© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

Attention-Enhanced CNN—RNN Framework with
Adaptive Coyote Optimization—Based Feature Selection

for High-Dimensional Data Mining and Anomaly
Detection

Priyanga.P', Dr.K. Saraswathi?
'Ph.D. Research Scholar, PG & Research Department of Computer Science,
Government Arts College - Coimbatore-18.

?Associate Professor, PG & Research Department of Computer Science,

Government Arts College - Coimbatore-18.

Abstract— Data mining (DM) is fundamental for
extracting meaningful knowledge from large-scale, high-
dimensional datasets, were redundant attributes and
noisy features often hinder classification and anomaly
detection. In order to produce a smaller but more
informative feature set, the suggested ACOA technique
uses a process of eliminating features that are
superfluous or redundant. This method produces small,
extremely informative subsets. The spatial and
sequential dependencies in data can be effectively
captured by the application of an attention based- hybrid
CNN-RNN (A-CNN-RNN). For anomaly detection
study, and DM analysis, a widely accessible dataset
named KDD Cup 1999 dataset is utilized to assess
suggested method. When compared this suggested model
with some standard deep learning (DL) models (CNN-
only, RNN-only, CNN-RNN) and traditional machine
learning (ML) techniques (Random Forest (RF),
XGBoost), this suggested model executes well than other
methods, and it was demonstrated by the outcomes of
simulation. High scores in prediction accuracy (ACC),
precision (P), recall (R), F1-score, and AUC-ROC were
attained using ACOA. Additionally, feature selection
(FS) was used to minimise the input feature space by
more than 50%. By effectively finding pertinent features,
metaheuristic-guided feature selection (FS) improves
classification and anomaly detection in high-dimensional
data. It facilitates Strong pattern recognition and
extracting valuable insights over a wide range of DM
backgrounds

Index Terms— Data Mining; Anomaly Detection; High-
Dimensional Data; CNN-RNN; Attention Mechanism;
Adaptive Coyote Optimization (ACOA); Feature
Selection; KDD Cup 1999
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I. INTRODUCTION

Massive, complex datasets (big data) are produced by
the growth of digital ecosystems in healthcare,
finance, e-commerce, and industry, opening doors for
efficiency and innovation. Data mining plays a vital
role in this context, aiming to uncover patterns,
classify instances, and detect anomalies that may
represent fraud, faults, or rare events. Among these
tasks, anomaly detection is especially critical, as
identifying unusual patterns in massive datasets can
provide early warnings and support decision-making.
An essential component of DM is anomaly detection.
Data outliers, aberrant activity, and system failure are
only a few examples of anomalous appearance. Both
rarity and type diversity are key problems in anomaly
identification because of the large range of anomaly
kinds (point, collective, contextual, etc.) and the
infrequency of anomalies, which makes it hard to
gather enough labelled samples for training models. In
a high-dimensional space, anomalous characteristics
are more hidden, while they are more likely to appear
in a low-dimensional region. While the majority of
anomaly detection techniques directly or implicitly
rely on distance contrast [3], increasing dimensionality
causes the distance contrast across data to become
similar [1] [2]. For these distance contrast-based
anomaly detection techniques, high dimensionality
eventually results in failure. Additionally, it is difficult
to distinguish between normal and abnormal cases due
to the data's sparse distribution in a high-dimensional
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space. [4]. Anomaly detection for the data in a high-
dimensional space is difficult in this situation.
DL-based methods, distance metric-based techniques,
and deep hybrid-based methods are important
categories of anomaly detection. K-nearest neighbour
(K-NN) [5] and random distances [6] are examples of
distance metric-based techniques that do not obtain
data distribution. Such methods are susceptible to the
adverse impacts of high dimensionality, as distance
measurements grow increasingly comparable as data
dimensionality increases. Deep features of the data [7]
[8] can be learnt and understood by DL-based
methods, like the Bayesian Variational Autoencoder
(BVAE) [9] and those in [10] [11]. Both supervised
and unsupervised detection techniques are included in
this category. The unsupervised detection techniques,
such as Deep One-class Classification (DOC) [13],
Generative Adversarial Network (GAN) [14], etc., do
not depend on data labels, they are very susceptible to
noise and missing data [12]. Anomaly detection
accuracy may typically be lower than that of
supervised detection methods since the objective
function of unsupervised detection methods is
primarily used for data compression or dimensionality
reduction. Because supervised detection techniques,
like those in [15], rely on data labels, they perform
better in detection than unsupervised techniques.

If there is a lot of data or if the data is multi-
dimensional, labelling it can be difficult. As a result, it
is challenging to modify supervised anomaly detection
techniques for large-scale and high-dimensional data
anomaly detection. Deep hybrid-based techniques
combine deep and conventional detection techniques,
as seen in Deep (NN) Neural Networks-(SVM)
Support Vector Machine (DNN-SVM) [16], Deep
Autoencoder, and Ensemble KNN (DAE-KNN) [17].
As a result, they adopt the traits of both conventional
and deep detection techniques. They have inherent
advantages in anomaly detection; however, precision
of calculation and processing cost must be traded off.
However, anomaly detection in high-dimensional data
remains difficult due to redundancy, irrelevant
attributes, and nonlinear dependencies that degrade
classifier performance and increase computational
burden.

DL approaches have shown notable potential for
mining such complex data. Convolutional NN (CNNs)
are effective at learning spatial and hierarchical
features, while Recurrent NN (RNNs) capture
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sequential and contextual dependencies. Their
combination provides rich feature representations
well-suited for anomaly detection. Moreover, attention
mechanisms further enhance these models by
dynamically prioritizing the most relevant
information, thereby improving interpretability and
robustness. Despite these advantages, applying DL
directly to high-dimensional data is inefficient, as
redundant attributes may introduce noise, overfitting,
and scalability issues.

FS is crucial method in anomaly detection and
classification methods, and this implementation may
support in overcoming those limitations. The most
relevant attributes are retained, and dimensionality
was reduced by the FS. Thus, improved efficiency,
better generalization, and faster model convergence
may result from this. But non-linear and large-scale
data was not effectively managed by conventional FS
methods, more adaptable and effective method was
offered by the metaheuristic optimization algorithms.
In this work, the Adaptive Coyote Optimization
Algorithm (ACOA) is employed exclusively for FS.
The social dynamics of coyote packs are the
motivation of the COA. The exploration and
exploitation are effectively adaptively balanced by the
ACOA. Thus, optimal feature subsets are identified,
and premature convergence are avoided by this
algorithm. In order to produce a smaller but more
informative feature set, the suggested ACOA
technique uses a process of eliminating features that
are superfluous or redundant. This method produces
small, extremely informative subsets. This allows a
small but highly discriminative feature set to be used
by the DL classifier. For anomaly detection study, and
DM analysis, a widely accessible dataset named KDD
Cup 1999 dataset is utilized to assess the suggested
method. For anomaly detection study, and DM
analysis, a widely accessible dataset named KDD Cup
1999 dataset is utilized to assess suggested method.

II. RELATED WORKS

Anomaly detection and classification in high-
dimensional data mining have been extensively
studied using both classical ML and advanced deep
learning approaches. Traditional models such as RF,
SVM, and Naive Bayes (NB) have been employed for
detecting anomalies, but their performance often
degrades with large-scale, nonlinear, and redundant
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data features. To overcome these challenges, recent
research has increasingly integrated feature selection
(FS) with deep learning (DL) and metaheuristic
optimization.

In order to solve data imbalance in anomaly detection,
integration of an improved RF with the Synthetic
Minority Over-sampling Technique (SMOTE) was
suggested by Wu et al. (2022). Their method achieved
high training accuracy but showed limited
generalization on testing data, highlighting the
importance of FS and robust model design [18].
Similarly, Kasongo and Sun (2020) applied FS using
XGBoost on the UNSW-NBI15 dataset, demonstrating
that selecting optimal attributes improves accuracy by
2.72% compared to raw high-dimensional features
[19].

On the DL front, for anomaly detection, Halbouni et
al. (2022) presented a hybrid CNN-LSTM (Long
Short-Term Memory) system. Both temporal and
spatial dependencies in sequential data were captured
by the suggested method. While effective, the model
faced scalability issues when applied to high-
dimensional inputs  without FS [20]. For
dimensionality reduction, Principal Component
Analysis (PCA) and Mutual Information were used
with LSTM by Laghrissi et al. (2021), reporting
accuracy above 99% on the KDD99 dataset, but PCA’s
linearity limited its adaptability to nonlinear data [21].
Metaheuristic algorithms have also been integrated
with deep models to improve FS. Malibari et al. (2022)
proposed an enhanced Arithmetic Optimization
Algorithm with Deep Wavelet Neural Networks
(DWNN), validated on CIC-IDS2017. State-of-the-art
(SOTA) anomaly detection methods are outperformed
by the suggested technique [22].

Murali Mohan et al. (2022) employed a hybrid
metaheuristic (SMSLO) with Deep Belief Networks

. -

Preprocessing Z-
Score Normalization

(DBNs) for cloud anomaly detection, showing notable
improvements in detection rates [23]. However, both
works emphasized IDS-specific applications and did
not generalize to broader data mining contexts.
Generative models have also been explored. In order
to increase classification robustness, Using Generative
Adversarial Networks (GANs), Ding et al. (2022)
introduced a hybrid approach for imbalanced anomaly
detection tasks that blends KNN with samples
produced by GAN. Their work validated the potential
of synthetic augmentation but noted computational
overheads as a limitation [24].

Despite these advancements, most existing approaches
either rely on traditional FS methods or apply DL
models directly to raw high-dimensional data, which
leads to redundancy, overfitting, and inefficiency. Few
works have investigated metaheuristic-guided FS
exclusively integrated with CNN-RNN-Attention
architectures for anomaly detection. This gap
motivates the present study, where the Adaptive
Coyote Optimization Algorithm (ACOA) is employed
to refine feature subsets before classification, and a
hybrid A-CNN-RNN with attention is used to capture
spatial, sequential, and contextual patterns effectively.

III. PROPOSED METHODOLOGY

To detect anomalies in high-dimensional datasets, this
paper suggests an optimised deep DM framework that
combines hybrid DL classification with metaheuristic-
based FS. The methodology consists of four primary
phases: data preprocessing, feature selection using
Adaptive Coyote Optimization Algorithm (ACOA),
classification with CNN—RNN-Attention (A-CNN-
RNN), and performance evaluation. Figure 1
illustrates the overall framework.

Feature Selection
using A daptive
coyote optimization
algorithim (ACOA)

-

Figure 1: Overview diagram of suggested DL model for ID
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3.1.1.  ZSN for Preprocessing the KDD Cup data
The KDD dataset (KDD Cup 1999) is a famous data
mining dataset used mainly for network intrusion
detection research. It was prepared for the Knowledge
Discovery and Data Mining (KDD) Cup competition
in 1999 and is one of the earliest large-scale datasets
in this field. With 41 attributes such protocol type,
service, duration, and error counts, each record
represents a network connection. DoS (Denial of
Service), Probe, Remote to Local (R2L), and User to
Root (U2R) are the four categories into which the data
is classified, either as regular traffic or as one of
numerous attack kinds.
Although it became a benchmark in DM and ML, the
dataset has shortcomings like duplicates, imbalance,
and outdated attack patterns, which is why improved
versions like NSL-KDD and newer datasets (e.g.,
UNSW-NB15, CIC-IDS2017) are now widely used.
The KDD Cup 1999 dataset is selected as the
benchmark, containing 41 features and one class label
with normal and anomalous instances (DoS, U2R,
R2L, Probe). Preprocessing includes the ZSN was
used on the dataset to guarantee that features from all
scales contribute uniformly during model training.
ZSN scales to unit variance and eliminates the mean to
standardise the features. It is especially helpful for
algorithms like distance-based or gradient-based
models that are sensitive to feature magnitude.
For each feature x, the normalized value z was
computed using the formula:
z=""+ (1)
Here, the standard deviation is denoted by o
The mean of the feature across the training set is
denoted as L.
This ensures uniform contribution of all features
during training.
e Categorical Encoding: Symbolic attributes (e.g.,
protocol type, service, flag) are encoded using
one-hot encoding.

3.1.2.  FSusing ACOA

In particular, when working with HD datasets, FS is
crucial for enhancing the classification efficiency of
ML frameworks. By removing unnecessary or
redundant features, a proper FS strategy improves
model generalisation while significantly lowering
computing costs.
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Here, the Adaptive Coyote Optimization Algorithm
(ACOA) was utilized for optimal feature subset
selection. ACOA, an enhanced version of the Coyote
Optimization Algorithm (COA), dynamically adjusts
its search behaviour during optimization to effectively
balance energy, leading to a more efficient search for
minimal, highly-informative feature subsets.

A. Overview of COA

The social relationships within Canis latrans packs
have been used as inspiration for the population-based
and nature-inspired algorithm (NIA) known as COA,
and it was suggested by Piezan et al. (2019).
Determining the initial population of coyotes, that
implies on N, € N* packs with N, € N* coyotes each,
is the first stage in the process. The division of the
initial packs is chosen at random. "Social condition
(SC)" refers to the decision variables (DV), and the c™®
coyote of the p™ pack in the j® dimension has the
following values:

SC";’; = Ib; + random; - (ub; — Ib;) (2)

Here, the limits of the j*" DV are represented by 1b;
and ub;. A random number that are uniformly
distributed is  denoted as randomj € [0,1].
Calculating the objective function (OF) values for
every set of DV is the second stage

fit?"* = f(secP") (3)

A coyote's transition between packs is controlled by a
particular probability (Pr) and is impacted by N..

Pr. = 0.005.N2 (4)

Additionally, the coyote with best OF cost value in the
pPpack of the t™ timestamp is referred as alpha
coyote, and it is considered by the COA. It is described
below:

alphaPt = {S€P"|argc = {1,2,., N.Jminf(SC>")}
&)

Each pack has an estimate of the cultural trend CT", and
it is also taken into consideration by the COA. This is
how the calculation is done:

Ohrs) N, is odd
CTP ={ ot pt 6)
j 0&]+0(&+ )
2 2 otherwise

In the range [1, D], the ranking SC of all coyotes of the

p™ pack in the t*"

instant of time for each j is denoted
as OP*. The dimension of the search space is D.
Based on the values of the OF and the coyotes' ages

(which are calculated in years and are defined as
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age?’t € N, the algorithm synchronises the coyotes'
births and deaths. In Algorithm 1, this method is
explained. Here, the group of coyotes with the worst
OF score is denoted by w. The total coyotes count in
this group is denoted by ¢. The OF values of the young
coyote (pup) and every coyote in the pack are
compared to determine the group of @ coyotes.

The of two randomly selected parents is combined
with an environmental element to create the pups.
Regardless of their social condition, parents are
chosen. Consequently, the pups are described as
follows:

pt D
SOCqe random; < Pyorj = j;
pt _ pt .o
pup;™ =y socge, ;. random; = Py + Pyorj =j,
R otherwise

jo
(7

Here, the two designated coyotes from the p™ pack
are dc; and dc,. The optimisation problem has two
random dimensions, j; and j,. The scatter probability
is P;. The association probability is P,. An arbitrary
value that can only be found within the j* dimension's
DV bounds is denoted as R;. A uniformly generated
random number € [0,1] is called rnd;.

P; and P, determine the coyote diversity.

The following formula is used to determine these
values:

P, =1/Dand ®)

P,=(1 - Py)/2 (9

Here, the influence impact on both parents is balanced
by P,.

The alpha influence (§,) and whole pack influence (&)
on the coyotes are expressed as follows:

8 = ctPt — socg;tland (10)

8, = alphaP* — socB. (11)

Here, the cultural difference from a random coyote is
indicated by cr;. The cultural difference between the
alpha coyote and a random coyote in the pack is
shown by cr.

The weights of 8.and 6, are denoted by r; and r,.
Uniformly distributed random values € [0,1] are
represented by r; and r,.

new,, pt = socf't + 1.6 +71,.6, (12)

The following is an expression of the new social
condition:

new_fitcp't = f(new_soc?'t) (13)

Reserving the best social condition
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soc (14)

p.t .. Pt . Pt
1 {new _soct”, mnew_fity” < fity
P =

socP* otherwise

Out of all the packs, the algorithm's final solution is

the best solution.

Adaptive Mechanism in COA (ACOA Enhancement):

While the traditional COA uses static update

parameters, the ACOA introduces a dynamic learning

adjustment mechanism. In ACOA, the influence

coefficients r; and r, are no longer purely random but

are adaptively scaled based on an adaptive learning

rate y, which evolves according to:

Y = Yo X exp (—B X Iteration) (15)

where:

e The initial learning rate is denoted as y,,

e B is the decay constant controlling the rate of
exploitation increase,

e Iteration is the current optimization step.

Thus, the influence weights in the social condition

update are modified as:

It = Y; X random and r, = y, X random

Initially, the algorithm favors exploration with larger

adaptive steps, encouraging broad search. As iterations

progress, the steps become smaller, shifting toward

precise  exploitation of  promising regions.

Furthermore, if a new social update results in fitness

improvement, the learning rate is temporarily boosted

to encourage further exploration; otherwise, it is

reduced to favor local search convergence.

This adaptive adjustment mechanism allows ACOA

to:

e Dynamically balance

exploitation,

exploration and

e Improve convergence speed,

o Enhance robustness against getting stuck in local
optima,

e Select more informative and compact feature
subsets for classification tasks.

The time complexity of the COA and ACOA remains

similar to traditional evolutionary algorithms,

expressed as:

O(Np X Ne X D+ N, X N¢ X f) (16)

Here, D is the search space dimension and f is the cost

of the OF evaluation. Consequently, ACOA offers a

very efficient method for choosing a small but

extremely informative subset of features during the FS

phase for the both datasets. ACOA lowers computing

expenses and increasing classification accuracy. This

ensures compact feature subsets with maximum
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predictive power. ACOA successfully reduces

dimensionality by more than 50%, retaining only the

most relevant attributes, thus lowering computational

cost and boosting classification efficiency

Algorithm: ACOA Feature Selection on KDD Cup

1999

Inputs (KDD-specific)

* Dataset: KDD Cup 1999 (full or 10% subset).

» Task: choose Binary (Normal vs Anomalous) or
Multi-class (Normal + categories).

» Split ratios: e.g., Train 70% / Val 15% / Test 15%
(no overlap).

* Preprocessing choices:

o Encoding for 3 categorical features: protocol type,
service, flag (use one-hot).

o Scaling for numeric features (z-score on training
stats).

o Imbalance strategy (class weights or balanced
sampling).

* ACOA params: number of packs, coyotes per pack,
max iterations, optional migration probability.

* Scoring model: fast version of your A-CNN-RNN
(few epochs) or a light surrogate (e.g., small MLP)
used only to score subsets inside ACOA.

Outputs

* Selected feature subset (names/indices) for KDD
(post-encoding groups or original 41 fields; see
note below).

* Reduced train/val/test matrices built from the
selected subset.

» Final metrics after retraining the full A-CNN-RNN
on the reduced features (ACC, P, R, F1, AUC (Area
under the Curve) - ROC (Receiver Operating
Characteristic) can explain.

KDD Cup 1999 Preprocessing (before ACOA)

1. Load data (full or 10% file).

3.1.3.  Classification using Hybrid CNN+RNN with
Attention mechanism (A-CNN-RNN) After
ACOA-based feature selection (FS), the reduced
feature set is classified with a hybrid CNN-RNN
model augmented by an attention mechanism. The
design exploits the complementary strengths of
each component:

e NN captures local cross-feature interactions and

hierarchical patterns.

e RNN (BiLSTM) models long-range dependencies

across feature groups.
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e Attention highlights the most informative blocks
for each record, improving accuracy and
interpretability.

The model outputs either binary (normal vs.

anomalous) or multi-class predictions (normal +

anomaly categories), depending on the experimental

setting.

A. MaxPooling based CNN

In the initial step of the ACNN-RNN model, the

selected features are processed via several

convolutional layers (CL). The input feature vector is
reshaped, if necessary, into a two-dimensional format
compatible with convolutional (Conv) operations. In
order to capture local patterns and hierarchical feature
representations, the CL applies a number of learnable
filters throughout the input. A common method for

adding non-linearity to a Conv operation is to use a

non-linear (NL) activation function (AF), such as the

Rectified Linear Unit (ReLU).

To further reduce dimensionality while maintaining

the most important information, the feature maps (FM)

are downsampled using pooling layers like

MaxPooling.

The Conv operation is CNNs' primary function, where

a small learnable kernel (or filter) slides over the input

FM to generate a set of FM. The formal calculation of

the convolutional output at a given spatial position

(i,j) for the kth filter, given an input feature matrix X

and a filter W, is as follows:

£57 = o(Zm Zn Wih X Xizmjin +b®) (17)

Here:

e Atlocation (i,j) in the k™ FM, the output feature

value is fis.k ),

e In the k™ filter, wrf,‘?l is the weight of kernel at
position (m, n).

e The input value at the relocated position is
Xi+m,j+n~

e The bias connected to the k™ filter is b®,

e The AF that adds non-linearity to the network is
o(+). It is also known as the ReLU, and it is
described as o(x) = max(0, x).

Without requiring manual feature engineering, the CL

allows the network to autonomously learn spatially

invariant features including edges, patterns, and
higher-order feature combinations.

Following the convolution operation, it is common

practice to apply a pooling operation to further process
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the feature maps. By summarising feature responses in
local neighbourhoods, pooling introduces a degree of
translation invariance and lowers computational cost
by reducing the spatial dimensions of the FM.

The most commonly used pooling strategy is
MaxPooling. In MaxPooling, a local neighborhood
R(i,j) around the position (i,j) is considered. In this
region, the max value is chosen. The MaxPooling

operation is mathematically defined as:
max

Pij = (m,n) € R(j, jfmn  (18)

Here,

e B is the pooled output at position (i, j),

e R(i,j) denotes the receptive field (i.e., local
window) centered at (i,)),

e fn are the convolution output values within the
neighborhood.

While keeping the most important features, pooling

drastically reduces the FM's size, which lowers the

number of parameters and computational load.

Additionally, it helps to control overfitting by

preventing the network from memorizing specific

details of the training data.

The resulting high-level FM are flattened into one-

dimensional sequences following several phases of

convolution, activation, and pooling. These sequences

encapsulate the most significant spatial patterns

present in the input feature set, forming a rich

representation that can be passed into sequential

modeling layers such as RNNs or LSTMs for further

processing.

Thus, the Convolutional Neural Network (CNN)

feature extraction (FE) phase transforms the original

input features into compact, informative, and spatially-

aware representations that facilitate more effective

downstream classification.

Sequential Learning with RNN and Attention

For RNN processing, the resultant FM are flattened
and transformed into sequential data after the spatial
features are extracted. First, flattening a sequence and
then feeding it into the RNN layer to capture temporal
correlations and dependencies. The variant like LSTM
is selected in this study, because it has the potential in
managing long-term dependencies and mitigate
vanishing gradient problems (VGP). An internal
hidden state is used by the RNN, and it detects the
feature sequence's historical context, when it processes
the sequential input step-by-step.
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By serving as an advanced focussing tool, the attention
mechanism enables the model to improve the
sequential data that the RNN processes. The Attention
mechanism assigns dynamic importance weights to
different time steps or hidden states produced by the
RNN. Instead of analysing each segment of the
sequence equally, the model can concentrate more on
features or temporal patterns that are more important
for precise classification according to the attention
mechanism. Each RNN hidden state is projected into a
common space, its relevance is determined, and
attention weights are formed by normalisation using a
softmax function. This process yields the attention
scores. A weighted sum of all hidden states makes up
the context vector. Then, it is computed to highlight
the most informative parts of the sequence.

Classification Layer and (LF) Loss Function

After an attention mechanism processes an input and
produces a context vector, fully connected (or dense)
layers are applied to transform these features into
higher-level abstractions. Here, the probability
distribution over the class labels are generated by a
softmax output layer. This layer is capable of
distinguishing normal and attack types. The final
output of the framework represents the class label with
highest probability.

Using an appropriate optimisation technique, like
Adam, the entire ACNN-RNN model is trained end-to-
end by minimising a cross-entropy (CE) loss (CEL)
function between the predicted labels and the ground
truth labels. Techniques like batch normalisation (BN)
and dropout regularisation are used during training to
stabilise the process and avoid overfitting.

By combining local feature extraction (CNN),
temporal modeling (RNN), and dynamic focusing
(Attention), the suggested ACNN-RNN framework
achieves  superior  classification  performance
compared to conventional classifiers and standalone
DL models. It not only improves overall classification
accuracy but also provides better generalization to
unseen network traffic patterns, making it highly
effective for practical ID scenarios.

The input to the ACNN is the optimized feature set X €
R™¥4, here, d is the count of chosen features, and n is
the count of student instances. The initial layers of the
ACNN consist of one or more Convolutional Layers
(CLs), which apply a set of learnable filters Wy €
R™f to extract local feature patterns.
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The Conv operation for a specified input window X is
expressed as follows:

k i - Kk
vy = Eto i Xismjn: 0ma +b® (19)

Here, yi(;() is the activation at location (i, j) for filter k,

and b® is the corresponding bias term. Non-linearity
is then introduced by passing the resultant FM through
an NL AF, usually ReLU:

ReLU(x) = max(0,x) (20)

To reduce spatial dimensionality and computational
cost, pooling layers such as max-pooling are
optionally  applied. ~ Once the hierarchical
representations are built, the output is forwarded into
the attention mechanism, which is the core innovation
in ACNN.

To represent each feature vector's significance in the
final decision, the attention mechanism dynamically
assigns weights to each feature vector. For each input
vector x;, a score e; is computed using a learned
function (e.g., dot-product or feed-forward scoring):
e; = score(x;) (21)

The attention weights o; are then derived using the
softmax function:

exp (ej)
G )
Ll ey )

The model's confidence in the relative importance of
each feature or location is represented by these
weights. The attended output representation is the
weighted sum of the feature vectors.

X = Xit1 %X (23)

This mechanism allows the framework to "emphasis"
on the most informative attributes (e.g., number of
forum views or assignment scores) while down-
weighting irrelevant ones. After an output layer, the
attended feature vector X is processed by one or more
dense layers.

For binary classification (BC) of student performance
(e.g., Pass/Fail), the final output is computed using the
sigmoid activation function:

-~ 1

y= 1+e~Z (24)

Where z is the linear combination of weights and
biases from the final dense layer. In situations with

many classes (such as Low, Medium, and High

performance), the softmax function is employed
instead:

e%

S\,iz c %’
j=1¢’

i €{1,..C}25)

For binary output, the model is trained to minimise the
binary cross-entropy loss (CEL):
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Lbinary = _[y log(f’) + (1 - Y) lOg(l - }A’)] (26)

Or the categorical CEL for multiclass output:
Lcategorical == Z?:l Vi 10g (?1)27)

Using gradient descent (GD) techniques like Adam or
Stochastic GD (SGD), model parameters (filters,
attention weights, and dense layer weights) are
updated during backpropagation. Performance metrics
like ACC, P, R, F-measure, and AUC-ROC are
employed for evaluating the framework, guaranteeing
that the classification is reliable and performs well
when applied to new data.

# Pseudocode: Suggested Procedure for ID using
ACOA + A-CNN-RNN

# Step 1: Data Preprocessing

Input:

+ Data: KDD Cup 1999, split into Train / Val / Test

» Features: Reduced feature blocks selected by
ACOA (e.g., Basic, Content, Time, Host, Protocol,
Service, Flag)

» Labels: Binary (normal vs anomalous) or multi-
class (normal + attack categories)

* Hyperparameters: batch size, epochs, learning rate,
dropout, class weights (if imbalanced)

* Architecture settings: embedding size, #Conv
layers (kernel 3-5), BiLSTM hidden size/layers,
attention type (additive/dot), head size

Output:

* Trained model weights (A-CNN-RNN)

e Test metrics: ACC, P, R, Fl-score, AUC-ROC
(micro/macro for multi-class)

* Per-record predictions: class probabilities +
predicted label

+ Attention weights: block-level importance (per
record) for interpretability

1.1 Load dataset

1.2 For each feature x in the dataset:

Compute mean (mu) and standard deviation (sigma)
on training set

Normalize: z = (x - mu) / sigma

If sigma == 0: add small constant epsilon to avoid
separation by 0

# Step 2: Feature Selection using ACOA
Input: Normalized Data

Output: Selected Feature Subset

2.1 Initialize ACOA parameters:
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Number of packs (Np), number of coyote (Nc), max
iterations

Initialize social conditions (SC) for each coyote
randomly within bounds

2.2 For each iteration:

For each pack p:

Evaluate fitness for each coyote: fit ¢ = f(SC c)
Determine alpha”(p): best coyote in pack

Compute cultural trend CT"(p)

Generate pup using social mix of two coyotes +
environment factor

Replace worst coyote if pup is better (elitism)

For each coyote ¢ in pack p:

Compute influence from trend (delta t) and alpha
(delta_a)

Update SC: SC new = SC + r t * delta t + r a *
delta a

If new fitness better: accept SC_new

Adapt learning rate gamma:

gamma = gamma_0 * exp (-beta * iteration)

r t=gamma t * random, r a=gamma a * random
2.3 Return best SC as optimal feature subset

# Step 3: Classification using A-CNN-RNN
Input: Feature-Selected Data
Output: Class Labels

3.1 Reshape selected features as 2D input for CNN

3.2 CNN Layer:

Apply Conv2D -> ReLU -> MaxPooling (multiple
times)

3.3 Flatten CNN output to 1D sequence

3.4 RNN Layer:

Use LSTM to capture temporal patterns from sequence
3.5 Attention Layer:

For each timestep:

Compute attention score e_i = score(h_i)

Compute weight alpha_i = softmax(e_i)

Context vector: sum(alpha i * h 1)

3.6 Fully Connected Layers:

Apply dense layer(s) to context vector

Use Softmax/Sigmoid for final classification

# Step 4: Training and Evaluation

4.1 Define LF:

Binary: Binary CE

Multiclass: Categorical CE

4.2 Train model using Adam optimizer
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4.3 Evaluate on test set using:
ACC, P, R, F1-score, AUC-ROC

IV. EXPERIMENTAL RESULTS

Experiments were conducted on KDD Cup 1999 with

duplicate removal, stratified Train/Val/Test split, one-

hot encoding for protocol type, service, flag, and z-

score scaling on numeric features in NS2 (Network

Simulator 2). ACOA was used only for feature

selection, operating on feature groups (38 numeric + 3

categorical groups). The classifier is A-CNN-RNN

with Attention (BiLSTM), trained with Adam and
early stopping. Metrics reported on the held-out test
set: ACC, P, R, Fl-score, AUC-ROC.

Below are the standard performance metric formulas

(ACC, P, R, and F-measure) along with their typical

interpretations in the context of IDS. In this context:

e True Positive (TP): The framework accurately
identifies an intrusion as an intrusion.

e True Negative (TN): The framework precisely
identifies normal traffic (non-intrusion) as
normal.

o False Positive (FP): The system in accurately
identifies non-intrusion as intrusion.

o False Negative (FN): The intrusion is not detected
by the system. (i.e., it is an intrusion but classified
as normal).

P: P shows the proportion of those that were real

attacks. When evaluating false alarms, P is essential.

If a traffic is classified as attack by the system, it is

probably accurate because a high P indicates fewer

false alarms.

TP
TP+FP (28)

F-measure: The F-measure balances FP and FN by
taking the harmonic mean of P and R.

Precision =

PrecisionxRecall
F — measure = 2 X —————— (29)
Precision+Recall

R: It is defined as the number of real attacks that the
system detects. R is essential to ensuring that no attack
is missed. Less missed attacks (FN) are indicated by a
high R.

Recall = P

TP+FN (30)
ACC: ACC assess the ratio of total instances (both
normal and attack) that are accurately identified by the
IDS.

Accuracy =

TP+TN
TP+TN+FP+FN

€2))
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The Table 1 shows the A-CNN-RNN + ACOA-FS
attains an optimal efficiency over all metrics,
demonstrating both stronger separability (AUC-ROC
99.3) and a better precision—recall balance (F1 98.85).
Relative to the strongest deep baseline without
attention/FS, it gains +0.62 Accuracy (99.12 vs 98.5),
+0.50 Recall, +0.55 F1, and +0.5 AUC-ROC—
showing that ACOA-based feature selection removes

redundancy and that attention helps focus on the most
informative blocks. Compared to XGBoost, the
proposed model improves Accuracy by +1.72 and
AUC-ROC by +1.3, highlighting the advantage of
jointly modeling local patterns (CNN), long-range
dependencies (RNN), and per-record importance
(attention) in high-dimensional data mining.

Table 1: Performance Comparison of the various approaches using several metrics on KDD Data

Method Metrics (%)
Accuracy Precision Recall Fl-score AUC-ROC
Random Forest 96.3 96.2 96.0 96.1 97.0
XGBoost 97.4 97.3 97.1 97.2 98.0
CNN-only 97.9 97.8 97.6 97.7 98.4
RNN-only 97.5 97.4 97.2 97.3 98.2
CNN-RNN (no Attention, no FS) 98.5 98.4 98.3 98.3 98.8
A-CNN-RNN + ACOA-FS (Proposed) 99.12 98.9 98.8 98.85 99.3
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Figure 2: Comparison graph using suggested and current methods

Figure 2 presents the result analysis of the suggested
and current methods using various metrices. Accuracy.
The proposed A-CNN-RNN + ACOA-FS tops the
chart (99.12%), a +0.62-p gain over the best deep
baseline without attention/FS (98.5%). This indicates
overall correctness improved after removing
redundant features and adding attention.

Precision. At 98.9%, the proposed method generates
fewer false alarms than all baselines. That’s important
in anomaly detection, where unnecessary alerts can
overwhelm analysts.
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Recall. With 98.8%, the model misses fewer true
anomalies than competitors. The attention layer helps
the network focus on informative blocks (e.g.,
time/host statistics, service, flag), lifting sensitivity.
Fl-score. The best F1 = 98.85% reflects a balanced
trade-off among P and R. Compared to the no-
attention/no-FS hybrid, F1 rises by ~0.55 pp, showing
that both ACOA-FS and attention contribute to better
balance.

AUC-ROC. The highest AUC = 99.3% demonstrates
strong separability across thresholds, i.e., the proposed
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model ranks anomalous vs. normal connections more
reliably than others.

V. CONCLUSION

In this work presented a data-mining—centric
framework for high-dimensional anomaly detection
that pairs Adaptive Coyote Optimization (ACOA) for
feature selection only with an Attention-augmented
CNN-RNN (A-CNN-RNN) classifier. Using KDD
Cup 1999, we treated features as semantically grouped
blocks (basic, content, time-based, host-based, and
categorical groups), embedded them, learned local and
long-range interactions via CNN and BiLSTM, and
used attention to emphasize the most informative
blocks per record. With ~50% feature reduction from
ACOA, the suggested framework attained 99.12%
ACC, 98.9% P, 98.8% Recall, 98.85% F1, and 99.3%
AUC-ROC, outperforming classical baselines
(Random Forest, XGBoost) and deep baselines (CNN-
only, RNN-only, CNN-RNN without attention/FS).
Beyond higher scores, we observed faster, more stable
convergence and improved sensitivity to minority
patterns, while attention weights provided transparent,
per-record explanations. The current study applies the
model to anomaly detection. Future work should
extend its applicability to other core DM tasks, like
clustering, association rule mining, regression, and
recommendation Exploring how
metaheuristic-driven FS benefits these tasks would
broaden its impact.

systems.
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