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Abstract— Data mining (DM) is fundamental for 

extracting meaningful knowledge from large-scale, high-

dimensional datasets, were redundant attributes and 

noisy features often hinder classification and anomaly 

detection. In order to produce a smaller but more 

informative feature set, the suggested ACOA technique 

uses a process of eliminating features that are 

superfluous or redundant. This method produces small, 

extremely informative subsets. The spatial and 

sequential dependencies in data can be effectively 

captured by the application of an attention based- hybrid 

CNN–RNN (A-CNN-RNN). For anomaly detection 

study, and DM analysis, a widely accessible dataset 

named KDD Cup 1999 dataset is utilized to assess 

suggested method. When compared this suggested model 

with some standard deep learning (DL) models (CNN-

only, RNN-only, CNN–RNN) and traditional machine 

learning (ML) techniques (Random Forest (RF), 

XGBoost), this suggested model executes well than other 

methods, and it was demonstrated by the outcomes of 

simulation. High scores in prediction accuracy (ACC), 

precision (P), recall (R), F1-score, and AUC-ROC were 

attained using ACOA. Additionally, feature selection 

(FS) was used to minimise the input feature space by 

more than 50%. By effectively finding pertinent features, 

metaheuristic-guided feature selection (FS) improves 

classification and anomaly detection in high-dimensional 

data. It facilitates Strong pattern recognition and 

extracting valuable insights over a wide range of DM 

backgrounds 

 

Index Terms— Data Mining; Anomaly Detection; High-

Dimensional Data; CNN–RNN; Attention Mechanism; 

Adaptive Coyote Optimization (ACOA); Feature 

Selection; KDD Cup 1999 

 

I. INTRODUCTION 

 

Massive, complex datasets (big data) are produced by 

the growth of digital ecosystems in healthcare, 

finance, e-commerce, and industry, opening doors for 

efficiency and innovation. Data mining plays a vital 

role in this context, aiming to uncover patterns, 

classify instances, and detect anomalies that may 

represent fraud, faults, or rare events. Among these 

tasks, anomaly detection is especially critical, as 

identifying unusual patterns in massive datasets can 

provide early warnings and support decision-making. 

An essential component of DM is anomaly detection. 

Data outliers, aberrant activity, and system failure are 

only a few examples of anomalous appearance. Both 

rarity and type diversity are key problems in anomaly 

identification because of the large range of anomaly 

kinds (point, collective, contextual, etc.) and the 

infrequency of anomalies, which makes it hard to 

gather enough labelled samples for training models. In 

a high-dimensional space, anomalous characteristics 

are more hidden, while they are more likely to appear 

in a low-dimensional region. While the majority of 

anomaly detection techniques directly or implicitly 

rely on distance contrast [3], increasing dimensionality 

causes the distance contrast across data to become 

similar [1] [2]. For these distance contrast-based 

anomaly detection techniques, high dimensionality 

eventually results in failure. Additionally, it is difficult 

to distinguish between normal and abnormal cases due 

to the data's sparse distribution in a high-dimensional 
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space. [4]. Anomaly detection for the data in a high-

dimensional space is difficult in this situation. 

DL-based methods, distance metric-based techniques, 

and deep hybrid-based methods are important 

categories of anomaly detection. K-nearest neighbour 

(K-NN) [5] and random distances [6] are examples of 

distance metric-based techniques that do not obtain 

data distribution. Such methods are susceptible to the 

adverse impacts of high dimensionality, as distance 

measurements grow increasingly comparable as data 

dimensionality increases. Deep features of the data [7] 

[8] can be learnt and understood by DL-based 

methods, like the Bayesian Variational Autoencoder 

(BVAE) [9] and those in [10] [11]. Both supervised 

and unsupervised detection techniques are included in 

this category. The unsupervised detection techniques, 

such as Deep One-class Classification (DOC) [13], 

Generative Adversarial Network (GAN) [14], etc., do 

not depend on data labels, they are very susceptible to 

noise and missing data [12]. Anomaly detection 

accuracy may typically be lower than that of 

supervised detection methods since the objective 

function of unsupervised detection methods is 

primarily used for data compression or dimensionality 

reduction. Because supervised detection techniques, 

like those in [15], rely on data labels, they perform 

better in detection than unsupervised techniques. 

 If there is a lot of data or if the data is multi-

dimensional, labelling it can be difficult. As a result, it 

is challenging to modify supervised anomaly detection 

techniques for large-scale and high-dimensional data 

anomaly detection. Deep hybrid-based techniques 

combine deep and conventional detection techniques, 

as seen in Deep (NN) Neural Networks-(SVM) 

Support Vector Machine (DNN-SVM) [16], Deep 

Autoencoder, and Ensemble KNN (DAE-KNN) [17]. 

As a result, they adopt the traits of both conventional 

and deep detection techniques. They have inherent 

advantages in anomaly detection; however, precision 

of calculation and processing cost must be traded off. 

However, anomaly detection in high-dimensional data 

remains difficult due to redundancy, irrelevant 

attributes, and nonlinear dependencies that degrade 

classifier performance and increase computational 

burden. 

DL approaches have shown notable potential for 

mining such complex data. Convolutional NN (CNNs) 

are effective at learning spatial and hierarchical 

features, while Recurrent NN (RNNs) capture 

sequential and contextual dependencies. Their 

combination provides rich feature representations 

well-suited for anomaly detection. Moreover, attention 

mechanisms further enhance these models by 

dynamically prioritizing the most relevant 

information, thereby improving interpretability and 

robustness. Despite these advantages, applying DL 

directly to high-dimensional data is inefficient, as 

redundant attributes may introduce noise, overfitting, 

and scalability issues. 

FS is crucial method in anomaly detection and 

classification methods, and this implementation may 

support in overcoming those limitations. The most 

relevant attributes are retained, and dimensionality 

was reduced by the FS. Thus, improved efficiency, 

better generalization, and faster model convergence 

may result from this. But non-linear and large-scale 

data was not effectively managed by conventional FS 

methods, more adaptable and effective method was 

offered by the metaheuristic optimization algorithms.  

In this work, the Adaptive Coyote Optimization 

Algorithm (ACOA) is employed exclusively for FS. 

The social dynamics of coyote packs are the 

motivation of the COA. The exploration and 

exploitation are effectively adaptively balanced by the 

ACOA. Thus, optimal feature subsets are identified, 

and premature convergence are avoided by this 

algorithm. In order to produce a smaller but more 

informative feature set, the suggested ACOA 

technique uses a process of eliminating features that 

are superfluous or redundant. This method produces 

small, extremely informative subsets. This allows a 

small but highly discriminative feature set to be used 

by the DL classifier. For anomaly detection study, and 

DM analysis, a widely accessible dataset named KDD 

Cup 1999 dataset is utilized to assess the suggested 

method. For anomaly detection study, and DM 

analysis, a widely accessible dataset named KDD Cup 

1999 dataset is utilized to assess suggested method. 

 

II. RELATED WORKS 

 

Anomaly detection and classification in high-

dimensional data mining have been extensively 

studied using both classical ML and advanced deep 

learning approaches. Traditional models such as RF, 

SVM, and Naïve Bayes (NB) have been employed for 

detecting anomalies, but their performance often 

degrades with large-scale, nonlinear, and redundant 
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data features. To overcome these challenges, recent 

research has increasingly integrated feature selection 

(FS) with deep learning (DL) and metaheuristic 

optimization. 

In order to solve data imbalance in anomaly detection, 

integration of an improved RF with the Synthetic 

Minority Over-sampling Technique (SMOTE) was 

suggested by Wu et al. (2022). Their method achieved 

high training accuracy but showed limited 

generalization on testing data, highlighting the 

importance of FS and robust model design [18]. 

Similarly, Kasongo and Sun (2020) applied FS using 

XGBoost on the UNSW-NB15 dataset, demonstrating 

that selecting optimal attributes improves accuracy by 

2.72% compared to raw high-dimensional features 

[19]. 

On the DL front, for anomaly detection, Halbouni et 

al. (2022) presented a hybrid CNN–LSTM (Long 

Short-Term Memory) system. Both temporal and 

spatial dependencies in sequential data were captured 

by the suggested method. While effective, the model 

faced scalability issues when applied to high-

dimensional inputs without FS [20]. For 

dimensionality reduction, Principal Component 

Analysis (PCA) and Mutual Information were used 

with LSTM by Laghrissi et al. (2021), reporting 

accuracy above 99% on the KDD99 dataset, but PCA’s 

linearity limited its adaptability to nonlinear data [21]. 

Metaheuristic algorithms have also been integrated 

with deep models to improve FS. Malibari et al. (2022) 

proposed an enhanced Arithmetic Optimization 

Algorithm with Deep Wavelet Neural Networks 

(DWNN), validated on CIC-IDS2017. State-of-the-art 

(SOTA) anomaly detection methods are outperformed 

by the suggested technique [22]. 

Murali Mohan et al. (2022) employed a hybrid 

metaheuristic (SMSLO) with Deep Belief Networks 

(DBNs) for cloud anomaly detection, showing notable 

improvements in detection rates [23]. However, both 

works emphasized IDS-specific applications and did 

not generalize to broader data mining contexts. 

Generative models have also been explored. In order 

to increase classification robustness, Using Generative 

Adversarial Networks (GANs), Ding et al. (2022) 

introduced a hybrid approach for imbalanced anomaly 

detection tasks that blends KNN with samples 

produced by GAN. Their work validated the potential 

of synthetic augmentation but noted computational 

overheads as a limitation [24]. 

Despite these advancements, most existing approaches 

either rely on traditional FS methods or apply DL 

models directly to raw high-dimensional data, which 

leads to redundancy, overfitting, and inefficiency. Few 

works have investigated metaheuristic-guided FS 

exclusively integrated with CNN–RNN–Attention 

architectures for anomaly detection. This gap 

motivates the present study, where the Adaptive 

Coyote Optimization Algorithm (ACOA) is employed 

to refine feature subsets before classification, and a 

hybrid A-CNN-RNN with attention is used to capture 

spatial, sequential, and contextual patterns effectively. 

 

III. PROPOSED METHODOLOGY 

 

To detect anomalies in high-dimensional datasets, this 

paper suggests an optimised deep DM framework that 

combines hybrid DL classification with metaheuristic-

based FS. The methodology consists of four primary 

phases: data preprocessing, feature selection using 

Adaptive Coyote Optimization Algorithm (ACOA), 

classification with CNN–RNN–Attention (A-CNN-

RNN), and performance evaluation. Figure 1 

illustrates the overall framework. 

 
Figure 1: Overview diagram of suggested DL model for ID 
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3.1.1. ZSN for Preprocessing the KDD Cup data  

The KDD dataset (KDD Cup 1999) is a famous data 

mining dataset used mainly for network intrusion 

detection research. It was prepared for the Knowledge 

Discovery and Data Mining (KDD) Cup competition 

in 1999 and is one of the earliest large-scale datasets 

in this field. With 41 attributes such protocol type, 

service, duration, and error counts, each record 

represents a network connection. DoS (Denial of 

Service), Probe, Remote to Local (R2L), and User to 

Root (U2R) are the four categories into which the data 

is classified, either as regular traffic or as one of 

numerous attack kinds. 

Although it became a benchmark in DM and ML, the 

dataset has shortcomings like duplicates, imbalance, 

and outdated attack patterns, which is why improved 

versions like NSL-KDD and newer datasets (e.g., 

UNSW-NB15, CIC-IDS2017) are now widely used. 

The KDD Cup 1999 dataset is selected as the 

benchmark, containing 41 features and one class label 

with normal and anomalous instances (DoS, U2R, 

R2L, Probe). Preprocessing includes the ZSN was 

used on the dataset to guarantee that features from all 

scales contribute uniformly during model training. 

ZSN scales to unit variance and eliminates the mean to 

standardise the features. It is especially helpful for 

algorithms like distance-based or gradient-based 

models that are sensitive to feature magnitude. 

For each feature x, the normalized value z was 

computed using the formula: 

z =
x−μ

σ
   (1) 

• Here, the standard deviation is denoted by σ  

• The mean of the feature across the training set is 

denoted as μ. 

This ensures uniform contribution of all features 

during training. 

• Categorical Encoding: Symbolic attributes (e.g., 

protocol type, service, flag) are encoded using 

one-hot encoding. 
 

3.1.2. FS using ACOA 

In particular, when working with HD datasets, FS is 

crucial for enhancing the classification efficiency of 

ML frameworks. By removing unnecessary or 

redundant features, a proper FS strategy improves 

model generalisation while significantly lowering 

computing costs. 

Here, the Adaptive Coyote Optimization Algorithm 

(ACOA) was utilized for optimal feature subset 

selection. ACOA, an enhanced version of the Coyote 

Optimization Algorithm (COA), dynamically adjusts 

its search behaviour during optimization to effectively 

balance energy, leading to a more efficient search for 

minimal, highly-informative feature subsets. 
 

A. Overview of COA 

The social relationships within Canis latrans packs 

have been used as inspiration for the population-based 

and nature-inspired algorithm (NIA) known as COA, 

and it was suggested by Piezan et al. (2019). 

Determining the initial population of coyotes, that 

implies on Np ∈ N
∗ packs with Nc ∈ N

∗ coyotes each, 

is the first stage in the process. The division of the 

initial packs is chosen at random. "Social condition 

(𝒮𝒞)" refers to the decision variables (DV), and the cth 

coyote of the pth pack in the jth  dimension has the 

following values: 

𝒮𝒞 c,j 
p,t
= lbj + randomj · (ubj − lbj) (2) 

Here, the limits of the jth DV are represented by lbj 

and ubj. A random number that are uniformly 

distributed is denoted as randomj ∈ [0, 1]. 

Calculating the objective function (OF) values for 

every set of DV is the second stage 

fitc
p,t
= f(𝒮𝒞c 

p,t
) (3) 

A coyote's transition between packs is controlled by a 

particular probability (Pr) and is impacted by Nc. 

Pre = 0.005. Nc
2 (4) 

Additionally, the coyote with best OF cost value in the 

pthpack of the tth timestamp is referred as alpha 

coyote, and it is considered by the COA. It is described 

below: 

alphap,t = {𝒮𝒞 c
p,t
|argc = {1,2, . , Nc}minf(𝒮𝒞 c

p,t
)}  

(5) 

Each pack has an estimate of the cultural trend 𝒞𝒯, and 

it is also taken into consideration by the COA. This is 

how the calculation is done: 

𝒞𝒯j 
p,t
=

{
 

 
O(Nc+1)

2
,j

p,t
, Nc is odd

oNc
2 ,j

p,t
+o

(
Nc
2 +1)

p,t

2
, otherwise

 (6)  

In the range [1, D], the ranking 𝒮𝒞 of all coyotes of the 

pth pack in the tth instant of time for each j is denoted 

as Op,t. The dimension of the search space is D. 

Based on the values of the OF and the coyotes' ages 

(which are calculated in years and are defined as 
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agec
p,t 
∈ N, the algorithm synchronises the coyotes' 

births and deaths. In Algorithm 1, this method is 

explained. Here, the group of coyotes with the worst 

OF score is denoted by ω. The total coyotes count in 

this group is denoted by φ. The OF values of the young 

coyote (pup) and every coyote in the pack are 

compared to determine the group of ω coyotes. 

The of two randomly selected parents is combined 

with an environmental element to create the pups. 

Regardless of their social condition, parents are 

chosen. Consequently, the pups are described as 

follows: 

pupj
p,t
= {

socdc1,j ,
p,t

randomj < Pgorj = j1

socdc2,j ,
p,t

randomj ≥ Pd + Pgor j = j2

Rj , otherwise

 

(7) 

Here, the two designated coyotes from the pth  pack 

are dc1 and dc2. The optimisation problem has two 

random dimensions, j1 and j2. The scatter probability 

is Ps. The association probability is Pa. An arbitrary 

value that can only be found within the jth dimension's 

DV bounds is denoted as Rj. A uniformly generated 

random number ∈ [0,1] is called rndj. 

Ps and Pa determine the coyote diversity. 

The following formula is used to determine these 

values: 

Ps = 1/D and  (8) 

Pa = (1 − Pd)/2  (9) 

Here, the influence impact on both parents is balanced 

by Pa. 

The alpha influence (δa) and whole pack influence (δt) 

on the coyotes are expressed as follows: 

δt = ctp,t − soccr1
p,t 
and (10)  

δa = alpha
p,t − soccr2

p,t
 (11)  

Here, the cultural difference from a random coyote is 

indicated by cr1. The cultural difference between the 

alpha coyote and a random coyote in the pack is 

shown by cr2. 

The weights of δtand δa are denoted by rt and ra. 

Uniformly distributed random values ∈  [0, 1] are 

represented by rt and ra. 

new
socc

p,t  =  socc
p,t
+ rt. δt + ra. δa  (12)  

The following is an expression of the new social 

condition: 

 new_fitc
p,t
= f(new_socc

p,t
) (13)  

Reserving the best social condition 

socc
p,t+1

 = {
new _socc

p,t
, new_fitc 

p,t
< fitc 

p,t

socc,
p,t

otherwise
 (14)  

Out of all the packs, the algorithm's final solution is 

the best solution. 

Adaptive Mechanism in COA (ACOA Enhancement): 

While the traditional COA uses static update 

parameters, the ACOA introduces a dynamic learning 

adjustment mechanism. In ACOA, the influence 

coefficients rt and ra are no longer purely random but 

are adaptively scaled based on an adaptive learning 

rate γ, which evolves according to: 

γ = γ0 × exp (−β × Iteration) (15) 

where: 

• The initial learning rate is denoted as γ0, 

• β is the decay constant controlling the rate of 

exploitation increase, 

• Iteration is the current optimization step.  

Thus, the influence weights in the social condition 

update are modified as: 

rt = γt × random and ra = γa × random 

Initially, the algorithm favors exploration with larger 

adaptive steps, encouraging broad search. As iterations 

progress, the steps become smaller, shifting toward 

precise exploitation of promising regions. 

Furthermore, if a new social update results in fitness 

improvement, the learning rate is temporarily boosted 

to encourage further exploration; otherwise, it is 

reduced to favor local search convergence. 

This adaptive adjustment mechanism allows ACOA 

to: 

• Dynamically balance exploration and 

exploitation, 

• Improve convergence speed, 

• Enhance robustness against getting stuck in local 

optima, 

• Select more informative and compact feature 

subsets for classification tasks. 

The time complexity of the COA and ACOA remains 

similar to traditional evolutionary algorithms, 

expressed as: 

O(Np × Nc × D + Np × Nc × f)  (16) 

Here, D is the search space dimension and f is the cost 

of the OF evaluation. Consequently, ACOA offers a 

very efficient method for choosing a small but 

extremely informative subset of features during the FS 

phase for the both datasets. ACOA lowers computing 

expenses and increasing classification accuracy. This 

ensures compact feature subsets with maximum 
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predictive power. ACOA successfully reduces 

dimensionality by more than 50%, retaining only the 

most relevant attributes, thus lowering computational 

cost and boosting classification efficiency 

Algorithm: ACOA Feature Selection on KDD Cup 

1999 

Inputs (KDD-specific) 

• Dataset: KDD Cup 1999 (full or 10% subset). 

• Task: choose Binary (Normal vs Anomalous) or 

Multi-class (Normal + categories). 

• Split ratios: e.g., Train 70% / Val 15% / Test 15% 

(no overlap). 

• Preprocessing choices: 

o Encoding for 3 categorical features: protocol_type, 

service, flag (use one-hot). 

o Scaling for numeric features (z-score on training 

stats). 

o Imbalance strategy (class weights or balanced 

sampling). 

• ACOA params: number of packs, coyotes per pack, 

max iterations, optional migration probability. 

• Scoring model: fast version of your A-CNN-RNN 

(few epochs) or a light surrogate (e.g., small MLP) 

used only to score subsets inside ACOA. 
 

Outputs 

• Selected feature subset (names/indices) for KDD 

(post-encoding groups or original 41 fields; see 

note below). 

• Reduced train/val/test matrices built from the 

selected subset. 

• Final metrics after retraining the full A-CNN-RNN 

on the reduced features (ACC, P, R, F1, AUC (Area 

under the Curve) - ROC (Receiver Operating 

Characteristic) can explain. 

KDD Cup 1999 Preprocessing (before ACOA) 

1. Load data (full or 10% file). 
 

3.1.3. Classification using Hybrid CNN+RNN with 

Attention mechanism (A-CNN-RNN) After 

ACOA-based feature selection (FS), the reduced 

feature set is classified with a hybrid CNN–RNN 

model augmented by an attention mechanism. The 

design exploits the complementary strengths of 

each component: 

• CNN captures local cross-feature interactions and 

hierarchical patterns. 

• RNN (BiLSTM) models long-range dependencies 

across feature groups. 

• Attention highlights the most informative blocks 

for each record, improving accuracy and 

interpretability. 

The model outputs either binary (normal vs. 

anomalous) or multi-class predictions (normal + 

anomaly categories), depending on the experimental 

setting. 

A. MaxPooling based CNN  

In the initial step of the ACNN-RNN model, the 

selected features are processed via several 

convolutional layers (CL). The input feature vector is 

reshaped, if necessary, into a two-dimensional format 

compatible with convolutional (Conv) operations. In 

order to capture local patterns and hierarchical feature 

representations, the CL applies a number of learnable 

filters throughout the input. A common method for 

adding non-linearity to a Conv operation is to use a 

non-linear (NL) activation function (AF), such as the 

Rectified Linear Unit (ReLU). 

To further reduce dimensionality while maintaining 

the most important information, the feature maps (FM) 

are downsampled using pooling layers like 

MaxPooling. 

The Conv operation is CNNs' primary function, where 

a small learnable kernel (or filter) slides over the input 

FM to generate a set of FM. The formal calculation of 

the convolutional output at a given spatial position 

(i, j)  for the kth filter, given an input feature matrix X 

and a filter W, is as follows: 

fi,j
(k)
= σ(∑ ∑ Wm,n

(k)
× Xi+m,j+n + b

(k)
nm ) (17) 

Here:  

• At location (i, j)   in the kth FM, the output feature 

value is fi,j
(k)

. 

• In the kth filter, Wm,n
(k)

 is the weight of kernel at 

position (m, n). 

• The input value at the relocated position is 

Xi+m,j+n. 

• The bias connected to the kth filter is b(k). 

• The AF that adds non-linearity to the network is 

σ(⋅). It is also known as the ReLU, and it is 

described as σ(x) = max(0, x). 

Without requiring manual feature engineering, the CL 

allows the network to autonomously learn spatially 

invariant features including edges, patterns, and 

higher-order feature combinations. 

Following the convolution operation, it is common 

practice to apply a pooling operation to further process 
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the feature maps. By summarising feature responses in 

local neighbourhoods, pooling introduces a degree of 

translation invariance and lowers computational cost 

by reducing the spatial dimensions of the FM. 

The most commonly used pooling strategy is 

MaxPooling. In MaxPooling, a local neighborhood 

R(i, j) around the position (i, j) is considered. In this 

region, the max value is chosen. The MaxPooling 

operation is mathematically defined as: 

Pi,j =
max

(m, n) ∈ R(i, j)fm,n  (18) 

Here, 

• Pi,j is the pooled output at position (i, j), 

• R(i, j) denotes the receptive field (i.e., local 

window) centered at (i,j), 

• fm,n are the convolution output values within the 

neighborhood. 

While keeping the most important features, pooling 

drastically reduces the FM's size, which lowers the 

number of parameters and computational load. 

Additionally, it helps to control overfitting by 

preventing the network from memorizing specific 

details of the training data. 

The resulting high-level FM are flattened into one-

dimensional sequences following several phases of 

convolution, activation, and pooling. These sequences 

encapsulate the most significant spatial patterns 

present in the input feature set, forming a rich 

representation that can be passed into sequential 

modeling layers such as RNNs or LSTMs for further 

processing. 

Thus, the Convolutional Neural Network (CNN) 

feature extraction (FE) phase transforms the original 

input features into compact, informative, and spatially-

aware representations that facilitate more effective 

downstream classification. 
 

Sequential Learning with RNN and Attention 

For RNN processing, the resultant FM are flattened 

and transformed into sequential data after the spatial 

features are extracted. First, flattening a sequence and 

then feeding it into the RNN layer to capture temporal 

correlations and dependencies. The variant like LSTM 

is selected in this study, because it has the potential in 

managing long-term dependencies and mitigate 

vanishing gradient problems (VGP). An internal 

hidden state is used by the RNN, and it detects the 

feature sequence's historical context, when it processes 

the sequential input step-by-step. 

By serving as an advanced focussing tool, the attention 

mechanism enables the model to improve the 

sequential data that the RNN processes. The Attention 

mechanism assigns dynamic importance weights to 

different time steps or hidden states produced by the 

RNN. Instead of analysing each segment of the 

sequence equally, the model can concentrate more on 

features or temporal patterns that are more important 

for precise classification according to the attention 

mechanism. Each RNN hidden state is projected into a 

common space, its relevance is determined, and 

attention weights are formed by normalisation using a 

softmax function. This process yields the attention 

scores. A weighted sum of all hidden states makes up 

the context vector. Then, it is computed to highlight 

the most informative parts of the sequence. 
 

Classification Layer and (LF) Loss Function 

After an attention mechanism processes an input and 

produces a context vector, fully connected (or dense) 

layers are applied to transform these features into 

higher-level abstractions. Here, the probability 

distribution over the class labels are generated by a 

softmax output layer. This layer is capable of 

distinguishing normal and attack types. The final 

output of the framework represents the class label with 

highest probability.  

Using an appropriate optimisation technique, like 

Adam, the entire ACNN-RNN model is trained end-to-

end by minimising a cross-entropy (CE) loss (CEL) 

function between the predicted labels and the ground 

truth labels. Techniques like batch normalisation (BN) 

and dropout regularisation are used during training to 

stabilise the process and avoid overfitting. 

By combining local feature extraction (CNN), 

temporal modeling (RNN), and dynamic focusing 

(Attention), the suggested ACNN-RNN framework 

achieves superior classification performance 

compared to conventional classifiers and standalone 

DL models. It not only improves overall classification 

accuracy but also provides better generalization to 

unseen network traffic patterns, making it highly 

effective for practical ID scenarios. 

The input to the ACNN is the optimized feature set Χ ∈

ℝn×d, here, d is the count of chosen features, and n is 

the count of student instances. The initial layers of the 

ACNN consist of one or more Convolutional Layers 

(CLs), which apply a set of learnable filters Wk ∈

ℝf×f to extract local feature patterns.  
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The Conv operation for a specified input window x is 

expressed as follows: 

yi,j
(k)
= ∑ ∑ xi+m,j+n. ωm,n

(k)
 f−1

n=0
f−1
m=0 + b(k)  (19) 

Here, yi,j
(k)

 is the activation at location (i, j) for filter k, 

and b(k) is the corresponding bias term. Non-linearity 

is then introduced by passing the resultant FM through 

an NL AF, usually ReLU: 

ReLU(x) = max(0, x) (20) 

To reduce spatial dimensionality and computational 

cost, pooling layers such as max-pooling are 

optionally applied. Once the hierarchical 

representations are built, the output is forwarded into 

the attention mechanism, which is the core innovation 

in ACNN. 

To represent each feature vector's significance in the 

final decision, the attention mechanism dynamically 

assigns weights to each feature vector. For each input 

vector xi, a score ei is computed using a learned 

function (e.g., dot-product or feed-forward scoring): 

ei = score(xi) (21) 

The attention weights αi are then derived using the 

softmax function: 

αi =
exp (ei)

∑ exp (ei)
n
j=1

  (22) 

The model's confidence in the relative importance of 

each feature or location is represented by these 

weights. The attended output representation is the 

weighted sum of the feature vectors. 

x̂ = ∑ ∝i. xi
n
i=1  (23) 

This mechanism allows the framework to "emphasis" 

on the most informative attributes (e.g., number of 

forum views or assignment scores) while down-

weighting irrelevant ones. After an output layer, the 

attended feature vector x̂ is processed by one or more 

dense layers. 

For binary classification (BC) of student performance 

(e.g., Pass/Fail), the final output is computed using the 

sigmoid activation function: 

ŷ =
1

1+e−z
 (24) 

Where z is the linear combination of weights and 

biases from the final dense layer. In situations with 

many classes (such as Low, Medium, and High 

performance), the softmax function is employed 

instead: 

ŷi =
ezi

∑ e
zjc

j=1

,            i ∈ {1, …C}(25) 

For binary output, the model is trained to minimise the 

binary cross-entropy loss (CEL): 

ℒbinary = −[y. log(ŷ) + (1 − y). log(1 − ŷ)] (26) 

Or the categorical CEL for multiclass output: 

ℒcategorical = −∑ yi. log (ŷi)
C
i=1 27) 

Using gradient descent (GD) techniques like Adam or 

Stochastic GD (SGD), model parameters (filters, 

attention weights, and dense layer weights) are 

updated during backpropagation. Performance metrics 

like ACC, P, R, F-measure, and AUC-ROC are 

employed for evaluating the framework, guaranteeing 

that the classification is reliable and performs well 

when applied to new data. 

# Pseudocode: Suggested Procedure for ID using 

ACOA + A-CNN-RNN 

 

# Step 1: Data Preprocessing 

Input:  

• Data: KDD Cup 1999, split into Train / Val / Test 

• Features: Reduced feature blocks selected by 

ACOA (e.g., Basic, Content, Time, Host, Protocol, 

Service, Flag) 

• Labels: Binary (normal vs anomalous) or multi-

class (normal + attack categories) 

• Hyperparameters: batch size, epochs, learning rate, 

dropout, class weights (if imbalanced) 

• Architecture settings: embedding size, #Conv 

layers (kernel 3–5), BiLSTM hidden size/layers, 

attention type (additive/dot), head size 
 

Output: 

• Trained model weights (A-CNN-RNN) 

• Test metrics: ACC, P, R, F1-score, AUC-ROC 

(micro/macro for multi-class) 

• Per-record predictions: class probabilities + 

predicted label 

• Attention weights: block-level importance (per 

record) for interpretability 
 

1.1 Load dataset 

1.2 For each feature x in the dataset: 

Compute mean (mu) and standard deviation (sigma) 

on training set 

Normalize: z = (x - mu) / sigma 

If sigma == 0: add small constant epsilon to avoid 

separation by 0 

 

# Step 2: Feature Selection using ACOA 

Input: Normalized Data 

Output: Selected Feature Subset 

2.1 Initialize ACOA parameters: 
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Number of packs (Np), number of coyote (Nc), max 

iterations 

Initialize social conditions (SC) for each coyote 

randomly within bounds 
 

2.2 For each iteration: 

For each pack p: 

Evaluate fitness for each coyote: fit_c = f(SC_c) 

Determine alpha^(p): best coyote in pack 

Compute cultural trend CT^(p) 

Generate pup using social mix of two coyotes + 

environment factor 

Replace worst coyote if pup is better (elitism) 

For each coyote c in pack p: 

Compute influence from trend (delta_t) and alpha 

(delta_a) 

Update SC: SC_new = SC + r_t * delta_t + r_a * 

delta_a 

If new fitness better: accept SC_new 

Adapt learning rate gamma: 

gamma = gamma_0 * exp (-beta * iteration) 

r_t = gamma_t * random, r_a = gamma_a * random 

2.3 Return best SC as optimal feature subset 

 

# Step 3: Classification using A-CNN-RNN 

Input: Feature-Selected Data 

Output: Class Labels 
 

3.1 Reshape selected features as 2D input for CNN 

3.2 CNN Layer: 

Apply Conv2D -> ReLU -> MaxPooling (multiple 

times) 

3.3 Flatten CNN output to 1D sequence 

3.4 RNN Layer: 

Use LSTM to capture temporal patterns from sequence 

3.5 Attention Layer: 

For each timestep: 

Compute attention score e_i = score(h_i) 

Compute weight alpha_i = softmax(e_i) 

Context vector: sum(alpha_i * h_i) 

3.6 Fully Connected Layers: 

Apply dense layer(s) to context vector 

Use Softmax/Sigmoid for final classification 

 

# Step 4: Training and Evaluation 

4.1 Define LF: 

Binary: Binary CE 

Multiclass: Categorical CE 

4.2 Train model using Adam optimizer 

4.3 Evaluate on test set using: 

ACC, P, R, F1-score, AUC-ROC 

 

IV. EXPERIMENTAL RESULTS 

 

Experiments were conducted on KDD Cup 1999 with 

duplicate removal, stratified Train/Val/Test split, one-

hot encoding for protocol_type, service, flag, and z-

score scaling on numeric features in NS2 (Network 

Simulator 2). ACOA was used only for feature 

selection, operating on feature groups (38 numeric + 3 

categorical groups). The classifier is A-CNN-RNN 

with Attention (BiLSTM), trained with Adam and 

early stopping. Metrics reported on the held-out test 

set: ACC, P, R, F1-score, AUC-ROC. 

Below are the standard performance metric formulas 

(ACC, P, R, and F-measure) along with their typical 

interpretations in the context of IDS. In this context: 

• True Positive (TP): The framework accurately 

identifies an intrusion as an intrusion. 

• True Negative (TN): The framework precisely 

identifies normal traffic (non-intrusion) as 

normal. 

• False Positive (FP): The system in accurately 

identifies non-intrusion as intrusion. 

• False Negative (FN): The intrusion is not detected 

by the system. (i.e., it is an intrusion but classified 

as normal). 

P: P shows the proportion of those that were real 

attacks. When evaluating false alarms, P is essential. 

If a traffic is classified as attack by the system, it is 

probably accurate because a high P indicates fewer 

false alarms. 

Precision =
TP

TP+FP
 (28) 

F-measure: The F-measure balances FP and FN by 

taking the harmonic mean of P and R. 

F − measure = 2 ×
Precision×Recall

Precision+Recall
  (29) 

R: It is defined as the number of real attacks that the 

system detects. R is essential to ensuring that no attack 

is missed. Less missed attacks (FN) are indicated by a 

high R. 

Recall =
TP

TP+FN
 (30) 

ACC: ACC assess the ratio of total instances (both 

normal and attack) that are accurately identified by the 

IDS. 

Accuracy =
TP+TN

TP+TN+FP+FN
  (31) 
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The Table 1 shows the A-CNN-RNN + ACOA-FS 

attains an optimal efficiency over all metrics, 

demonstrating both stronger separability (AUC-ROC 

99.3) and a better precision–recall balance (F1 98.85). 

Relative to the strongest deep baseline without 

attention/FS, it gains +0.62 Accuracy (99.12 vs 98.5), 

+0.50 Recall, +0.55 F1, and +0.5 AUC-ROC—

showing that ACOA-based feature selection removes 

redundancy and that attention helps focus on the most 

informative blocks. Compared to XGBoost, the 

proposed model improves Accuracy by +1.72 and 

AUC-ROC by +1.3, highlighting the advantage of 

jointly modeling local patterns (CNN), long-range 

dependencies (RNN), and per-record importance 

(attention) in high-dimensional data mining. 

 

Table 1: Performance Comparison of the various approaches using several metrics on KDD Data 

Method Metrics (%) 

Accuracy Precision Recall F1-score AUC-ROC 

Random Forest 96.3 96.2 96.0 96.1 97.0 

XGBoost 97.4 97.3 97.1 97.2 98.0 

CNN-only 97.9 97.8 97.6 97.7 98.4 

RNN-only 97.5 97.4 97.2 97.3 98.2 

CNN–RNN (no Attention, no FS) 98.5 98.4 98.3 98.3 98.8 

A-CNN-RNN + ACOA-FS (Proposed) 99.12 98.9 98.8 98.85 99.3 

 

 
Figure 2: Comparison graph using suggested and current methods 

 

Figure 2 presents the result analysis of the suggested 

and current methods using various metrices. Accuracy. 

The proposed A-CNN-RNN + ACOA-FS tops the 

chart (99.12%), a +0.62-p gain over the best deep 

baseline without attention/FS (98.5%). This indicates 

overall correctness improved after removing 

redundant features and adding attention. 

Precision. At 98.9%, the proposed method generates 

fewer false alarms than all baselines. That’s important 

in anomaly detection, where unnecessary alerts can 

overwhelm analysts. 

Recall. With 98.8%, the model misses fewer true 

anomalies than competitors. The attention layer helps 

the network focus on informative blocks (e.g., 

time/host statistics, service, flag), lifting sensitivity. 

F1-score. The best F1 = 98.85% reflects a balanced 

trade-off among P and R. Compared to the no-

attention/no-FS hybrid, F1 rises by ~0.55 pp, showing 

that both ACOA-FS and attention contribute to better 

balance. 

AUC-ROC. The highest AUC = 99.3% demonstrates 

strong separability across thresholds, i.e., the proposed 
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model ranks anomalous vs. normal connections more 

reliably than others. 

 

V. CONCLUSION 

 

In this work presented a data-mining–centric 

framework for high-dimensional anomaly detection 

that pairs Adaptive Coyote Optimization (ACOA) for 

feature selection only with an Attention-augmented 

CNN–RNN (A-CNN-RNN) classifier. Using KDD 

Cup 1999, we treated features as semantically grouped 

blocks (basic, content, time-based, host-based, and 

categorical groups), embedded them, learned local and 

long-range interactions via CNN and BiLSTM, and 

used attention to emphasize the most informative 

blocks per record. With ~50% feature reduction from 

ACOA, the suggested framework attained 99.12% 

ACC, 98.9% P, 98.8% Recall, 98.85% F1, and 99.3% 

AUC-ROC, outperforming classical baselines 

(Random Forest, XGBoost) and deep baselines (CNN-

only, RNN-only, CNN–RNN without attention/FS). 

Beyond higher scores, we observed faster, more stable 

convergence and improved sensitivity to minority 

patterns, while attention weights provided transparent, 

per-record explanations. The current study applies the 

model to anomaly detection. Future work should 

extend its applicability to other core DM tasks, like 

clustering, association rule mining, regression, and 

recommendation systems. Exploring how 

metaheuristic-driven FS benefits these tasks would 

broaden its impact. 
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