed approach demonstrates the 

strength of hybrid architectures in providing more 

reliable AQI forecasts. 

 

Index Terms—Air Quality Index (AQI), Deep Learning, 

Environmental Data Analysis, Hybrid Model, Light 

Gradient Boosting Machine (LightGBM), Machine 

Learning, Pollution Prediction, Public Health, Temporal 

Fusion Transformer (TFT), Time-Series Forecasting. 

 

I. INTRODUCTION 

 

Air pollution has become one of the most pressing 

global concerns because of its severe consequences on 

human health, ecosystems, and economic 

development. The Air Quality Index (AQI) is widely 

used as a benchmark to describe air quality by 

combining multiple pollutant concentrations into a 

single representative value. Reliable AQI prediction is 

crucial, as it can help authorities implement 

precautionary policies, guide citizens in reducing 

exposure, and support sustainable urban planning. Yet, 

forecasting AQI remains highly challenging, since 

pollution levels are influenced not only by chemical 

pollutants but also by meteorological conditions such 

as wind, rainfall, humidity, temperature, and solar 

radiation. These factors are nonlinear, highly dynamic, 

and often dependent on seasonal cycles, which makes 

traditional statistical models insufficient for precise 

forecasting. To overcome these challenges, data-

driven approaches have received significant attention 

in recent years. Machine learning methods, 

particularly ensemble-based models, are capable of 

handling large, structured datasets and extracting 

meaningful patterns. Similarly, Deep learning models 

designed for sequential data are effective in capturing 

temporal variations and long-range dependencies. 

Among these, the Temporal Fusion Transformer (TFT) 

has shown notable promise for time-series 

applications, as it integrates attention mechanisms and 

gating layers to focus on relevant features across time. 

At the same time, boosting algorithms such as the 

Light Gradient Boosting Machine (LightGBM) have 

proven to be efficient in managing complex structured 

data while maintaining strong predictive performance. 

Despite their advantages, each approach has 

limitations when applied independently deep learning 

may lack interpretability, while boosting methods 

cannot fully capture long-term dependencies. 

This research introduces a hybrid framework that 

unites the strengths of both approaches. Using 

historical datasets from the Central Pollution Control 

Board (CPCB) of India covering 2021–2024, which 

include pollutant measurements such as PM2.5, 

PM10, NO₂, SO₂, CO, and Ozone, alongside 

meteorological indicators, we design and compare 

four predictive models: Random Forest, TFT, 

LightGBM, and a novel hybrid TFT + LightGBM 

architecture. The hybrid model integrates temporal 

representations from TFT with the predictive 
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efficiency of LightGBM, resulting in more accurate 

and reliable AQI forecasts. Experimental evaluation 

demonstrates that this model surpasses both classical 

machine learning and standalone deep learning 

approaches across performance metrics including 

Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), Mean Absolute Percentage Error 

(MAPE), and R². The outcomes of this work confirm 

that combining temporal deep learning with boosting-

based machine learning leads to significant 

improvements in AQI forecasting. Beyond its 

technical contribution, the proposed framework offers 

practical value by enabling more informed decision-

making for environmental management, urban 

planning, and public health protection. Future 

developments of this study may incorporate real-time 

data streams from IoT-enabled sensors, satellite 

imagery, and explainable AI techniques to further 

enhance performance and transparency. 

Fig.1: Year Wise Time Series of Major Pollutants 

(2021-2024) 

 

II. LITERATURE REVIEW 

 

Forecasting the Air Quality Index (AQI) has 

traditionally been approached using statistical models 

such as ARIMA and seasonal decomposition, which 

are effective for short-term trends but limited in 

capturing nonlinear dependencies and external 

influences. To overcome these shortcomings, classical 

machine learning methods such as Random Forest, 

Support Vector Regression, and Gradient Boosting 

have been applied. These models can manage high-

dimensional pollutant and meteorological data, yet 

they typically rely on handcrafted temporal features 

and fail to fully capture long-range dependencies. 

With the rise of deep learning, models such as LSTMs, 

GRUs, and CNNs have shown strong capabilities in 

modeling temporal sequences, while attention-based 

architectures like the Temporal Fusion Transformer 

(TFT) further enhance multi-horizon forecasting by 

dynamically selecting relevant variables. Despite these 

strengths, deep learning approaches are often data-

intensive and less interpretable compared to tree-based 

methods. 

To balance temporal learning with tabular robustness, 

recent studies have explored hybrid models that 

combine deep sequence encoders with ensemble 

learners. However, many existing hybrids remain 

limited either by weak integration of temporal 

embeddings or by interpretability challenges. 

Addressing this gap, our study introduces a hybrid 

TFT + LightGBM framework, where TFT captures 

complex temporal dynamics and LightGBM leverages 

these embeddings alongside pollutant and 

meteorological features, providing both high 

predictive accuracy and improved interpretability. 

 

III. METHODOLOGY 

 

The following section outlines the dataset, 

preprocessing procedures, and modeling approaches 

employed in this research. 

3.1. Dataset Description 

We utilized four years of data (2021–2024) from the 

Central Pollution Control Board (CPCB), which 

provides hourly measurements of pollutants and 

environmental factors. The pollutants included PM2.5, 

PM10, NO, NO₂, NOₓ, NH₃, SO₂, CO, Ozone, 

Benzene, Toluene, and Xylene. Climatic variables 

such as temperature, humidity, wind characteristics, 

rainfall, solar exposure, and pressure were integrated 

into the dataset. These features were chosen because 

they influence pollutant concentration, dispersion, and 

chemical interactions. The primary prediction target 

was PM2.5, a critical pollutant that significantly 

contributes to the AQI and directly affects human 

health. 

3.2. Data Preprocessing 

Several steps were performed to prepare the dataset for 

modeling: 

• Data Cleaning: Erroneous values, unit 

mismatches, and formatting inconsistencies were 

corrected. 

• Handling Missing Records: Missing entries were 

filled using time-series interpolation, preserving 

temporal continuity. 
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• Feature Construction: Derived features such as 

lagged variables and moving averages were 

generated to capture temporal dependencies. 

• Normalization: Outliers were managed, and 

continuous values were scaled with a robust 

normalization technique. The dataset was 

partitioned in a time-ordered manner, with 70% 

allocated for training, 15% for validation, and the 

remaining 15% for testing, ensuring that future 

data did not leak into earlier stages. 

3.3. Models Implemented: 

Four approaches were evaluated: 

3.3.1. Random Forest: 

In this study, Random Forest was used as a baseline 

machine learning model for AQI prediction. It 

constructed multiple independent decision trees on 

different subsets of features and samples and then 

aggregated their outputs. Within the project, it 

captured pollutant interactions such as the combined 

influence of PM10, NO₂, and SO₂ on PM2.5 levels. 

Although it provided a reasonably good approximation 

(R² = 0.69), its inability to exploit temporal 

dependencies in the sequential CPCB data limited its 

predictive power compared to deep learning 

approaches. 

 
Fig.2: Actual vs Predicted PM2.5(Random Forest) 

 

3.3.2. LightGBM: 

LightGBM was applied to handle the high-

dimensional and heterogeneous structure of pollutant 

and meteorological data. It built decision trees in a 

leaf-wise manner, which allowed it to efficiently 

identify non-linear relationships among features such 

as temperature, wind speed, and humidity alongside 

pollutants. However, in this project, LightGBM 

struggled to learn temporal patterns, resulting in lower 

accuracy (R² = 0.63) and higher error values than 

Random Forest and TFT. Its role was primarily to 

benchmark boosting methods against sequential deep 

learning models.        

 
Fig.3: LightGBM Prediction Error 

 

 
Fig.4: Actual vs Predicted PM 2.5(LightGBM) 

 

3.3.3. Temporal Fusion Transformer (TFT): 

The Temporal Fusion Transformer was the core deep 

learning model implemented in this project. It was 

employed to extract temporal patterns from the hourly 

CPCB dataset (2021–2024). TFT performed several 

key tasks: 

• Feature selection: It automatically prioritized 

influential variables (e.g., PM10, NO₂, 

temperature, humidity). 

• Temporal modeling: It captured both short-term 

fluctuations (daily cycles of pollutants) and long-

term seasonal trends. 

• Context integration: It combined pollutant data 

with meteorological factors to provide richer 

predictive representations. 

By doing this, TFT achieved high accuracy (R² = 0.96) 

and significantly outperformed traditional machine 
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learning models. It was particularly effective in 

modeling dependencies where pollutant 

concentrations were influenced by simultaneous 

weather changes. 

 
Fig.5: Actual vs Predicted PM2.5(TFT Model) 

 

3.8.  Hybrid TFT + LightGBM (Proposed Model): 

The hybrid model was the novel contribution of this 

project. In this design: 

1. The TFT model first learned temporal embeddings 

that captured dynamic pollutant–meteorology 

interactions over time. 

2. These learned representations were then combined 

with exogenous features and passed to LightGBM, 

which acted as the final predictor. 

This two-stage approach allowed the system to exploit 

TFT’s strength in temporal sequence learning and 

LightGBM’s efficiency in tabular feature-based 

prediction. As a result, the hybrid achieved near-

perfect accuracy (R² = 0.98, MAPE = 5.96%), 

demonstrating the synergy between deep sequential 

modeling and gradient boosting. 

 
Fig.6: Actual vs Predicted PM 2.5(TFT + 

LightGBM) 

 
Fig.7: Model Development 

 

3.4. Evaluation Metrics: 

The models were assessed using multiple performance 

indicators: 

• Mean Absolute Error (MAE): 

Represents the average of the absolute differences 

between predicted and actual TEC values, reflecting 

overall prediction error magnitude. A reduced MAE 

indicates improved model accuracy.  

MAE=
1

n
∑|yi − ŷi|

n

i=1

 

• Mean Squared Error (MSE):  

Emphasizes larger errors by squaring the differences, 

which is useful for penalizing large deviations in TEC 

predictions.  

MSE =
1

n
∑(yi − ŷi)2
n

i=1

 

• Root Mean Squared Error (RMSE):  

The square root of MSE provides an interpretable 

measure of average prediction error in the same unit as 

TEC.  

RMSE = √
1

n
∑(yi − ŷi)2
n

i=1

 

• R² Score (Coefficient of Determination):  
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Indicates how well the model explains the variance in 

the observed data. A higher R² denotes a better model 

fit. 

R2 = 1 −
∑ (yi − ŷi)2n
i=1

∑ (yi − y̅)2n
i=1

 

• Mean Absolute Percentage Error (MAPE):  

Expresses prediction accuracy as a percentage, helpful 

for understanding relative errors across varying TEC. 

MAPE = 100 n∑|(yi − ŷi) yi⁄ |⁄  

 

IV. RESULTS AND DISCUSSION 

 

4.1.  Model Performance: 

• The predictive performance of the four models 

was evaluated using MAE, RMSE, R², and 

MAPE. The results are presented in Table 1. 

 

Table.1: Model Evaluation Results 

 

4.2. Comparative Analysis 

• Random Forest achieved moderate accuracy (R² = 

0.69), indicating its ability to capture pollutant 

trends but its limitations in modeling temporal 

dependencies. 

• LightGBM performed slightly worse than 

Random Forest (R² = 0.63), showing that although 

gradient boosting can handle complex feature 

interactions, it struggles with sequential 

dependencies in air quality data. 

 

• Temporal Fusion Transformer (TFT) substantially 

improved performance, reaching R² = 0.96, as it 

effectively learned both short- and long-term 

temporal patterns while integrating pollutant and 

meteorological factors. 

• Hybrid TFT + LightGBM model achieved the best 

performance with R² = 0.98 This demonstrates the 

advantage of combining TFT’s temporal 

representation learning with LightGBM’s strong 

predictive power on structured tabular data.  

 

4.3. Key Insights 

• The hybrid approach consistently outperformed 

standalone models, validating its role as a more 

generalized solution for AQI forecasting. 

• The significant performance gap between 

traditional ML models (RF, LightGBM) and deep 

learning methods (TFT, Hybrid) highlights the 

importance of sequence modeling in air quality 

prediction. 

• The very low prediction error of the hybrid model 

suggests its strong potential for real-world 

deployment in monitoring systems, where high 

accuracy is critical for public health applications. 

 

V. CONCLUSION 

 

This study presented a comprehensive approach to 

forecasting the Air Quality Index (AQI) using machine 

learning and deep learning techniques. Four models—

Random Forest, LightGBM, Temporal Fusion 

Transformer (TFT), and a proposed hybrid TFT + 

LightGBM—were developed and evaluated on CPCB 

datasets spanning 2021–2024. The experimental 

results demonstrated that traditional models like 

Random Forest and LightGBM could capture 

pollutant–AQI relationships but were limited in 

handling temporal dependencies. In contrast, TFT 

effectively modeled both short- and long-term 

temporal trends, achieving high predictive accuracy. 

The major contribution of this study was the design of 

a hybrid TFT + LightGBM model, which combined 

the temporal representation power of TFT with the 

structured learning efficiency of LightGBM. This 

integration achieved accuracy (R² = 0.98, MAE = 

2.1970, RMSE = 3.4061, MAPE = 5.96%), far 

surpassing the standalone models. These results 

demonstrate that hybrid frameworks are highly 

effective for AQI forecasting, offering a more reliable 

solution than using deep learning or boosting models 

individually. 

In summary, this research confirms that integrating 

temporal deep learning with boosting-based machine 

MODEL MAE RSME R2 MAPE 

Random 

Forest 

6.464

0 

8.327

5 

0.696

8 

19.55

% 

Temporal 

Fusion 

Transforme

r 

3.015

4 

4.431

4 

0.967

9 

7.85% 

LightGBM 7.096

0 

9.150

9 

0.633

9 

22.64

% 

Hybrid 

(TFT+ 

LightGBM) 

2.197

0 

3.406

1 

0.980

9 

5.96% 
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learning provides a powerful pathway for advancing 

air quality forecasting. The hybrid model developed in 

this study stands out as both technically innovative and 

practically impactful, paving the way for more reliable 

environmental decision-support systems. 

 

VI. FUTURE WORK 

 

Although the hybrid TFT + LightGBM model 

delivered excellent performance, several avenues 

remain for further research. The framework can be 

extended to real-time forecasting by integrating IoT-

based sensor streams, meteorological forecasts, and 

satellite imagery, thereby improving its practical 

utility. Evaluating the model across diverse regions 

and climatic zones will strengthen its generalizability. 

In addition, incorporating explainable AI methods 

such as SHAP values and attention visualizations will 

enhance transparency and interpretability. 

From an algorithmic perspective, future studies may 

investigate transformer variants such as Informer and 

FEDformer for long-sequence modeling, as well as 

advanced boosting methods like CatBoost or XGBoost 

to complement LightGBM. Ensemble learning and 

meta-learning strategies that dynamically integrate 

multiple predictors could further refine accuracy. 

Collectively, these enhancements would enable the 

framework to evolve into a deployable decision-

support system for smart city air quality management 

and public health protection. 

 

REFERENCES 

 

[1] H. Gupta, R. Kaur, and S. S. Rana, “Air quality 

prediction using machine learning: A 

comprehensive review,” Environmental Science 

and Pollution Research, vol. 30, no. 12, pp. 

34562–34582, 2023. 

[2] T. Sahu, A. Kumar, and M. Singh, “Forecasting air 

quality index using hybrid deep learning and 

ensemble models,” Atmospheric Pollution 

Research, vol. 15, no. 3, p. 101412, 2024. 

[3] Y. Wu, Z. Zhang, and J. Wang, “Air quality 

prediction based on temporal fusion transformer 

with meteorological features,” IEEE Access, vol. 

10, pp. 109512–109526, 2022. 

[4] H. Liu, Q. Chen, and C. He, “Hybrid deep 

learning model integrating LSTM and LightGBM 

for urban air pollution forecasting,” Journal of 

Cleaner Production, vol. 395, p. 136499, 2024. 

[5] R. Kumar and S. Goyal, “Evaluation of ensemble 

learning models for PM2.5 prediction across 

Indian metropolitan cities,” Sustainable Cities and 

Society, vol. 95, p. 104655, 2023. 

[6] A. Vaswani et al., “Attention is all you need,” in 

Advances in Neural Information Processing 

Systems (NeurIPS), 2017, pp. 5998–6008. 

[7] B. Lim et al., “Temporal Fusion Transformers for 

interpretable multi-horizon time series 

forecasting,” International Journal of Forecasting, 

vol. 39, no. 1, pp. 1–20, 2023. 

[8] K. Ke, J. Meng, and T. Liu, “Gradient boosting 

decision tree approaches for air quality 

prediction,” Environmental Modelling & 

Software, vol. 142, p. 105148, 2021. 

[9] Central Pollution Control Board (CPCB), 

“National Air Quality Monitoring Programme 

(NAMP): Data 2021–2024,” Government of 

India, New Delhi, 2024. 

[10] X. Zhang and Y. Li, “Explainable hybrid learning 

for spatio-temporal air pollution forecasting,” 

Applied Soft Computing, vol. 145, p. 110762, 

2024. 

[11] A. Singh and N. Sharma, “Comparative study of 

Random Forest and boosting algorithms for AQI 

prediction in Delhi,” Journal of Environmental 

Management, vol. 320, p. 116254, 2023. 

[12] S. Chen, J. Xu, and D. Liu, “Interpretable time-

series forecasting with transformer-based 

architectures for air pollution analysis,” Expert 

Systems with Applications, vol. 236, p. 121271, 

2024. 

[13] M. Zhao and R. Lin, “Deep hybrid learning 

framework for multivariate AQI forecasting,” 

IEEE Transactions on Neural Networks and 

Learning Systems, vol. 35, no. 8, pp. 9742–9755, 

2024. 

[14] World Health Organization (WHO), Ambient 

(Outdoor) Air Pollution: Health Impacts, Geneva: 

WHO Press, 2023. 

[15] P. Banerjee and S. Chatterjee, “Air quality index 

prediction using ensemble and transformer-based 

deep learning models,” Environmental Modelling 

& Assessment, vol. 29, no. 2, pp. 255–269, 2024. 

 


