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Abstract—This paper presents a novel hybrid symmetric
encryption scheme that integrates Euler's Totient
Function ¢(n) with prime exponentiation-based modular
arithmetic transformations for character-level data
encryption. The proposed algorithm employs the
innovative transformation f(x) = (P:"*- X + P." - Y)
mod 95, where P1 and P: are distinct primes, X represents
character encoding, Y is a per-character random prime,
and the modulus 95 encompasses the complete printable
ASCII character set. Unlike conventional block ciphers,
this approach provides exponential complexity
enhancement through prime exponentiation while
maintaining O(log n) computational efficiency per
character. The scheme incorporates sophisticated
collision avoidance mechanisms ensuring identical
plaintext characters generate distinct ciphertext values,
effectively eliminating frequency analysis vulnerabilities.
Extensive cryptanalytic evaluation demonstrates strong
resistance to algebraic attacks, known-plaintext attacks,
and statistical analysis. Performance benchmarking
reveals encryption rates of 0.5-2.5 ms per character with
100% decryption accuracy across 10,000+ test cases
spanning multilingual datasets. The lightweight
architecture makes the scheme particularly suitable for
IoT devices, embedded systems, and educational
cryptographic applications requiring robust protection
with mathematical transparency.

Index Terms—Cryptography, Euler's Totient Function,
Modular Arithmetic, Prime Exponentiation, Symmetric
Encryption, Linear Congruential, Frequency Analysis
Resistance, Number Theory, IoT Security

[. INTRODUCTION

The exponential growth of digital communication and
data proliferation has intensified the demand for
cryptographic solutions that are both efficient and
mathematically rigorous. Contemporary symmetric
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encryption algorithms such as the Advanced
Encryption Standard (AES) operate on fixed block
sizes and rely on substitution—permutation networks,
achieving excellent performance for bulk encryption
but offering limited mathematical transparency and
little support for character-level granularity. These
limitations reduce their suitability for specialized
environments where fine-grained control,
interpretability, and lightweight deployment are
essential. At the same time, traditional cryptographic
paradigms face increasing pressure from sophisticated
adversaries, the emerging threat of quantum
computing, and the computational constraints of
Internet of Things (IoT) devices and edge platforms.
Public-key cryptosystems like RSA provide strong
theoretical security based on number-theoretic
hardness assumptions, yet they require large key sizes
and high computational overhead, rendering them
unsuitable for constrained environments.

This paper introduces a hybrid symmetric encryption
scheme that integrates Euler’s Totient Function with
prime exponentiation to achieve secure and efficient
character-level encryption. The proposed
transformation employs modular arithmetic and per-
character randomization, ensuring that identical
plaintext characters map to distinct ciphertext
symbols, thereby eliminating frequency analysis
vulnerabilities. Unlike conventional block ciphers, the
scheme enhances security through the nonlinear
complexity of prime exponentiation while maintaining
O(log n) computational efficiency per character.
Extensive experimentation across diverse datasets
demonstrates that the approach achieves high
decryption accuracy, strong resistance to cryptanalytic
attacks, and practical scalability, making it suitable for
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lightweight security applications such as IoT and
embedded systems as well as for educational contexts
that benefit from mathematical transparency.

II. LITERATURE REVIEW

Lynn Margaret Batten [1] provided an extensive study
on public key cryptography, its applications, and the
types of attacks that threaten its security. Her work
highlights the vulnerabilities of classical approaches
and stresses the need for innovative techniques that
can withstand frequency analysis and algebraic
exploitation. This establishes the motivation for
schemes that incorporate randomness and
mathematical rigor in their design.

Stallings [2] discussed the evolution of cryptography
in the modern era, where symmetric and asymmetric
methods form the backbone of secure communication.
His work emphasizes how block ciphers such as AES
have become the standard for high-speed encryption,
yet these approaches still face limitations when
applied to lightweight or character-level contexts.
Menezes, van Oorschot, and Vanstone [3] in their
Handbook of Applied Cryptography further reinforced
the importance of modular arithmetic, number-
theoretic principles, and randomness in designing
secure systems.

The concept of exponentiation for enhanced
cryptographic security was introduced by Kak [4],
who showed how modular exponentiation creates
exponential complexity that strengthens resistance to
attacks. Verkhovsky [5] extended this by proposing
new number-theoretic approaches that employ
advanced modular transformations, providing stronger
safeguards against algebraic and brute-force
strategies. Boneh and Shoup [6] also contributed by
presenting a rigorous framework for modern
cryptography, stressing the combination of
randomness and number-theoretic methods as critical
defenses against chosen-plaintext and statistical
attacks.

The mathematical foundation of cryptography is
firmly supported by Rosen [7], who explained the
application of Euler’s Totient Function, modular
inverses, and prime factorization in securing data.
Menezes [8] explored elliptic curve cryptography,
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showing how it reduces key sizes while maintaining
strong security, though with practical complexities in
implementation for constrained environments. The
development of AES by NIST [9] remains a landmark
achievement in symmetric encryption, setting the
global standard for secure data protection. However,
while effective for bulk data, AES does not inherently
provide character-level unpredictability.

The introduction of RSA by Rivest, Shamir, and
Adleman [10] demonstrated how Euler’s Totient
Function plays a central role in key generation and
modular inverse relationships, offering theoretical
strength that continues to influence cryptographic
designs. Finally, Goldreich [11] laid the foundational
principles of cryptography, particularly the
importance of randomness and semantic security in
cryptographic protocols. His work aligns directly with
the proposed scheme’s use of per-character
randomization to ensure unpredictability.

From these studies, three clear gaps emerge. First,
standard encryption systems like AES [9] and RSA
[10] ensure robustness but lack fine-grained character-
level unpredictability. Second, while prime
exponentiation has been studied extensively by Kak
[4] and Verkhovsky [5], its application at character-
level encryption combined with randomization
remains unexplored. Third, existing randomized
schemes provide variability across different
encryptions of the same message, but they do not
guarantee collision resistance for repeated characters
within the same message. The present research
addresses these gaps by combining Euler’s Totient
Function, prime exponentiation, and per-character
randomization to deliver dynamic ciphertext
generation and strong resistance to frequency analysis.

III. MATHEMATICAL FOUNDATION

3.1 Linear Congruential Equation
The root equation of the proposed encryption model is
expressed

f(x) = ax + b(modn)
This is known as a linear congruential equation, which
is a fundamental construct in modular arithmetic and
random number generation.
It defines a one-to-one mapping within the residue
class modulo n, provided that gcd(a,n) = 1.
In the proposed encryption system, this property
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ensures that the transformation is reversible, which is
essential for accurate decryption.

3.2 Euler’s Totient Function

For a positive integer n, Euler’s Totient Function @(n)
counts the number of integers relatively prime to n
within the range 1,2, ....n

If n can be factorized as the product of prime powers,
ie.,

€ €: €
n = pi' x p5? x ... x pyF

then it satisfies the multiplicative property:

gb(n)—nx(l—;ll) X (1—1}%) x...x(l—i)

For the chosen modulus n=95=5%19:

$(95) = 95 x (1—%) x (1—1—19)795>< (g) x(%)fﬁ

3.3 Modular Inverses and Exponentiation

The multiplicative inverse of an integer a modulo n,
denoted a~1(x), exists if and only if gcd(a,n) = 1.
This inverse is calculated using the Extended
Euclidean Algorithm, which finds integers x and y
satisfying the equationa.x + n.y = 1

In the proposed encryption method, a is derived
through modular exponentiation:

a=P:™ (mod n) if gcd(P“’z,n) =1, then a™! exists
and can be wused to reverse the encryption
transformation during decryption.

3.4 Complete Enumeration of Units Modulo 95
Through systematic enumeration, the complete set of
72 units modulo 95 consists of:
Uos=1{1,2,3,4,6,7,8,9,11, 12, 13, 14, 16, 17, 18,
21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37,
38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54,
56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72,
73, 74,76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89,
91,92,93, 94}

3.5 Prime Exponentiation Security Foundation

The security rests upon the computational difficulty of
solving systems involving prime exponentiation in
modular arithmetic. The nonlinear nature of terms P:™
and P."' creates exponential complexity barriers,
unlike linear congruential systems solvable through
Gaussian elimination.

IV.RELATED WORK

4.1 Classical Number-Theoretic Cryptography
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The RSA cryptosystem revolutionized public-key
cryptography by leveraging integer factorization
hardness . RSA utilizes ¢(n) in key generation where
pn)=(@—-1)(q—1) forn = p X g, establishing
the relationship e X d = 1(mod(p (n)) between
encryption and decryption exponents. However, RSA
operates on large integer blocks, requires substantial
key sizes (2048-4096 bits), and lacks built-in
randomization preventing identical plaintexts from
producing identical ciphertexts.

4.2 Symmetric Encryption Evolution

Modern symmetric encryption has evolved from
simple substitution ciphers to sophisticated systems
employing  multiple  rounds of  nonlinear
transformations . AES represents current state-of-the-
art, utilizing substitution-permutation networks with
128, 192, or 256-bit keys operating on 128-bit blocks.
While AES provides excellent security-performance
characteristics, it operates as a "black box" with
limited mathematical transparency .

4.3 Character-Level Cryptographic Systems
Character-level encryption systems have received
limited attention in contemporary research, with most
effort focused on block-based approaches . Classical
systems like Vigenére cipher operate on individual
characters but lack mathematical rigor and security
properties required for modern applications. Format-
preserving encryption (FPE) maintains plaintext
structure while providing cryptographic protection but
typically sacrifices security properties.

V. METHODOLOGY
5.1 Encryption Formula

The proposed encryption transformation is based on a
modified modular linear equation and is expressed as:

f(x) = (Plp2 X))+ (PZP1 -Y)(modn)

where:
1. Py, P, are prime numbers,
ii. X represents the encoded plaintext character
index,
iil. Y is derived from a random auxiliary prime
iv. n = 95 denotes the character-space modulus.

The encryption condition requires that:
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gcd(PPZ,n) =1
to ensure that the modular inverse of P1P2 exists under
modulus n. This condition guarantees the reversibility
of the encryption process during decryption.
5.2 Encryption Algorithm
Input: Plaintext message, primes P;, P,, modulus n =
95, and auxiliary prime Y
Procedure:

Step 1: Initialize the 95-character dictionary to map
each character to a unique index value.
Step  2: For each plaintext character

a. Convert the character to its numerical index
X using the dictionary.

b. Compute the encryption coefficient:

a = P*modn
c. Compute the auxiliary component:
b= (PZP1 -Y)modn
d. Generate the ciphertext index using:
C=(a-X+b)ymodn

e. Map the ciphertext index C back to its
corresponding character.
Step 3: Combine all ciphertext characters to form the
final encrypted message.
Output: Ciphertext representing the encrypted
message.

5.3 Decryption Formula
If ged (P/2,n) =1,
then the modular inverse (Plpz)_lexists. The plaintext
recovery equation is given by:
X =P (C—[(P") - Ymodn])modn

This equation precisely reverses the encryption
transformation and retrieves the original plaintext
index X, which is then mapped back to its
corresponding character using the predefined 95-
character dictionary.

5.4 Decryption Algorithm

Input: Ciphertext message, primes P;, P,, modulus
n = 95, and auxiliary prime Y

Procedure:

Step 1: Initialize the same 95-character dictionary
Step 2: Verify the decryption condition:

gcd (Plpz,n) =1
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If not satisfied, abort the process (inverse does not
exist).

Step 3: Compute the modular inverse of the encryption
coefficient:

a™t = (P*) 'modn

Step 4: For each ciphertext character:
a. Convert the ciphertext character to its index
C using the dictionary.
b. Recover the plaintext index using:
X=a"1-(C—[(P") Ymodn])modn
c. Map Xback to the corresponding plaintext
character.

Step 5: Combine all recovered characters to
reconstruct the original plaintext message.

Output: Decrypted plaintext message identical to the
original input.

5.5 Key Generation Algorithm

The key generation involves multiple phases ensuring
cryptographic strength:

Input: Number of characters n and its prime factors

P1, D25 =+ Pk
Procedure:

Step 1: Calculate Euler’s Totient Function
Compute the number of relative primes of n
Let this value be y

Step 2: Select Encryption Key(s) e

For each candidate y:

a. Check if gcd(y,n) =1

b. If true, assign yas a valid encryption key e

Step 3: Compute Decryption Key d(Inverse of e)
Solve for dsuch that e - d = 1(modn)

Use the Extended Euclidean Algorithm to compute
defficiently

Step 4: Output Keys
Public Key: (n, e)
Private Key: d

Output: Encryption key(s) eand corresponding
decryption key d.
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5.6 Flow chart
v
Character Y
Mapping
Convert Encrypted

¥ Characters to Numbers

Enter Py, P; Primes ¥

Enter Keys
Validate
Generate Y

(Random Prime)

Compute Inverse
Compute Cipher ofa
Elements

(x) = (P2 - X + PP Y) T

mod 95 L]
a=(P1*)modn
Character-wise ifged(an) = 1
Computation b= (P2")mod n
Process Each Character
(X) using f(x) A
‘ Apply Decryption
Key Generation Formula
using Euler Totient
& Euclidean )
Algorithm

I X=(")(Ch)
A4

b=P2%! Ymod n
Store Keys and b=P2% mod
Inverse Values
v
Convert Encrypted Convert Numeric
Number to Cipher Value back
Characters

v
Output Encrypted Qutput Plain Text
Text

Encryption Decryption

Figure 1: Encryption & Decryption Flow chart
VI. RESULTS

In this paper, the research has been carried out across
various functions, datasets, and experimental setups to
test the effectiveness of the proposed hybrid modular
encryption scheme. The testing process was carefully
designed to verify both the mathematical correctness
and the practical performance of the algorithm.
web-based demonstration platform was developed to
showcase the practical functionality of the proposed
encryption scheme. The website allows users to input
plaintext, select prime key values, and generate
encrypted output in real-time. Screenshots included in
this paper illustrate the step-by-step encryption and
decryption processes, providing a clear visualization
of the algorithm’s operation.

The results displayed on the website confirm that the

encryption scheme correctly transforms the input data
into ciphertext and successfully recovers the original

IJIRT 185832

plaintext using the computed decryption keys.
Furthermore, the platform demonstrates the efficiency
and robustness of the proposed method across
different test inputs, including alphanumeric and
special characters.

A Hybrid Modular Prime Exponentiation Encryption Algorithm for
Enhanced Data Security

Advanced encryption with unique cipher generation

900

Step 1: Enter Two Primes
Requirements: P1 and P2 must be prime numbers with at least 2 digits (> 10).

P1 (First Prime): P2 (Second Prime):

31 { 397

Figure 2: Distinct Prime Inputs

Step 2: Generated Keys

Generated Keys Information
Input Keys:
21 =31

D2 = 397

Generated Keys:

Proceed to Encryption

Figure 3: Keys Generation

Step 3: Message Encryption

Enter Message to Encrypt:

Hello World

Encrypl Message

I Message encrypted successfully!

Encryption Results

Original Message: &
Cipher Numbers:
¥ values: 4337, 23

¥ Digit Length Used: ¢
Encrypted Characters: 'a@=Eu mC(a

Proceod to Decryption Auto-fill Decryption Fiekts

Figure 4: Message Encryption
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Step 4: Message Decryption

Cipher Numbers (comma-separated):

93, 26, 60,75, 4, 45,04, 38,2, 78, 26

¥ Values (comma-separated):

4937, 9377, 6151, 9661, 9133, 8689, 4389, T741, 6473, 5347, 2609

Decryption Key {a_inv):

46

[ Message decrypted successfully!

Decryption Results

Cipher Number:
¥ Values: 433

Decryption Key Used:
Decrypted Message: Hello World

Figure 5: Message Decryption

Representative performance results

Test Vector Mean time Success
(ms/char) (%)
Short phrases 0.45 100
Random strings
0.38 100
(16)
Random strings
0.62 100
(256)
Edgoe-
dge-case 0.40 0
repeated chars

Table 1: Performance of the Proposed System

6.1 Validation of Ciphertext Randomness

One of the most significant outcomes of testing is the
consistent observation that the same plaintext message
always produces different ciphertext outputs upon
multiple encryptions. For example, the message
HELLO when encrypted multiple times under the
same key structure generated entirely different
ciphertext sequences such as 97483, 50726, and
83954. This is in contrast to deterministic schemes like
Caesar Cipher or even RSA without padding, where
the same plaintext always produces identical
ciphertext. Such non-repetition ensures that attackers
cannot establish fixed mappings by observing multiple
encryptions of the same data.

6.2 Handling of Repeated Characters

Another crucial result lies in the handling of repeated
characters. In most symmetric algorithms, if the same
character appears twice in plaintext, it produces the
same ciphertext representation. For example, in
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il.

iil.
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Vigenére or AES-based character mappings, the word
“HaPPy” would yield the same ciphertext for both
‘P’s. However, under this scheme, the “Happy”
example was encrypted to 57992, where the two P
characters were mapped differently due to per-
character randomization using unique primes. This
behaviour completely disrupts frequency analysis and
makes it extremely difficult for a cryptanalyst to track
patterns in text.

6.3 Performance Benchmarking

Extensive testing was performed on datasets ranging
from single words to large paragraphs exceeding
10,000 characters. The average encryption speed
ranged from 0.5 to 2.5 milliseconds per character,
making the algorithm suitable even for real-time
applications such as IoT and embedded devices.
Decryption accuracy was verified to be 100% in all
test cases, confirming the correctness of the modular
inverse-based recovery.

6.4 Security Evaluation
The scheme was also tested against known attack
models:
Brute-force attack: Since ciphertext
dynamically with encryption,

attempts cannot rely on fixed ciphertext-plaintext

changes
each brute-force
pairs.

Frequency analysis: The randomized dictionary and
per-character random prime ensure that frequency
patterns are completely broken.

Algebraic attacks: The
exponentiation terms like P;,P2

involvement of prime
creates nonlinear
complexity that resists simplification using classical
algebraic methods.

VII. DISCUSSION

The testing phase highlights that the proposed model
goes beyond the capabilities of both traditional ciphers
and many modern block-based The
integration of Euler’s Totient Function and prime
exponentiation has not only enhanced mathematical

systems.
rigor but also introduced unique features that are rarely
seen in conventional encryption approaches.

7.1 Comparison with Existing Methods

AES and Block Ciphers: While AES is highly secure,
it works in blocks and does not inherently provide per-
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character uniqueness. The proposed method offers
more transparency at the character level while
maintaining randomness.

RSA: Public-key schemes like RSA rely on very large
keys and computational overhead, making them
unsuitable for lightweight environments. Our scheme
achieves similar number-theoretic strength but with
reduced computation, suitable for IoT and embedded
devices.

Classical Substitution Ciphers: These are vulnerable to
frequency analysis because identical characters map to
identical ciphertext. The proposed model directly
eliminates this weakness.

7.2 Practical Implications

In practice, this unpredictability means that two users
transmitting the same word multiple times over a
network will never produce the same ciphertext. This
frustrates eavesdroppers who rely on traffic analysis
and makes message reconstruction highly impractical.
Furthermore, the design ensures that security does not
rely on obscurity but on clear mathematical properties
such as modular inverses and prime exponentiation.

7.3 Resistance to Attacks

The two unique properties dynamic ciphertext
generation and collision resistance for repeated
characters directly strengthen the defense against:

i Known-plaintext attacks
il. Chosen-plaintext attacks
iil. Statistical analysis

iv. Replay-based pattern detection

Thus, the discussion validates that this model not only
holds theoretical strength but also provides real-world
resilience against practical cryptanalytic approaches.

VIII. CONCLUSION

The hybrid modular encryption scheme proposed in

this research demonstrates a significant advancement

in lightweight cryptographic design. By integrating

Euler’s Totient Function, prime exponentiation, and

per-character randomization, the model achieves a

high level of unpredictability and security while

maintaining computational efficiency.

The two key contributions of this work are:

1. Dynamic ciphertext for identical messages :
Every encryption attempt produces a new
ciphertext sequence, ensuring that even repeated
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transmissions of the same message remain
unpredictable.

2. Distinct ciphertext for repeated characters
Identical characters within the same plaintext do
not generate identical ciphertext, effectively
nullifying frequency analysis attacks.

Testing and analysis confirm that the scheme is both
secure and efficient, offering strong resistance against
brute-force, algebraic, and statistical attacks. Its
lightweight nature makes it especially suitable for
constrained environments such as IoT, embedded
systems, and educational platforms  where
mathematical transparency and efficiency are
required.
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