Landslides: Causes, Prevention, And Control

Mohammed Imaduddin¹, Mohammed Fahad², Abdul Muqeeth³, Md Jalal Uddin⁴, Mr Md Moiz⁵

1,2,3</sup>Ug Students, B.E. - Civil engineering Lords Institute of Engineering and Technology Himayat Sagar

500091 Telangana

Abstract—Landslides are one of the most destructive natural hazards that cause significant damage to life, property, and the environment. They occur when masses of rock, soil, or debris move down a slope due to gravitational forces. The primary causes of landslides include geological factors such as weak rock structures, soil erosion, and steep slopes, as well as external triggers like heavy rainfall, earthquakes, deforestation, and human activities such as construction and mining. Effective prevention and control of landslides require a combination of engineering measures, environmental management, and community awareness. Preventive strategies include proper land-use planning, afforestation, slope stabilization, construction of retaining walls, and efficient drainage systems. Early warning systems and monitoring techniques also play a crucial role in reducing risks. This paper highlights the causes of landslides and explores various methods for their prevention and control, emphasizing the need for sustainable practices to minimize hazards and ensure safety in vulnerable regions.

Index Terms—Landslides, Soil erosion, Heavy Rainfall, Earthquakes, Deforestation.

I. LITERATURE REVIEW

Landslides are one of the most common natural hazards, defined as the downslope movement of rock, soil, or debris under gravity. They occur in many parts of the world and often cause serious loss of life, property damage, and environmental changes. The main natural triggers include heavy rainfall, earthquakes, volcanic activity, and slope weathering. Among these, rainfall is the most frequent, as intense or prolonged precipitation reduces soil strength and leads to failure. Earthquakes also play a significant role in mountainous and tectonic regions by destabilizing slopes through ground shaking.

For scientific study, landslide inventories are essential. Databases such as NASA's Global Landslide Catalog and the USGS national records

provide information for mapping and prediction. Remote sensing technologies have greatly advanced landslide research. Tools like LiDAR, optical imagery, and InSAR allow detection, monitoring, and post-event analysis with higher accuracy. Early warning systems now combine rainfall thresholds, monitoring networks, and remote sensing data to reduce disaster impacts.

Despite progress, challenges remain in creating reliable global inventories, developing models that work across different environments, and translating research into practical policy and community safety measures. The literature emphasizes that future work should focus on improving data quality, integrating physical and machine learning models, and strengthening early warning and mitigation systems, especially in regions highly sensitive to climate change.

1.1. What is the Significance?

- Landslides are highly destructive natural hazards that cause serious loss of life and property. They also damage essential infrastructure such as roads, railways, and buildings, creating economic and social challenges for affected communities. Studying landslides is therefore crucial to understand their causes and impacts.
- Research on landslides helps in identifying vulnerable zones and preparing hazard and susceptibility maps. It also supports the development of early warning systems that can provide timely alerts and reduce disaster impact.
- At a broader scale, landslides affect rivers, forests, and ecosystems, while climate change is expected to increase their frequency and intensity. Hence, studying landslides is significant not only for disaster risk reduction

^{4,5}Assistant Professor, Lords Institute of Engineering and Technology Himayat Sagar 500091 Telangana

but also for sustainable development and safe land-use planning in hazard-prone regions.

Fig1. Landslide

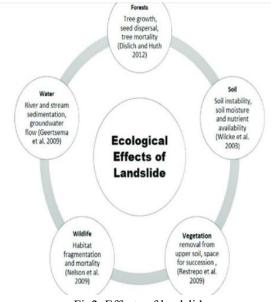


Fig2. Effects of landslide

1.2. Explain the mechanism of slope failure?

➤ Slope failure occurs when gravity overcomes the strength of soil or rock. Heavy rainfall, earthquakes, erosion, or human activity can trigger the failure. Once the resisting strength is exceeded, the slope material moves downslope as a slide, flow, or fall.

II. CAUSES OF LANDSLIDES

- ➤ Weak or fractured rocks Slopes with unstable geology are more prone to failure.
- ➤ Heavy rainfall Increases water content, reduces cohesion, and raises pore pressure.
- ➤ Earthquakes Ground shaking destabilizes slopes and triggers sudden landslides.
- ➤ Volcanic activity Lava flows, ash deposits, and eruptions can cause slope failures.
- Rapid snowmelt Adds water to the soil, reducing slope stability.
- ➤ Deforestation Removal of vegetation weakens root support and increases erosion.
- Mining and construction Human activities disturb natural slope stability.
- Climate change Increases frequency of extreme rainfall and glacier/permafrost melting.

III. EXPERIMENTAL PROCEDURE

- Site Selection or Sample Collection: The first step involves selecting a slope prone to landslides or collecting soil/rock samples representative of the area. The slope's angle, soil type, and vegetation are noted.
- ➤ Laboratory Testing: Soil or rock samples are tested in the lab to determine properties such as cohesion, angle of internal friction, permeability, and shear strength. These properties help predict slope stability.
- Slope Modeling: Physical models (like sand-boxes or small-scale slopes) or numerical simulations are created to replicate real slope conditions. The model includes slope angle, soil layers, and water content.
- Triggering the Landslide: The slope is subjected to simulated rainfall, shaking, or additional loads to mimic natural triggers like heavy rain, earthquakes, or human activities.
- Observation and Recording: The movement of the slope or model is observed carefully. Sensors or visual methods measure displacement, velocity, and failure patterns.
- ➤ Data Analysis: The collected data are analyzed to understand the conditions under which slope failure occurs, the type of movement (slide, flow, fall), and the effect of different triggers.

© October 2025 | IJIRT | Volume 12 Issue 5 | ISSN: 2349-6002

- Comparison and Validation: Experimental results are compared with field observations or historical landslide events to validate the findings.
- Conclusion: The experiment showed that steep slopes, weak soil/rock, and high water content increase landslide risk. Rainfall, earthquakes,

and human activities can trigger slope failure. Landslides occur when shear stress exceeds shear strength. Proper drainage, vegetation, and slope stabilization help prevent failures. Understanding slope mechanics is essential for reducing hazards in vulnerable areas.

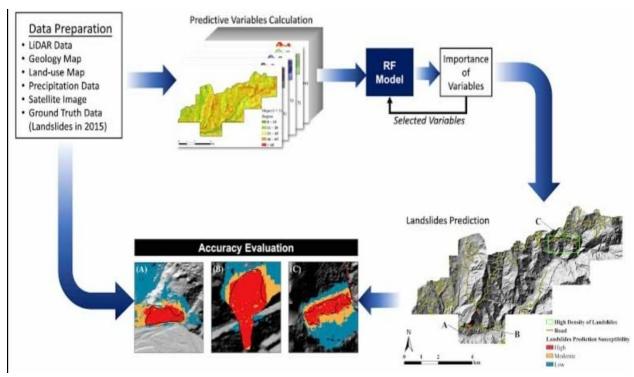


Fig3. Data Preparation

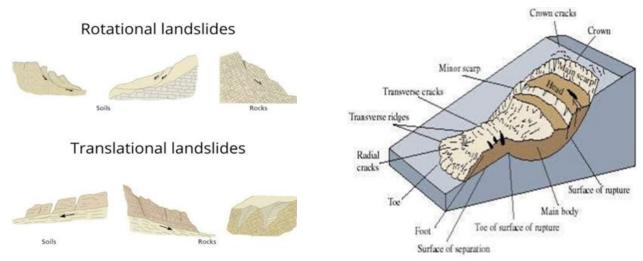


Fig4. Rotational and Translation

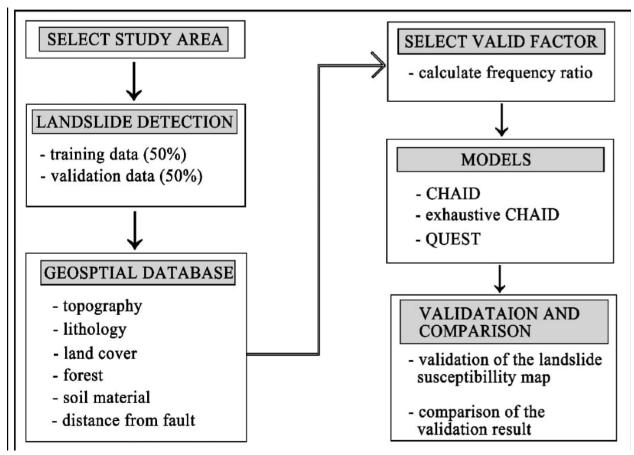


Fig6. Flowchart Landslides

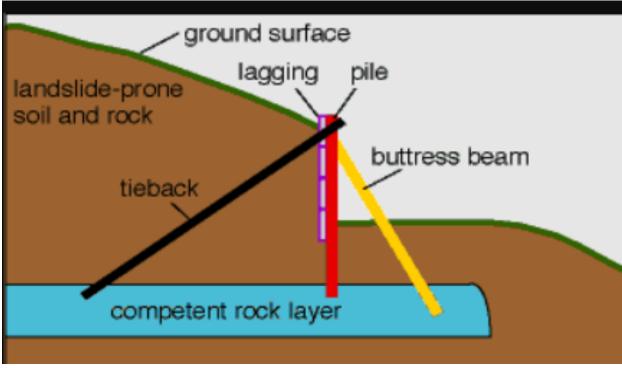


Fig.7 Geological Survey

Landslide classification based on the movement and water

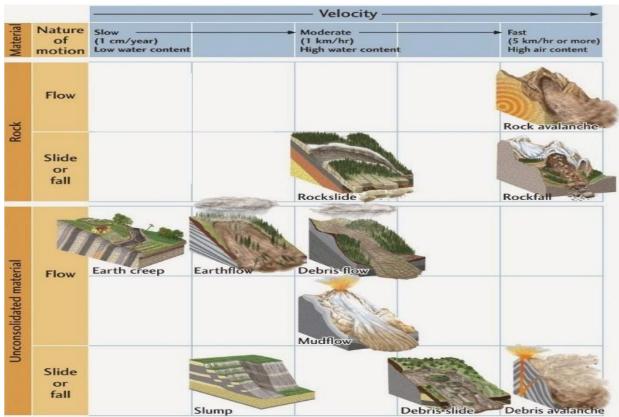


Fig:8 Classification of Landslies

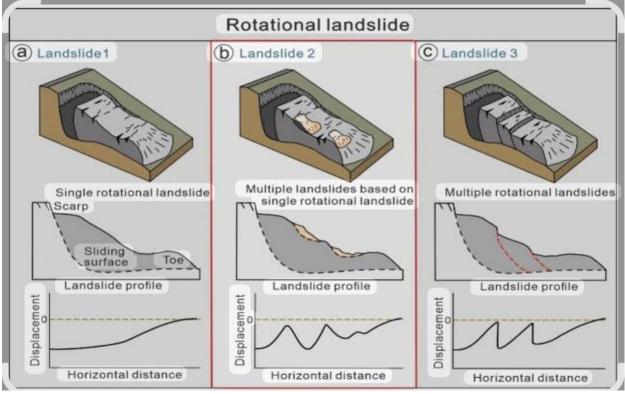


Fig:9 Multiple landslides experiment

© October 2025 | IJIRT | Volume 12 Issue 5 | ISSN: 2349-6002

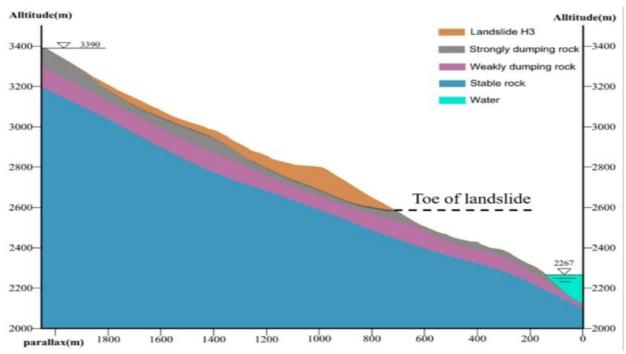


Fig:10 Spatial and Temporal distribution characteristics of landslides

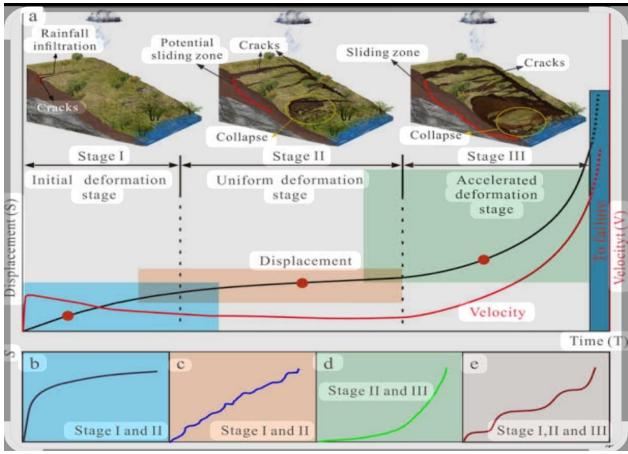


Fig: 11 Graphical classifications of Landslides

© October 2025 | IJIRT | Volume 12 Issue 5 | ISSN: 2349-6002

IV. CONCLUSION

Landslides are serious natural disasters caused by the combined effects of natural factors like heavy rainfall, earthquakes, and weak geology, along with human activities such as deforestation and construction. They occur when the gravitational force exceeds the resisting strength of slope materials. Proper slope management, drainage control, and vegetation cover can help reduce landslide risks. Understanding their causes, mechanisms, and preventive measures is essential for protecting lives, property, and the environment.

Effective prevention and mitigation strategies include proper slope design, afforestation, drainage management, retaining structures, and the use of early warning systems. Understanding the causes and mechanisms of landslides is crucial for developing sustainable land-use practices and ensuring community safety in hilly and mountainous regions.

Key Observation: mostly

- Landslides occur on steep and unstable slopes with weak or fractured rocks.
- Heavy rainfall and water infiltration are the most common triggering factors.
- ❖ Deforestation and construction activities increase the likelihood of slope failure.
- Soil saturation reduces cohesion and increases pore pressure, weakening the slope.
- ❖ Landslides show visible cracks, tilted trees, and ground deformation before failure.
- ❖ Areas with loose soil or clay layers are more prone to sliding.
- ❖ The type of movement varies it can be a fall, slide, flow, or creep.
- Seismic activity and vibrations can instantly trigger slope collapse.
- ❖ After a landslide, the affected area often remains unstable for some time.
- Preventive measures like vegetation cover, drainage control, and retaining walls help improve slope stability.

REFERENCES

[1] Carrara, A., Guzzetti, F., Cardinali, M., & Reichenbach, P. (1999). Use of GIS technology

- in the prediction and monitoring of landslide hazard. Natural Hazards, 20(2–3), 117–135.
- [2] 2. Cruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. Transportation Research Board, Special Report 247, 36–75.
- [3] Glade, T. (2003). Landslide occurrence as a response to land use change. Catena, 51(3–4), 297–314.
- [4] Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 98, 239– 267.
- [5] Hock, R., et al. (2019). High mountain areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.
- [6] Hong, H., Pourghasemi, H. R., & Chen, W. (2019). A review of GIS-based landslide susceptibility modeling techniques. Earth-Science Reviews, 180, 60–91.
- [7] Intrieri, E., Gigli, G., Casagli, N., & Nadim, F. (2013). Landslide early warning systems: Concepts and practice. Engineering Geology, 147–148, 124–138.
- [8] Keefer, D. K. (2002). Investigating landslides caused by earthquakes A historical review. Surveys in Geophysics, 23(6), 473–510.
- [9] Kirschbaum, D. B., et al. (2015). A global catalog of rainfall-triggered landslides. Journal of Hydrology, 525, 586–600.
- [10] Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180, 60–91.
- [11] Singhroy, V., & Molch, K. (2004). Landslide risk assessment using remote sensing techniques. Natural Hazards, 33(1), 109–131.