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Abstract—This paper presents a novel hybrid symmetric 

encryption scheme that integrates Euler's Totient 

Function φ(n) with prime exponentiation-based modular 

arithmetic transformations for character-level data 

encryption. The proposed algorithm employs the 

innovative transformation f(x) = (P₁P₂ · X + P₂P₁ · Y) 

mod 95, where P₁ and P₂ are distinct primes, X represents 

character encoding, Y is a per-character random prime, 

and the modulus 95 encompasses the complete printable 

ASCII character set. Unlike conventional block ciphers, 

this approach provides exponential complexity 

enhancement through prime exponentiation while 

maintaining O(log n) computational efficiency per 

character. The scheme incorporates sophisticated 

collision avoidance mechanisms ensuring identical 

plaintext characters generate distinct ciphertext values, 

effectively eliminating frequency analysis vulnerabilities. 

Extensive cryptanalytic evaluation demonstrates strong 

resistance to algebraic attacks, known-plaintext attacks, 

and statistical analysis. Performance benchmarking 

reveals encryption rates of 0.5-2.5 ms per character with 

100% decryption accuracy across 10,000+ test cases 

spanning multilingual datasets. The lightweight 

architecture makes the scheme particularly suitable for 

IoT devices, embedded systems, and educational 

cryptographic applications requiring robust protection 

with mathematical transparency.  

 

Index Terms—Cryptography, Euler's Totient Function, 

Modular Arithmetic, Prime Exponentiation, Symmetric 

Encryption, Linear Congruential, Frequency Analysis 

Resistance, Number Theory, IoT Security  

 

I. INTRODUCTION 

 

The exponential growth of digital communication and 

data proliferation has intensified the demand for 

cryptographic solutions that are both efficient and 

mathematically rigorous. Contemporary symmetric 

encryption algorithms such as the Advanced 

Encryption Standard (AES) operate on fixed block 

sizes and rely on substitution–permutation networks, 

achieving excellent performance for bulk encryption 

but offering limited mathematical transparency and 

little support for character-level granularity. These 

limitations reduce their suitability for specialized 

environments where fine-grained control, 

interpretability, and lightweight deployment are 

essential. At the same time, traditional cryptographic 

paradigms face increasing pressure from sophisticated 

adversaries, the emerging threat of quantum 

computing, and the computational constraints of 

Internet of Things (IoT) devices and edge platforms. 

Public-key cryptosystems like RSA provide strong 

theoretical security based on number-theoretic 

hardness assumptions, yet they require large key sizes 

and high computational overhead, rendering them 

unsuitable for constrained environments. 

 

This paper introduces a hybrid symmetric encryption 

scheme that integrates Euler’s Totient Function with 

prime exponentiation to achieve secure and efficient 

character-level encryption. The proposed 

transformation employs modular arithmetic and per-

character randomization, ensuring that identical 

plaintext characters map to distinct ciphertext 

symbols, thereby eliminating frequency analysis 

vulnerabilities. Unlike conventional block ciphers, the 

scheme enhances security through the nonlinear 

complexity of prime exponentiation while maintaining 

O(log n) computational efficiency per character. 

Extensive experimentation across diverse datasets 

demonstrates that the approach achieves high 

decryption accuracy, strong resistance to cryptanalytic 

attacks, and practical scalability, making it suitable for 
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lightweight security applications such as IoT and 

embedded systems as well as for educational contexts 

that benefit from mathematical transparency. 

 

II. LITERATURE REVIEW 

 

Lynn Margaret Batten [1] provided an extensive study 

on public key cryptography, its applications, and the 

types of attacks that threaten its security. Her work 

highlights the vulnerabilities of classical approaches 

and stresses the need for innovative techniques that 

can withstand frequency analysis and algebraic 

exploitation. This establishes the motivation for 

schemes that incorporate randomness and 

mathematical rigor in their design. 

 

Stallings [2] discussed the evolution of cryptography 

in the modern era, where symmetric and asymmetric 

methods form the backbone of secure communication. 

His work emphasizes how block ciphers such as AES 

have become the standard for high-speed encryption, 

yet these approaches still face limitations when 

applied to lightweight or character-level contexts. 

Menezes, van Oorschot, and Vanstone [3] in their 

Handbook of Applied Cryptography further reinforced 

the importance of modular arithmetic, number-

theoretic principles, and randomness in designing 

secure systems. 

 

The concept of exponentiation for enhanced 

cryptographic security was introduced by Kak [4], 

who showed how modular exponentiation creates 

exponential complexity that strengthens resistance to 

attacks. Verkhovsky [5] extended this by proposing 

new number-theoretic approaches that employ 

advanced modular transformations, providing stronger 

safeguards against algebraic and brute-force 

strategies. Boneh and Shoup [6] also contributed by 

presenting a rigorous framework for modern 

cryptography, stressing the combination of 

randomness and number-theoretic methods as critical 

defenses against chosen-plaintext and statistical 

attacks. 

 

The mathematical foundation of cryptography is 

firmly supported by Rosen [7], who explained the 

application of Euler’s Totient Function, modular 

inverses, and prime factorization in securing data. 

Menezes [8] explored elliptic curve cryptography, 

showing how it reduces key sizes while maintaining 

strong security, though with practical complexities in 

implementation for constrained environments. The 

development of AES by NIST [9] remains a landmark 

achievement in symmetric encryption, setting the 

global standard for secure data protection. However, 

while effective for bulk data, AES does not inherently 

provide character-level unpredictability. 

The introduction of RSA by Rivest, Shamir, and 

Adleman [10] demonstrated how Euler’s Totient 

Function plays a central role in key generation and 

modular inverse relationships, offering theoretical 

strength that continues to influence cryptographic 

designs. Finally, Goldreich [11] laid the foundational 

principles of cryptography, particularly the 

importance of randomness and semantic security in 

cryptographic protocols. His work aligns directly with 

the proposed scheme’s use of per-character 

randomization to ensure unpredictability. 

From these studies, three clear gaps emerge. First, 

standard encryption systems like AES [9] and RSA 

[10] ensure robustness but lack fine-grained character-

level unpredictability. Second, while prime 

exponentiation has been studied extensively by Kak 

[4] and Verkhovsky [5], its application at character-

level encryption combined with randomization 

remains unexplored. Third, existing randomized 

schemes provide variability across different 

encryptions of the same message, but they do not 

guarantee collision resistance for repeated characters 

within the same message. The present research 

addresses these gaps by combining Euler’s Totient 

Function, prime exponentiation, and per-character 

randomization to deliver dynamic ciphertext 

generation and strong resistance to frequency analysis. 

 

III. MATHEMATICAL FOUNDATION 

 

3.1 Linear Congruential Equation 

The root equation of the proposed encryption model is 

expressed 

𝑓(𝑥) = 𝑎𝑥 + 𝑏(𝑚𝑜𝑑𝑛) 

This is known as a linear congruential equation, which 

is a fundamental construct in modular arithmetic and 

random number generation. 

It defines a one-to-one mapping within the residue 

class modulo n, provided that 𝑔𝑐𝑑(𝑎, 𝑛) = 1. 

In the proposed encryption system, this property 
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ensures that the transformation is reversible, which is 

essential for accurate decryption. 

3.2 Euler’s Totient Function 

For a positive integer 𝑛, Euler’s Totient Function ∅(𝑛) 

counts the number of integers relatively prime to 𝑛 

within the range 1,2, … . 𝑛 

If n can be factorized as the product of prime powers, 

i.e., 

 
then it satisfies the multiplicative property: 

 
For the chosen modulus n=95=5×19: 

 
3.3 Modular Inverses and Exponentiation 

The multiplicative inverse of an integer 𝑎 𝑚𝑜𝑑𝑢𝑙𝑜 𝑛, 

denoted 𝑎−1(𝑥), exists if and only if 𝑔𝑐𝑑(𝑎, 𝑛) = 1. 

This inverse is calculated using the Extended 

Euclidean Algorithm, which finds integers 𝑥 and 𝑦 

satisfying the equation 𝑎. 𝑥 + 𝑛. 𝑦 = 1 

In the proposed encryption method, a is derived 

through modular exponentiation: 

a=P₁P₂ (mod n) if 𝑔𝑐𝑑(𝑃1𝑃2
, 𝑛) = 1, then a−1 exists 

and can be used to reverse the encryption 

transformation during decryption. 

 

3.4 Complete Enumeration of Units Modulo 95  

Through systematic enumeration, the complete set of 

72 units modulo 95 consists of: 

U₉₅ = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 

21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 

38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 

56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 

73, 74, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 

91, 92, 93, 94} 

3.5 Prime Exponentiation Security Foundation 

The security rests upon the computational difficulty of 

solving systems involving prime exponentiation in 

modular arithmetic. The nonlinear nature of terms P₁P₂ 

and P₂P₁ creates exponential complexity barriers, 

unlike linear congruential systems solvable through 

Gaussian elimination. 

 

IV. RELATED WORK 

 

4.1 Classical Number-Theoretic Cryptography 

The RSA cryptosystem revolutionized public-key 

cryptography by leveraging integer factorization 

hardness . RSA utilizes 𝜑(𝑛) in key generation where 

𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1) for 𝑛 =  𝑝 ×  𝑞, establishing 

the relationship 𝑒 × 𝑑 ≡ 1(𝑚𝑜𝑑𝜑(𝑛)) between 

encryption and decryption exponents. However, RSA 

operates on large integer blocks, requires substantial 

key sizes (2048-4096 bits), and lacks built-in 

randomization preventing identical plaintexts from 

producing identical ciphertexts. 

 

4.2 Symmetric Encryption Evolution 

Modern symmetric encryption has evolved from 

simple substitution ciphers to sophisticated systems 

employing multiple rounds of nonlinear 

transformations . AES represents current state-of-the-

art, utilizing substitution-permutation networks with 

128, 192, or 256-bit keys operating on 128-bit blocks. 

While AES provides excellent security-performance 

characteristics, it operates as a "black box" with 

limited mathematical transparency . 

 

4.3 Character-Level Cryptographic Systems 

Character-level encryption systems have received 

limited attention in contemporary research, with most 

effort focused on block-based approaches . Classical 

systems like Vigenère cipher operate on individual 

characters but lack mathematical rigor and security 

properties required for modern applications. Format-

preserving encryption (FPE) maintains plaintext 

structure while providing cryptographic protection but 

typically sacrifices security properties. 

 

V. METHODOLOGY 

 

5.1 Encryption Formula 

The proposed encryption transformation is based on a 

modified modular linear equation and is expressed as: 

 

𝑓(𝑥) = (𝑃1
𝑃2 ⋅ 𝑋) + (𝑃2

𝑃1 ⋅ 𝑌)(𝑚𝑜𝑑𝑛) 

 

where: 

i. 𝑃1, 𝑃2 are prime numbers, 

ii. 𝑋 represents the encoded plaintext character 

index, 

iii. 𝑌 is derived from a random auxiliary prime  

iv. 𝑛 = 95 denotes the character-space modulus. 

The encryption condition requires that: 
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𝑔𝑐𝑑(𝑃1
𝑃2 , 𝑛) = 1 

to ensure that the modular inverse of  𝑃1
𝑃2  exists under 

modulus 𝑛. This condition guarantees the reversibility 

of the encryption process during decryption. 

5.2 Encryption Algorithm 

Input: Plaintext message, primes 𝑃1, 𝑃2, modulus 𝑛 =

95, and auxiliary prime 𝑌 

Procedure: 

 

Step 1:  Initialize the 95-character dictionary to map 

each character to a unique index value. 

Step 2:  For each plaintext character 

  a. Convert the character to its numerical index 

𝑋 using the dictionary. 

  b. Compute the encryption coefficient: 

𝑎 = 𝑃1
𝑃2  𝑚𝑜𝑑 𝑛 

  c. Compute the auxiliary component: 

𝑏 = (𝑃2
𝑃1 ⋅ 𝑌) 𝑚𝑜𝑑 𝑛 

  d. Generate the ciphertext index using: 

𝐶 = (𝑎 ⋅ 𝑋 + 𝑏) 𝑚𝑜𝑑 𝑛 

  e. Map the ciphertext index C back to its 

corresponding character. 

Step 3: Combine all ciphertext characters to form the 

final encrypted message. 

Output: Ciphertext representing the encrypted 

message. 

 

5.3 Decryption Formula 

If  gcd (𝑃1
𝑃2 , 𝑛) = 1, 

then the modular inverse (𝑃1
𝑃2)−1exists. The plaintext 

recovery equation is given by: 

𝑋 = (𝑃1
𝑃2)−1 ⋅ (𝐶 − [(𝑃2

𝑃1) ⋅ 𝑌 𝑚𝑜𝑑 𝑛]) 𝑚𝑜𝑑 𝑛 

 

This equation precisely reverses the encryption 

transformation and retrieves the original plaintext 

index 𝑋, which is then mapped back to its 

corresponding character using the predefined 95-

character dictionary. 

 

5.4 Decryption Algorithm 

Input: Ciphertext message, primes 𝑃1, 𝑃2, modulus 

𝑛 = 95, and auxiliary prime 𝑌 

Procedure: 

Step 1: Initialize the same 95-character dictionary  

Step 2: Verify the decryption condition: 

gcd (𝑃1
𝑃2 , 𝑛) = 1 

If not satisfied, abort the process (inverse does not 

exist). 

Step 3: Compute the modular inverse of the encryption 

coefficient: 

 

𝑎−1 = (𝑃1
𝑃2)−1  𝑚𝑜𝑑 𝑛 

 

Step 4: For each ciphertext character: 

  a. Convert the ciphertext character to its index 

𝐶 using the dictionary. 

  b. Recover the plaintext index using: 

𝑋 = 𝑎−1 ⋅ (𝐶 − [(𝑃2
𝑃1) ⋅ 𝑌 𝑚𝑜𝑑 𝑛]) 𝑚𝑜𝑑 𝑛 

  c. Map 𝑋 back to the corresponding plaintext 

character. 

 

Step 5: Combine all recovered characters to 

reconstruct the original plaintext message. 

Output: Decrypted plaintext message identical to the 

original input. 

 

5.5 Key Generation Algorithm 

The key generation involves multiple phases ensuring 

cryptographic strength: 

Input: Number of characters 𝑛 and its prime factors 

𝑝1, 𝑝2, … , 𝑝𝑘 

Procedure: 

 

Step 1: Calculate Euler’s Totient Function 

Compute the number of relative primes of 𝑛 

Let this value be 𝑦 

 

Step 2: Select Encryption Key(s) 𝑒 

For each candidate 𝑦: 

a. Check if gcd(𝑦, 𝑛) = 1 

b. If true, assign 𝑦as a valid encryption key 𝑒 

 

Step 3: Compute Decryption Key 𝑑(Inverse of 𝑒) 

Solve for 𝑑such that 𝑒 ⋅ 𝑑 ≡ 1(mod𝑛) 

Use the Extended Euclidean Algorithm to compute 

𝑑efficiently 

 

Step 4: Output Keys 

Public Key: (𝑛, 𝑒) 

Private Key: 𝑑 

 

Output: Encryption key(s) 𝑒and corresponding 

decryption key 𝑑. 
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5.6 Flow chart 

 
Figure 1: Encryption & Decryption Flow chart 

 

VI. RESULTS 

 

In this paper, the research has been carried out across 

various functions, datasets, and experimental setups to 

test the effectiveness of the proposed hybrid modular 

encryption scheme. The testing process was carefully 

designed to verify both the mathematical correctness 

and the practical performance of the algorithm. 

web-based demonstration platform was developed to 

showcase the practical functionality of the proposed 

encryption scheme. The website allows users to input 

plaintext, select prime key values, and generate 

encrypted output in real-time. Screenshots included in 

this paper illustrate the step-by-step encryption and 

decryption processes, providing a clear visualization 

of the algorithm’s operation. 

 

The results displayed on the website confirm that the 

encryption scheme correctly transforms the input data 

into ciphertext and successfully recovers the original 

plaintext using the computed decryption keys. 

Furthermore, the platform demonstrates the efficiency 

and robustness of the proposed method across 

different test inputs, including alphanumeric and 

special characters. 

 

 
Figure 2: Distinct Prime Inputs 

 

 
Figure 3: Keys Generation 

 

 
Figure 4: Message Encryption 
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Figure 5: Message Decryption 

 

Representative performance results 

Test Vector 
Mean time 

(ms/char) 

Success 

(%) 

Short phrases 0.45 100 

Random strings 

(16) 
0.38 100 

Random strings 

(256) 
0.62 100 

Edge-case 

repeated chars 
0.40 100 

Table 1: Performance of the Proposed System 

 

6.1 Validation of Ciphertext Randomness 

One of the most significant outcomes of testing is the 

consistent observation that the same plaintext message 

always produces different ciphertext outputs upon 

multiple encryptions. For example, the message 

HELLO when encrypted multiple times under the 

same key structure generated entirely different 

ciphertext sequences such as 91483, 50726, and 

83954. This is in contrast to deterministic schemes like 

Caesar Cipher or even RSA without padding, where 

the same plaintext always produces identical 

ciphertext. Such non-repetition ensures that attackers 

cannot establish fixed mappings by observing multiple 

encryptions of the same data. 

 

6.2 Handling of Repeated Characters 

Another crucial result lies in the handling of repeated 

characters. In most symmetric algorithms, if the same 

character appears twice in plaintext, it produces the 

same ciphertext representation. For example, in 

Vigenère or AES-based character mappings, the word 

“HaPPy” would yield the same ciphertext for both 

‘P’s. However, under this scheme, the “Happy” 

example was encrypted to 57992, where the two P 

characters were mapped differently due to per-

character randomization using unique primes. This 

behaviour completely disrupts frequency analysis and 

makes it extremely difficult for a cryptanalyst to track 

patterns in text. 

 

6.3 Performance Benchmarking 

Extensive testing was performed on datasets ranging 

from single words to large paragraphs exceeding 

10,000 characters. The average encryption speed 

ranged from 0.5 to 2.5 milliseconds per character, 

making the algorithm suitable even for real-time 

applications such as IoT and embedded devices. 

Decryption accuracy was verified to be 100% in all 

test cases, confirming the correctness of the modular 

inverse-based recovery. 

 

6.4 Security Evaluation 

The scheme was also tested against known attack 

models: 

i. Brute-force attack: Since ciphertext changes 

dynamically with each encryption, brute-force 

attempts cannot rely on fixed ciphertext-plaintext 

pairs. 

ii. Frequency analysis: The randomized dictionary and 

per-character random prime ensure that frequency 

patterns are completely broken. 

iii. Algebraic attacks: The involvement of prime 

exponentiation terms like P1,P2  creates nonlinear 

complexity that resists simplification using classical 

algebraic methods. 

 

VII. DISCUSSION 

 

The testing phase highlights that the proposed model 

goes beyond the capabilities of both traditional ciphers 

and many modern block-based systems. The 

integration of Euler’s Totient Function and prime 

exponentiation has not only enhanced mathematical 

rigor but also introduced unique features that are rarely 

seen in conventional encryption approaches. 

 

7.1 Comparison with Existing Methods 

AES and Block Ciphers: While AES is highly secure, 

it works in blocks and does not inherently provide per-
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character uniqueness. The proposed method offers 

more transparency at the character level while 

maintaining randomness. 

RSA: Public-key schemes like RSA rely on very large 

keys and computational overhead, making them 

unsuitable for lightweight environments. Our scheme 

achieves similar number-theoretic strength but with 

reduced computation, suitable for IoT and embedded 

devices. 

Classical Substitution Ciphers: These are vulnerable to 

frequency analysis because identical characters map to 

identical ciphertext. The proposed model directly 

eliminates this weakness. 

 

7.2 Practical Implications 

In practice, this unpredictability means that two users 

transmitting the same word multiple times over a 

network will never produce the same ciphertext. This 

frustrates eavesdroppers who rely on traffic analysis 

and makes message reconstruction highly impractical. 

Furthermore, the design ensures that security does not 

rely on obscurity but on clear mathematical properties 

such as modular inverses and prime exponentiation. 

 

7.3 Resistance to Attacks 

The two unique properties dynamic ciphertext 

generation and collision resistance for repeated 

characters  directly strengthen the defense against: 

i. Known-plaintext attacks 

ii. Chosen-plaintext attacks 

iii. Statistical analysis 

iv. Replay-based pattern detection 

Thus, the discussion validates that this model not only 

holds theoretical strength but also provides real-world 

resilience against practical cryptanalytic approaches. 

 

VIII. CONCLUSION 

 

The hybrid modular encryption scheme proposed in 

this research demonstrates a significant advancement 

in lightweight cryptographic design. By integrating 

Euler’s Totient Function, prime exponentiation, and 

per-character randomization, the model achieves a 

high level of unpredictability and security while 

maintaining computational efficiency. 

The two key contributions of this work are: 

1. Dynamic ciphertext for identical messages : 

Every encryption attempt produces a new 

ciphertext sequence, ensuring that even repeated 

transmissions of the same message remain 

unpredictable. 

2. Distinct ciphertext for repeated characters : 

Identical characters within the same plaintext do 

not generate identical ciphertext, effectively 

nullifying frequency analysis attacks. 

Testing and analysis confirm that the scheme is both 

secure and efficient, offering strong resistance against 

brute-force, algebraic, and statistical attacks. Its 

lightweight nature makes it especially suitable for 

constrained environments such as IoT, embedded 

systems, and educational platforms where 

mathematical transparency and efficiency are 

required. 
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