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Abstract—This paper presents a practical framework for 

integrating radar signal processing with lightweight 

machine learning to enable robust UAV perception for 

collision avoidance, target classification, and 

autonomous navigation. We review core signal-

processing components (FMCW/IQ acquisition, FFT-

based range mapping, Doppler processing), adaptive 

detection using CFAR, micro-Doppler feature extraction, 

and edge deployment of compact neural networks 

(TensorFlow Lite / TinyML). A reference pipeline is 

described alongside implementation strategies for 

embedded platforms and evaluation methodology using 

simulated and micro-Doppler datasets. Results indicate 

that combining classical radar detection with small 

CNN/ML classifiers provides reliable drone vs. bird 

discrimination and improves situational awareness in 

degraded-visibility conditions. 

 

I. INTRODUCTION 

 

Unmanned Aerial Vehicles (UAVs) are increasingly 

operating in cluttered airspaces where reliable sensing 

is critical for safety. Optical sensors such as cameras 

and LiDAR provide rich scene information but are 

limited under adverse weather and low-light 

conditions. Radar offers complementary sensing 

capabilities: it operates effectively in night, fog, dust, 

and other obscurants, and captures kinematic 

signatures encoded in frequency and phase (Doppler 

and micro-Doppler). Recent research demonstrates 

that micro-Doppler signatures can effectively 

discriminate UAVs from birds and other objects, and 

that compact ML models can run on edge hardware for 

real-time classification. This work synthesizes these 

concepts into a deployable perception pipeline suitable 

for drone operations. 

 

II. RELATED WORK 

 

Micro-Doppler analysis and radar-based classification 

have been extensively studied. Surveys highlight 

micro-Doppler’s utility in UAV identification, and 

recent studies show the growing adoption of deep 

learning on radar spectrograms for classification. 

RF/Radar UAV detection research examines both 

passive and active radar methods, highlighting 

challenges posed by small radar cross-section (RCS) 

targets. Edge ML frameworks such as TensorFlow Lite 

and TinyML enable deployment of these models on 

resource-constrained embedded systems. 

 

III. SYSTEM OVERVIEW & PIPELINE 

 

A practical onboard radar-AI perception stack 

comprises the following modules: 

 

1. Signal Acquisition: FMCW or pulsed radar 

produces complex I/Q samples per chirp/frame. 

Phase coherence is essential for accurate Doppler 

and micro-Doppler extraction. 

 

2. Preprocessing: DC removal, windowing 

(Hann/Hamming), and calibration. 

 

3. Range FFT: Per-chirp FFT produces range bins. 

Efficient FFT libraries (FFTW, KissFFT, or 

vendor DSP libraries) are recommended for real-

time operation. 

 

4. Doppler / Micro-Doppler Processing: Compute 

Doppler FFTs over slow-time frames to form 

time-frequency spectrograms, revealing 

rotor/propeller modulations useful for UAV vs. 

bird discrimination. 

 

5. Detection (CFAR): Adaptive thresholding (CA-

CFAR, OS-CFAR) locates candidate targets while 

maintaining controlled false-alarm rates. 

Parameter tuning is critical in cluttered 

environments. 
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6. Tracking: Use Kalman filters or advanced multi-

target trackers to estimate kinematic state (range, 

range-rate) over time. 

 

7. Feature Extraction & Classification (AI): Extract 

micro-Doppler patches per detection and classify 

using compact CNN/ML models exported to 

TensorFlow Lite / TinyML for edge inference. 

 

8. Decision & Autonomy: Fuse classification and 

tracking to trigger avoidance maneuvers, path 

replanning, or mission-level decisions. 

 

Pipeline summary: 

Raw IQ → Range FFT → Range-Doppler / 

Spectrogram → CFAR → Tracks → Classifier → 

Autonomy 

 

IV. SIGNAL PROCESSING DETAILS 

 

4.1. Range FFT and Windowing 

FFT size (N) determines range resolution and bin 

width. Apply taper/windowing to reduce sidelobes. 

Fixed- or floating-point optimized FFTs are 

recommended for constrained MCUs. 

 

4.2. Doppler & Micro-Doppler 

Stack M successive pulses and compute Doppler FFTs 

across slow-time frames to obtain velocity 

information. Micro-Doppler signatures, resulting from 

rotating/flapping parts, are represented as 

spectrograms and provide discriminative cues for 

small UAV vs. bird classification. 

 

4.3 CFAR Detection 

CFAR computes adaptive thresholds from neighboring 

training cells while guarding the test cell(s). Variants 

include CA-CFAR, OS-CFAR, and 2D/3D CFAR on 

range-Doppler maps. CFAR maintains a constant false 

alarm rate under non-stationary noise/clutter. 

 

V. MACHINE LEARNING FOR CLASSIFICATION 

 

5.1. Feature Choices 

1D spectral vectors (amplitude vs. frequency) for 

small CNN/ML models. 

 

2D micro-Doppler spectrograms for CNN classifiers. 

Handcrafted features: SNR, RCS estimate, Doppler 

variance, spectral centroid. 

 

5.2. Model Types & Edge Deployment 

Lightweight CNNs or MLPs quantized to int8 can be 

deployed via TensorFlow Lite / TinyML on SBCs or 

MCUs. Model selection depends on latency, memory, 

and accuracy requirements. 

 

VI. IMPLEMENTATION GUIDELINES 

 

Radar Frontend: Short-range FMCW radars (24/60/77 

GHz) or mmWave modules (e.g., TI SDK) are suitable. 

Phase coherence and sampling fidelity are key. 

 

FFT & DSP: FFTW/KissFFT or vendor DSP libraries; 

fixed/floating-point support depends on the host. 

 

Edge ML: Use TensorFlow Lite / TF-Micro; quantize 

models and test on representative datasets. 

 

CFAR & Tracking: Implement CA/OS-CFAR; use 

gating and nearest-neighbor for simple tracking, or 

Hungarian/assignment methods for multi-target 

scenarios. 

 

VII. EVALUATION APPROACH 
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1. Simulated Data: Synthetic IQ signals with 

embedded rotor tones and noise for pipeline 

verification. 

 

2. Controlled Field Trials: Collect labeled micro-

Doppler data from UAVs, birds, and clutter at 

multiple ranges/aspect angles. 

 

3. Metrics: Detection probability (Pd), false alarm rate 

(Pfa), classification accuracy, confusion matrices, 

latency, and resource usage. 

 

4. Ablation Studies: Analyze impact of window size, FFT 

length, CFAR parameters, and classifier architecture 

on performance

VIII. EXAMPLE REFERENCE IMPLEMENTATION 

 

Each frame: 

 

1. Acquire N-sample IQ chirp. 

2. Apply window, compute N-point FFT → range spectrum. 

 
3. Stack K chirps → Doppler FFTs / spectrograms. 

4. Apply 1D/2D CFAR → candidate cells. 

5. Extract micro-Doppler patches → normalize → 

TF-Lite classification. 

6. Update Kalman tracks and fuse labels with 

kinematic confidence → trigger avoidance if 

required. 

 

Deployable on Raspberry Pi / Jetson Nano, later 

portable to MCU with TF-Micro. 

 

IX. DISCUSSION 

 

Strengths: Radar + AI complements vision sensors, 

providing all-weather, low-light operation and unique 

kinematic information. Micro-Doppler aids rotorcraft 

identification. 

Limitations: Small RCS and low SNR at long ranges 

challenge detection. Classifiers require representative 

data across angles, ranges, and environmental 

conditions. Passive radar and sensor fusion can 

mitigate this. 
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Future Directions: Multi-sensor fusion (camera + radar 

+ IMU), joint communications & sensing (JC&S), 

distributed sensor networks, semi-supervised learning, 

advanced 3D CFAR, and robust multi-target tracking. 

 

X. CONCLUSION 

 

Integrating classical radar detection (FFT, CFAR, 

tracking) with compact machine learning yields an 

effective perception stack for UAV operations. Micro-

Doppler spectrograms enable discriminative drone vs. 

bird classification, while edge ML runtimes make 

onboard inference feasible. Careful design, dataset 

curation, and regulatory compliance are essential for 

safe deployment. PinakShakti Aerospace envisions 

such hybrid radar-AI stacks as key enablers of safer, 

more autonomous aerial systems. 
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