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Abstract—This paper presents a practical framework for
integrating radar signal processing with lightweight
machine learning to enable robust UAV perception for
collision avoidance, target classification, and
autonomous navigation. We review core signal-
processing components (FMCW/IQ acquisition, FFT-
based range mapping, Doppler processing), adaptive
detection using CFAR, micro-Doppler feature extraction,
and edge deployment of compact neural networks
(TensorFlow Lite / TinyML). A reference pipeline is
described alongside implementation strategies for
embedded platforms and evaluation methodology using
simulated and micro-Doppler datasets. Results indicate
that combining classical radar detection with small
CNN/ML classifiers provides reliable drone vs. bird
discrimination and improves situational awareness in
degraded-visibility conditions.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are increasingly
operating in cluttered airspaces where reliable sensing
is critical for safety. Optical sensors such as cameras
and LiDAR provide rich scene information but are
limited under adverse weather and low-light
conditions. Radar offers complementary sensing
capabilities: it operates effectively in night, fog, dust,
and other obscurants, and captures kinematic
signatures encoded in frequency and phase (Doppler
and micro-Doppler). Recent research demonstrates
that micro-Doppler signatures can effectively
discriminate UAVs from birds and other objects, and
that compact ML models can run on edge hardware for
real-time classification. This work synthesizes these
concepts into a deployable perception pipeline suitable
for drone operations.

II. RELATED WORK

Micro-Doppler analysis and radar-based classification
have been extensively studied. Surveys highlight
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micro-Doppler’s utility in UAV identification, and
recent studies show the growing adoption of deep
learning on radar spectrograms for classification.
RF/Radar UAV detection research examines both
passive and active radar methods, highlighting
challenges posed by small radar cross-section (RCS)
targets. Edge ML frameworks such as TensorFlow Lite
and TinyML enable deployment of these models on
resource-constrained embedded systems.

III. SYSTEM OVERVIEW & PIPELINE

A practical onboard radar-Al perception stack
comprises the following modules:

1. Signal Acquisition: FMCW or pulsed radar
produces complex I/Q samples per chirp/frame.
Phase coherence is essential for accurate Doppler
and micro-Doppler extraction.

2. Preprocessing: DC removal, windowing
(Hann/Hamming), and calibration.

3. Range FFT: Per-chirp FFT produces range bins.
Efficient FFT libraries (FFTW, KissFFT, or
vendor DSP libraries) are recommended for real-
time operation.

4. Doppler / Micro-Doppler Processing: Compute

Doppler FFTs over slow-time frames to form
spectrograms,
rotor/propeller modulations useful for UAV vs.
bird discrimination.

time-frequency revealing

5. Detection (CFAR): Adaptive thresholding (CA-
CFAR, OS-CFAR) locates candidate targets while
maintaining  controlled  false-alarm  rates.
Parameter tuning is critical in cluttered
environments.
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6. Tracking: Use Kalman filters or advanced multi-
target trackers to estimate kinematic state (range,
range-rate) over time.

7. Feature Extraction & Classification (AI): Extract
micro-Doppler patches per detection and classify
using compact CNN/ML models exported to
TensorFlow Lite / TinyML for edge inference.

8. Decision & Autonomy: Fuse classification and
tracking to trigger avoidance maneuvers, path
replanning, or mission-level decisions.

Pipeline summary:

Raw IQ — Range FFT — Range-Doppler /
Spectrogram — CFAR — Tracks — Classifier —
Autonomy

IV. SIGNAL PROCESSING DETAILS

4.1. Range FFT and Windowing

FFT size (N) determines range resolution and bin
width. Apply taper/windowing to reduce sidelobes.
Fixed- or floating-point optimized FFTs are
recommended for constrained MCUs.

4.2. Doppler & Micro-Doppler

Stack M successive pulses and compute Doppler FFTs
across slow-time frames to obtain velocity
information. Micro-Doppler signatures, resulting from
rotating/flapping  parts, are represented as
spectrograms and provide discriminative cues for
small UAV vs. bird classification.

4.3 CFAR Detection

CFAR computes adaptive thresholds from neighboring
training cells while guarding the test cell(s). Variants
include CA-CFAR, OS-CFAR, and 2D/3D CFAR on
range-Doppler maps. CFAR maintains a constant false
alarm rate under non-stationary noise/clutter.

V. MACHINE LEARNING FOR CLASSIFICATION
5.1. Feature Choices
1D spectral vectors (amplitude vs. frequency) for

small CNN/ML models.

2D micro-Doppler spectrograms for CNN classifiers.
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Handcrafted features: SNR, RCS estimate, Doppler
variance, spectral centroid.

5.2. Model Types & Edge Deployment

Lightweight CNNs or MLPs quantized to int8 can be
deployed via TensorFlow Lite / TinyML on SBCs or
MCUs. Model selection depends on latency, memory,
and accuracy requirements.

VI. IMPLEMENTATION GUIDELINES

Radar Frontend: Short-range FMCW radars (24/60/77
GHz) or mmWave modules (e.g., TI SDK) are suitable.
Phase coherence and sampling fidelity are key.

FFT & DSP: FFTW/KissFFT or vendor DSP libraries;
fixed/floating-point support depends on the host.

Edge ML: Use TensorFlow Lite / TF-Micro; quantize
models and test on representative datasets.

CFAR & Tracking: Implement CA/OS-CFAR; use
gating and nearest-neighbor for simple tracking, or
Hungarian/assignment methods for multi-target
scenarios.

VII. EVALUATION APPROACH
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1. Simulated Data: Synthetic IQ signals with
embedded rotor tones and noise for pipeline
verification.

2. Controlled Field Trials: Collect labeled micro-
Doppler data from UAVs, birds, and clutter at
multiple ranges/aspect angles.

Metrics: Detection probability (Pd), false alarm rate
(Pfa), classification accuracy, confusion matrices,
latency, and resource usage.

Ablation Studies: Analyze impact of window size, FFT
length, CFAR parameters, and classifier architecture
on performance

VIII. EXAMPLE REFERENCE IMPLEMENTATION

Each frame:

1. Acquire N-sample 1Q chirp.

e

FFT

3. Stack K chirps — Doppler FFTs / spectrograms.
Apply 1D/2D CFAR — candidate cells.

5. Extract micro-Doppler patches — normalize —
TF-Lite classification.

6. Update Kalman tracks and fuse labels with
kinematic confidence — trigger avoidance if
required.

Deployable on Raspberry Pi / Jetson Nano, later
portable to MCU with TF-Micro.
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2. Apply window, compute N-point FFT — range spectrum.
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IX. DISCUSSION

Strengths: Radar + Al complements vision sensors,
providing all-weather, low-light operation and unique
kinematic information. Micro-Doppler aids rotorcraft
identification.

Limitations: Small RCS and low SNR at long ranges
challenge detection. Classifiers require representative
data across angles, ranges, and environmental
conditions. Passive radar and sensor fusion can
mitigate this.
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Future Directions: Multi-sensor fusion (camera + radar
+ IMU), joint communications & sensing (JC&S),
distributed sensor networks, semi-supervised learning,
advanced 3D CFAR, and robust multi-target tracking.

X. CONCLUSION

Integrating classical radar detection (FFT, CFAR,
tracking) with compact machine learning yields an
effective perception stack for UAV operations. Micro-
Doppler spectrograms enable discriminative drone vs.
bird classification, while edge ML runtimes make
onboard inference feasible. Careful design, dataset
curation, and regulatory compliance are essential for
safe deployment. PinakShakti Aerospace envisions
such hybrid radar-Al stacks as key enablers of safer,
more autonomous aerial systems.
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