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Abstract—The increasing demand for clean and
sustainable energy has led to the development of
advanced hybrid renewable energy systems. This study
focuses on the modelling, control, and energy
management of a hybrid grid-connected power system
that integrates wind energy, photovoltaic (PV) systems,
a battery energy storage system (BESS), fuel cells (FC),
and an electrolyser. The proposed system configuration
eliminates the need for a separate PV converter by
combining wind and PV as primary energy sources,
BESS as a secondary source, and the combination of FC
and electrolyser as tertiary sources. This design not only
simplifies the system architecture but also enhances
cost-effectiveness and overall reliability.

To achieve optimal performance, a Hybrid Artificial
Neural Network (ANN) controller is implemented,
which provides adaptive, intelligent, and non-linear
control for maintaining system stability and efficient
energy flow under variable wind and solar conditions.
The system stability is further improved using a lead
compensator with an integrator, which minimizes
steady-state errors and ensures an appropriate phase
margin. The Rotor Side Controller (RSC) and Grid
Side Controller (GSC) operate cooperatively to
maintain grid synchronization, provide frequency
support, and ensure efficient power distribution from
renewable sources.

The ANN-based controller effectively compensates for
the intermittency and power fluctuations inherent in
renewable energy sources by dynamically adjusting
power flow between the BESS, FC, and electrolyser.
The electrolyser stores excess energy by producing
hydrogen during high-generation periods, which is later
utilized by the fuel cell during low-generation
conditions, thus ensuring continuous power supply. The
advanced energy management system also prevents
BESS overcharging, minimizes power oscillations, and
guarantees a stable power output to the grid.
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The proposed ANN-based control technique effectively
minimizes oscillations in the DC-link voltage, improves
transient response, and enhances the overall system
stability when compared to conventional -control
methods. The simulation results, obtained using
MATLAB/Simulink, clearly validate that the ANN-
based hybrid system ensures steady power flow,
efficient energy management, reduced converter count,
and higher overall efficiency under various
environmental and operational conditions. In the
previously used control method, the system’s power
output settled between 8.5 to 12 seconds. However, with
the implementation of the ANN controller, the power
settles at its final steady-state positive value much
faster, reaching stability at around 0.35 seconds. This
demonstrates a significant improvement in the dynamic
performance and response speed of the system.

[. INTRODUCTION

1.1 Overview

The advancement and expansion of electrical power
systems face numerous challenges that extend
beyond technological limitations to include
environmental, social, economic, and financial
considerations. In the 21st century, climate change
and sustainable development have emerged as critical
issues affecting energy and environmental security.
Conventional energy sources such as coal, oil, and
natural gas not only increase the cost of electricity
generation but also have detrimental environmental
impacts, contributing to pollution and greenhouse gas
emissions. The rapid growth in energy demand
exacerbates these effects, leading to long-term
consequences for the environment. These challenges
can be mitigated by adopting renewable energy
sources such as wind power, solar photovoltaics
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(PV), and tidal energy, which offer sustainable
alternatives with minimal environmental impact.
However, renewable sources are inherently
intermittent due to climatic variations such as solar
irradiance, temperature, and wind speed, which can
limit consistent power generation. To address this
issue, Hybrid Energy Systems (HES) have been
developed, allowing for efficient, reliable, and
economical utilization of renewable resources. This
approach combines multiple energy sources, along
with energy storage and control systems, to ensure a
continuous power supply. The project focuses on
designing power management and control strategies,
as well as testing and validating associated
algorithms within a simulated environment.
Mathematical modeling plays a crucial role in
simulating energy conversion systems, including
solar PV and windbased units.

Modern power grids are increasingly incorporating
advanced technologies to enhance efficiency,
reliability, and flexibility. In this context, microgrids
are poised to be a key driver of transformation in
electrical infrastructure, supported by technical,
economic, and social factors. The declining costs of
PV panels and inverters, along with the relatively low
cost of natural gas and diesel in certain regions, have
made distributed generation comparable to traditional
grid power, further motivating the integration of
renewable energy sources as a long-term solution.
Globally, there is growing recognition that
independent hybrid solar-wind power systems
provide a superior alternative for supplying
electricity to remote areas where grid connection is
not feasible. For example, according to the 2006
Statistics Canada Census, 194,281 people lived in
292 remote settlements that were not connected to the
main power grid. These regions possess significant
wind energy potential, yet rely primarily on diesel
generators, consuming approximately 1,477,415
MWh annually. To reduce both the high operational
costs and environmental impact of diesel-based
generation, innovative strategies aimed at minimizing
diesel usage are essential. Between 2008 and 2011,
solar PV generation in Canada grew at an annual rate
of 147.3%, while wind energy utilization also
increased, with projections indicating it could
account for 12% of global electricity generation by
2020.
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As a result, the concept of hybrid operation has
attracted increasing attention in the power sector. The
Techno Centre Eolien (TCE) has implemented a
hybrid renewable energy system in Gaspé, Quebec,
combining a wind power plant, compressed air
storage, motor-generator electric drive (MGSet),
battery storage, heat exchanger, resistive loads,
secondary loads, and remote monitoring systems. The
primary objective of such research is to assess the
functionality, reliability, and autonomous operation
of hybrid energy systems, providing a sustainable
solution for power generation in both remote and
grid-connected areas.

The proposed ANN-based control technique
effectively minimizes oscillations in the DC-link
voltage, improves transient response, and enhances
the overall system stability when compared to
conventional control methods. The simulation results,
obtained using MATLAB/Simulink, clearly validate
that the ANN-based hybrid system ensures steady
power flow, efficient energy management, reduced
converter count, and higher overall efficiency under
various environmental and operational conditions. In
the previously used control method, the system’s
power output settled between 8.5 to 12 seconds.
However, with the implementation of the ANN
controller, the power settles at its final steady-state
positive value much faster, reaching stability at
around 0.35 seconds. This demonstrates a significant
improvement in the dynamic performance and
response speed of the system.

1.2 Literature Review

The integration of renewable energy sources into
electrical grids has become a significant research
focus due to the increasing demand for sustainable
and environmentally friendly power generation.
Conventional energy sources such as coal, oil, and
natural gas have detrimental effects on the
environment, leading to global efforts to adopt
renewable energy technologies, including wind,
solar, and hybrid systems. However, renewable
energy sources are inherently intermittent and
variable, making it challenging to maintain grid
stability, voltage regulation, and reliable power
supply. To address these challenges, Hybrid Energy
Systems (HES) combining multiple renewable
sources with energy storage and intelligent control
mechanisms have been widely studied.
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Wind-Diesel Hybrid Systems have been one of the
earliest hybrid configurations explored. Pena-Alzola
[1] demonstrated that independent wind-diesel
systems can significantly reduce fuel consumption
when operated in Wind Only mode, minimizing
diesel generator usage. Achieving this mode requires
advanced control strategies and energy storage
mechanisms, particularly batteries, which reduce the
start-stop cycles of diesel generators. Batteries are
preferred for short-term storage due to their high
efficiency and fast response compared to other
storage options. These systems typically use three-
phase bridges to interface the battery with the
isolated grid, ensuring compliance with power
standards.

Hirose and Matsuo [2] proposed a freestanding
hybrid system combining wind, solar, battery storage,
and diesel generation, operating independently of a
commercial grid. Advanced power control techniques
were implemented to regulate active-reactive power
and dump loads, enabling multiple sources to connect
to a single line and allowing flexible system
expansion. Such systems are particularly suited for
isolated islands and rural areas lacking grid access,
contributing to sustainable energy development.

Overall, the literature indicates that hybrid renewable
systems integrated with intelligent ANN-based
controllers provide a viable approach for achieving
efficient, reliable, and sustainable power generation.
The combination of wind, solar, energy storage, and
advanced control not only reduces reliance on fossil
fuels but also ensures stable power delivery in
remote, islanded, or grid-connected microgrids.
Despite significant progress, ongoing research is
focused on improving control strategies, optimizing
system architecture, and enhancing the predictive
capabilities of ANN controllers to further improve
the performance and reliability of hybrid
converterless microgrids.

1.3 Problem Formulation

The integration of hybrid renewable energy sources,
such as wind turbines and solar PV systems, into the
AC utility grid presents a significant challenge due to
their intermittent and variable nature. In a
converterless microgrid, the direct coupling of DC
renewable sources to the grid further complicates
voltage and frequency regulation, resulting in
potential power quality issues such as voltage sag,
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frequency deviations, and harmonic distortions. The
Battery Energy Storage System (BESS) and fuel cells
can help mitigate these fluctuations, but their
operation is constrained by charging/discharging
limits, state-of-charge requirements, and response
time.

Traditional control methods such as PI or PID
controllers are limited in handling the nonlinearities,
dynamic interactions, and uncertainties inherent in
multi-source  hybrid microgrids. Moreover, in
minimized-converter  architectures, the strong
coupling between the DC bus and PV system requires
advanced control strategies that can adapt in real time
to variations in renewable generation and load
demand. This creates a complex control problem:
ensuring stable, efficient, and high-quality power
exchange between the hybrid microgrid and the grid,
while simultaneously managing bidirectional power
flow, maximum power point tracking (MPPT) for PV
and wind, and energy storage coordination.

The primary objective is therefore to design an
Artificial Neural Network (ANN)-based controller
capable of:

1. Predicting and compensating for the
intermittency of PV and wind sources.

2. Coordinating power flow from multiple DC
and AC sources to maintain grid stability.

3. Managing BESS and fuel cell operation to

provide continuous, high-quality power.

4. Operating effectively in a converterless
microgrid topology, minimizing reliance on
conventional converters while improving power
quality.

In summary, the problem is to develop an intelligent,
adaptive control strategy that can ensure reliable,
efficient, and stable operation of a hybrid microgrid
with minimal converter architecture, enabling
seamless integration with the utility grid while
addressing the inherent challenges of renewable
energy intermittency, load variability, and limited
energy storage capabilities.

1.4 Objectives of project:

The primary objectives of this project focus on the

design, simulation, and control of a hybrid renewable

energy system to ensure efficient, reliable, and high-

quality power delivery. These objectives are:

1. Maximize Power Extraction from Renewable
Sources Develop a simulation model of the
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hybrid system and implement Maximum Power
Point Tracking (MPPT) techniques for solar PV
and wind energy to operate at optimal power
levels.

2. Autonomous Hybrid System  Simulation
Construct a simulation model of a Solar-Wind-
Fuel Hybrid Energy System (SWHES) to
analyze performance under varying
environmental and load conditions.

3. Integration and Control of Multi-Source
Microgrid: Implement an ANN-based controller
to manage bidirectional power flow, coordinate
BESS and fuel cell operation, and enable
seamless grid integration in a converterless
microgrid architecture.Comprehensive
Simulation and Testingof the simulation model
to evaluate system stability, power quality, and
energy management strategies under realistic
operating conditions.

DESIGN AND ANALYSIS OF ANN-BASED
INTELLIGENT CONTROLLER

III. ARTIFICIAL NEURAL NETWORK

3.1 Introduction

An Atrtificial Neural Network (ANN) Controller is an
intelligent control system that uses artificial neural
networks to model, learn, and control complex and
nonlinear dynamic systems. Unlike conventional
controllers such as PID, which require a precise
mathematical model, ANN controllers can learn the
system behavior from data through training. ANNs
are inspired by the biological structure of the human

Weights 1 Weights 2

brain, consisting of interconnected processing
elements called neurons. These neurons work
together to process information and make decisions.
3.2 Fundamentals and OperatingPrinciples of ANN
Controller

The basic idea behind an ANN controller is to use a
trained neural network to map the relationship
between:

. Input variables (such as error, change in
error, etc.)
. Output control signals (such as voltage,

current, speed, or duty cycle)
Once trained, the ANN can generate control actions
automatically to achieve the desired output, even
under changing or uncertain conditions.
3.3Structure and Architecture of ANN Controller
An Artificial Neural Network (ANN) controller
typically consists of three main layers: the Input
Layer, Hidden Layer(s), and Output Layer. Each of
these layers plays a vital role in processing
information and generating control signals. The Input
Layer accepts input signals from the system, such as
the error signal (e = reference — actual output) and the
rate of change of error (Ae). These signals represent
the system’s deviation from desired performance and
help the controller make corrective adjustments. The
Hidden Layer(s) contain several neurons that process
input data using activation functions, performing
nonlinear mapping from input to output. Common
activation functions include the Sigmoid, Tanh, and
ReLU functions, which allow the network to handle
complex, nonlinear relationships in control systems.
The Output Layer produces

Hidden/Output Layer
Node

Input Layer Hidden Layer

Output Layer

Figure 3.1: Basic architecture of a neural network.
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The final control signal that drives the system, such
as the duty cycle in a DC-DC converter or control
voltage in a motor drive.

In a typical neural network structure, biases are
included as additional neurons in both the input and
hidden layers. These biases have a fixed, non-zero
value (often 1) and are multiplied by specific weight
coefficients before being added to the weighted input
sums. Figure 3.1 illustrates the architecture of a two-
layer neural network. In the hidden layer, each
neuron first sums all incoming weighted signals and

(O—»fsl——wfpn am

then passes the result through an activation function,
also known as a limiter. The Sigmoid function is a
commonly used limiter and is defined as:

This function is preferred because it can be easily
differentiated, a property essential for training the
network. Similar neuron structures exist in the output
layer, where the inputs are signals from the hidden
layer.

x{1} Process Input 1 Layer 1

s{th a3

Layer 2

>

a{1}

Process Output 1 w{1}

Figure 3.2: Layers of Artificial neural network.

The accuracy of an ANN depends on the weight
coefficients, which determine how strongly each
input affects the output. Proper tuning of these
weights allows the network to approximate complex
mappings between input and output data, represented

mathematically as YV = Wx+b. while a

suitable mapping can be found without using bias
terms, including them generally improves accuracy.
Adding more hidden layers allows the network to
perform nonlinear mappings, enhancing flexibility
and precision. The process of refining these weight
coefficients is known as training the neural network.
Training involves two main steps: feedforward and
backpropagation. During the feedforward phase, the
predicted output (¥) is calculated as:

¥ =d(Wod(Wix + by) + by) ... (3.2)

The difference between the predicted output (¥) and
the desired output (y) is measured using a loss
function, which quantifies the network’s error. A
simple and widely used loss function is the sum-of-
squares error. The goal of training is to minimize this
loss by adjusting the weights, a process that requires
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finding the global minimum of the loss function.
Since the loss function depends indirectly on the
weights, the chain rule is applied to calculate the
partial derivatives with respect to each weight:

dLoss(y,y) _ . ,
W =2(y-7)-¢"-x

This forms the basis of the backpropagation
algorithm, where errors are propagated backward
from the output layer through the hidden layer to
update weights. The derivative of the Sigmoid
function used in this process is:

¢'(w) = (W1 - ¢(w)

This simple derivative allows efficient computation
during training. The backpropagation process
iteratively updates the weights between the layers
(W1, W2) to minimize error, ultimately enabling the
ANN to accurately map inputs to outputs and control
the system effectively.

3.5 Operational Working of ANN Controller
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An Artificial Neural Network (ANN) controller for a
smart grid function as an intelligent and adaptive
system capable of learning from real-time and
historical data to manage power flow, regulate
voltage, and detect faults effectively. Acting as a
complex, parallel processing unit, it continuously
monitors grid parameters such as voltage, current,
load demand, and renewable energy generation. This
information is  processed through  multiple
interconnected layers, enabling the ANN to ensure
stable and efficient grid performance even under
fluctuating conditions.

The input layer of the ANN receives real-time data
from the smart grid, including voltage and current
levels, power demand, and renewable source outputs
like solar and wind. Historical grid stability and fault
records are also used to enhance learning accuracy.
This input data serves as the foundation for the
ANN’s decision-making process. The hidden layers
perform complex mathematical operations using
weighted interconnections and activation functions.
Each neuron processes the data, identifies non-linear
relationships, and extracts patterns essential for
optimizing grid performance. During training, the
ANN adjusts these connection weights to minimize
errors and improve prediction accuracy, effectively
“learning” how to respond optimally under different
operating conditions.

After processing through the hidden layers, the
output layer generates control signals that are sent to
grid components such as inverters, switches, and
energy storage systems. These control signals
perform key functions like adjusting power flow to
balance supply and demand, optimizing renewable
and conventional energy distribution, maintaining
voltage and reactive power stability, managing
battery charging and discharging, and detecting as
well as mitigating faults such as line-to-ground
failures or islanding. Additionally, the ANN
coordinates inverter operations to  maintain
synchronization and ensure high power quality within
the grid.

One of the most significant advantages of ANN-
based controllers is their real-time control capability,
allowing them to make continuous adjustments to
grid operations based on changing conditions. Their
adaptive learning ability enables them to respond
effectively to variations in load and renewable
generation, outperforming conventional controllers
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like proportional-integral (PI) systems. Furthermore,
their predictive capabilities allow early detection of
potential instabilities and faults, enabling proactive
intervention to prevent system failures. By reducing
harmonic distortions, enhancing voltage stability, and
improving power quality, ANN controllers play a
crucial role in ensuring a cleaner, more efficient, and
reliable smart grid.

3.6Advantages of ANN Controller.

ANN (Artificial Neural Network) controllers provide
several significant advantages that make them highly
effective for modern control and optimization tasks.
They are particularly well-suited for 307tilized307
complex, non-linear systems and demonstrate strong
adaptive and self-learning capabilities, allowing them
to handle system uncertainties and dynamic
variations efficiently. One of their key strengths is
their ability to generalize from training data, enabling
them to make accurate predictions and control
decisions even in new or unseen operating
conditions. In addition, ANN controllers exhibit fault
tolerance, maintaining system functionality even
when some components fail, and support parallel
processing, which allows them to handle multiple
tasks  simultaneously and perform complex
computations in real time.

A major advantage of ANN controllers is their
capability to model complex and non-linear systems.
Unlike traditional control approaches that require
precise mathematical models, ANNs can learn
intricate input—output relationships directly from
operational data. This makes them ideal for
controlling systems that are difficult to model
analytically, such as chemical reactors, rolling mills,
and renewable energy systems. Their adaptability and
self-learning features enable continuous improvement
of control performance based on real-time data,
ensuring stable and efficient operation even under
varying environmental or load conditions.

Another distinctive benefit of ANN controllers is that
they do not require a predefined system model.
Instead, they can learn directly from observed input
and output data, which simplifies implementation in
complex systems where analytical 307tilized307 is
challenging. Additionally, their ability to generalize
allows them to respond effectively to new scenarios
after being trained on representative datasets. Their
fault-tolerant nature ensures that the overall control
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system remains operational even if individual
neurons or components malfunction, and their
parallel processing capability enhances
computational efficiency. Moreover, ANNs impose
no restrictions on input variables, making them
flexible and versatile for a wide range of data types
and control applications.

3.7Applications of ANN Controller in Power System
Artificial Neural Network (ANN) controllers are
highly versatile and are applied across a wide range
of fields, including process control, optimization,
healthcare, power systems, machine vision,
agriculture, and adaptive control. They excel at
modelling complex, non-linear systems and learning
from data, which makes them essential for solving
dynamic and data-driven problems. In process control
and optimization, ANN controllers are used to model
and regulate intricate industrial processes such as
anaerobic reactors for methane production and power
electronic converters for improving efficiency and
minimizing harmonics. In the healthcare sector,
ANNs are applied for medical image analysis,
disease detection such as cancer, predicting health
risks, and developing personalized treatment plans
based on patient data.

Virtual personal assistants like Siri, Alexa, and
Google Assistant also utilize ANNs to understand
and process natural language, allowing them to
interpret voice commands and respond intelligently
to user requests. In social media and e-commerce,
ANN models are used to analyze user behavior,
personalize content, recommend products, and
deliver targeted advertisements, thereby enhancing
user engagement and experience. In power systems,
ANN controllers play a vital role in improving the
reliability, efficiency, and control of electrical drives
and renewable energy systems. Similarly, in machine
vision applications, ANNs are used for food safety
and quality control, interpreting spectroscopic data to
detect the physical and chemical properties of food
products.

In agriculture, ANN-based systems are used for
optimizing the operation of agricultural machinery
such as combine harvesters, particularly for cruise
control systems that adjust engine speed and other
settings for improved efficiency. Furthermore, in
adaptive control systems, ANNs are often combined
with traditional control methods like PID controllers
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to create intelligent, self-learning systems capable of
adapting to changing conditions and maintaining
optimal performance. Overall, ANN controllers
bridge the gap between classical control theory and
modern intelligent systems, enabling advanced
automation, precise optimization, and high-
performance control across numerous industrial and
real-world applications.

SYSTEM MODELING
V. MODELING OF MICROGRID

5.1 Introduction

To power local needs, the proposed setup is a diesel-
wind-solar PV standalone microgrid connected to a
battery storage system. The overall network
architecture is depicted in Fig. The following
considerations led to the decision to employ a SyRG
as the DG and a PMBLDCG for the wind. Both of
these generators are brushless, meaning they require
less upkeep than their brushed counterparts. In an
asynchronous DG, a SyRG is used in place of a
traditional synchronous generator; this eliminates the
requirement for a speed governor and automatic
voltage regulator, but leaves VSC to handle voltage
and frequency regulation. A wind turbine provides
the power for the PMBLDC generator. Following
what is depicted in Figure. The WECS is linked to
the VSC’s dc connection through a diode rectifier
and a boost converter, as shown in 4.1. Due to the
trapezoidal shape of the back EMF, PMBLDCG
works well for unsupervised rectification. A low-
ripple torque is generated, and the machine functions
smoothly, if the winding currents are also made
quasi-squarewave. PMSG lacks this quality because
the EMF generated is sinusoidal, leading to a varying
torque from the quasi-square wave currents. The
PMBLDC machine has a high energy density despite
its compact size, making it an excellent choice for
pole-mounted installations. In order to transport
energy from the dc link of the VSC to the ac side
where loads are located, the suggested topology also
includes a solar PV system. As was previously said,
the battery energy storagedevice is necessary to
preserve the power balance and supply reliability.
Therefore, a battery bank is set up at the VSC’s dc
link.

308



© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

In order to maximise fuel economy and extract as
much free energy as possible, an operational strategy
is devised to take use of the proposed system
topology’s multiple sources. Since the DG is the only
ac source, the system and load endfrequency are
directly tied to the DG’s performance. Since the
SyRG generator operates at a constant speed, a
constant system frequency implies the same. Some
claim that diesel engines are less efficient at lower

loads because their fuel consumption remains
relatively constant at fixed speeds during operation.
Between 80% and 100% of their rated capacity,
diesel engines perform efficiently. Here, we build the
DG’s control strategy so that it operates only within
the loading range depicted in Figure 5.1. Since
renewable energy sources and a battery energy
storage device are already available, there is no need
for a DG with a full load rating.
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Figure 5.1 VSC’s method of control.

The WECS has a PMBLDC generator, a DBR with
three phases, and a boost converter. After the DBR,
an inductor maintains a nearly constant dc current,
which appears as a nearly
waveform, which is useful for the operation of
PMBLDCG. Having no requirement for a mechanical

square ac current

sensor for MPPT greatly simplifies the use of the
WECS. The Vdc and Idc sensors are not necessary
for the MPPT algorithm to function. This maximum
power point tracking (MPPT) methodology is
identical to the perturb and observe method used in
solar PV systems.

5.2. Modeling of Distributed Generation (DG)Units

The Fourier series provides a method for dissecting a
distorted voltage or current signal into its component
dc and sinusoidal signals of varying frequency. Using
composite observers, we can estimate all of these
frequency components in time. The
fundamentalfrequency components are all that’s

real
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needed for the control algorithm in this system. Here
we present the fundamental structure of a composite
observer, which generates in-phase and quadrature-
phase components of the input signal at a certain
frequency, allowing us to extract the fundamental
frequency component of the load currents. When
there are multiple units of a composite observer
present, each one has a tendency to extract the
harmonic component for which it is tuned. Therefore,
the sum of these parts is closer to the true signal.
Therefore, the “e” error becomes zero in this form of
system. But the proposed method only employs the
unit that corresponds to the fundamental frequency,
so only the fundamental frequency component is
extracted. Load currents are used to estimate their
active and reactive power components, as shown in
Figure 5.1, where the in-phase component is obtained
as the system’s output and the quadrature-phase is
obtained as the system’s internal state. 4.2. It is
necessary to have both in-phase and quadrature-phase
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unitvectors of PCC voltage in order to produce
reference source currents. The voltage-frequency
controller (VSC) control algorithm is depicted in
Figure. The voltage support converter (VSC) keeps
the generator’s active power output constant, in turn
controlling the frequency indirectly.

5.5. Battery Energy Storage System (BESS)
modelling and control

Though the study primarily focuses on the hybrid
generation system, this section is devoted to
elucidating the power flows in the topology and
offering suggestions for managing the battery’s
charge and discharge. Large-scale demonstration of

power flow between the various sources is shown in
Figure 5.4. Since all other currents and powers are
known, it should be straightforward to estimate the
battery current and act accordingly. Topology and
controls presented allow for independent regulation
of battery charge and discharge by independent
regulation of each power source and load, as depicted
in Figure 5.4. A current sensor can detect the current
flowing through the battery in the event that precise
monitoring of the charge discharge is required.
Battery voltage readings are already being taken, so
they can be 310tilized to calculate state of charge and
other discharge-control parameters.

Power Flow and Available Controls in the Hybrid Generation System

Control Available: Power Derating,
Operating away from the MPPT
casc of Battery fully charged and
low load

Wind
Gencrator

Control Available: Power Derating,
Opcrating away from the MPPT in
casc of Battery fully charged and low

load

Solar PV
Asray

Control Available: The lower and upper
fuel limit of the power imposed by control
cell algonithm in casc of battery overcharging

1
o ud

\ L—— wC

=5 > AC Load
Baticry
Storage

decp discharging and load variations.

Control Available: Load
Shedding in case of Excessive
Load

Figure 5.4 Flow of power and system controls

SIMULATION RESULTS

VI. SIMULATION

6.1Configuration and Operation of a DC-Coupled Hybrid Microgrid
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Figure 6.1Simulation Diagram of Hybrid PV—Wind—Fuel Cell Microgrid System with Grid Integration
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The Figure 6.1 illustrates a typical configuration of a DC-coupled hybrid microgrid system. This setup is designed to

integrate multiple energy sources, condition and regulate their outputs on a shared DC bus, and deliver high-quality
AC power to both local loads and the main utility grid. The architecture ensures optimal power management,
seamless source coordination, and efficient energy utilization across renewable and auxiliary units.
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The renewable energy in the system
primarily include a Photovoltaic (PV) array and a
Wind Energy Conversion System (WECS). The PV
array generates direct current (DC) power, which is
interfaced to the main DC bus through a dedicated
DC/DC converter.

This converter regulates the PV output voltage and
current to maintain maximum power point tracking

w-.ra=w.;:

Wind Speed

(rmu's) m
Turbine
m

sources

(MPPT) and ensure stable integration with the DC
bus. The WECS, on the other hand, produces
alternating current (AC) power through a wind
turbine generator. This AC output is rectified by an
AC/DC converter (rectifier) before being connected
to the DC bus. Together, these renewable sources
contribute to the primary energy generation capacity
of the hybrid microgrid.
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Figure 6.3 Simulink Model of a Doubly Fed Induction Generator (DFIG) Wind Energy System

The system also includes energy storage and
auxiliary power components that enhance reliability
and stability. A Battery Energy Storage System
(BESS) is connected to the DC bus through a bi-
directional DC/DC converter, enabling both charging
and discharging operations. The BESS supports load
balancing, power quality improvement, and grid
support during transient conditions. In addition, a
Fuel Cell (FC) unit is included as a clean DC power
source, interfaced to the DC bus via a converter
(labeled DC-DC1). Complementing the fuel cell is

an Electrolyzer block,typically labeled “Electr” or

[Crea>
T
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= v} e<tr==1
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“Electrolysis,” which converts surplus electrical
energy into hydrogen through the electrolysis
process. This stored hydrogen can later be utilized by
the fuel cell to regenerate electrical power, effectively
closing the power-to-gas-to-power cycle and
providing an efficient auxiliary energy pathway.

At the heart of this architecture lies the common DC

bus, denoted as Vdc- This bus serves as the central

power aggregation and regulation point where all
source and storage units are interconnected. A
capacitor bank (C) is installed across the DC link

R

]
4

Figure 6.4Controlled DC-DC Buck Converter Circuit Simulation
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to smooth voltage fluctuations, filter noise, and
stabilize the DC voltage under dynamic load
variations. From this DC bus, the power is fed into a
DC/AC inverter, which performs the critical task of
converting the regulated DC voltage into a high-
quality three-phase AC signal suitable for supply to
AC loads and grid interconnection.

The output and grid interface section ensures that the
generated AC power meets grid standards and load
requirements. The inverter output passes through an
LC filter, composed of inductors and capacitors,
which attenuates switching harmonics and refines the

6.3 PV System Input Irradiance Profile Over Time

AC waveform, ensuring compliance with grid power
quality norms. The filtered AC output is then
delivered to the Point of Common Coupling (PCC),
labeled as gridl, which represents the interface
between themicrogrid and the utility network. From
this point, the system can either export power to the
grid when local generation exceeds demand or import
power when renewable sources are insufficient. The
local load, represented as a three-phase AC load,
receives stable and conditioned power from the same
PCC, ensuring uninterrupted operation of connected
homes, industries, or community systems.
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Figure 6.8 PV system input irradiance

This figure 6.8 represents the input solar irradiance
applied to a photovoltaic (PV) system over time,
typically as part of a simulation in a hybrid renewable
energy system or DC microgrid. The irradiance
pattern defines how much solar power is incident on
the PV panels during the simulation, directly
affecting the output power of the PV array.X-Axis
(Time in seconds) The simulation time runs from 0 to
1 second.Each segment represents a different
irradiance level applied at a specific time interval. Y-
Axis (Irradiance in W/m?) Irradiance values range
from 0 to 1200 W/m?.This represents the intensity of
sunlight falling on the PV array surface.A higher
irradiance value means more sunlight and, therefore,
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higher PV output power. Initial Condition (0 — 0.1
sec)lrradiance = 0 W/m?At the start, the PV array
receives no sunlight, simulating nighttime or a no-
input condition.Hence, the PV system produces no
electrical power during this period.First Step Change
(= 0.1 — 0.3 sec)lrradiance increases to around 400
W/m? at 0.1 sec and then to 1000 W/m? at 0.3
sec.These two step increases mimic morning solar
intensity rise as the sun begins to shine.The PV
system’s output voltage and current will increase
proportionally with irradiance, as per the PV cell

characteristic equation where I ph depends directly on

irradiance.
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6.4 Current and Power Output vs. Voltage for the PV Array

Array type: Advance Power API-M305; 30 series modules; 120 parallel strings
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Figure 6.9 -V (Current vs. Voltage) and P-V (Power vs. Voltage) characteristics of a photovoltaic (PV)

The given diagram illustrates the -V (Current vs.
Voltage) and P-V (Power vs. Voltage) characteristics
of a photovoltaic (PV) array, specifically for the
Advance Power API-M305 module type. The array
consists of 30 modules connected in series and 120
parallel strings. There are two plots shown in the
figure: the top plot represents the Current (A) versus
Voltage (V) characteristic, and the bottom plot
represents the Power (W) versus Voltage (V)
characteristic. Both curves are plotted for two
different operating temperatures, 25°C (red curve)
and 45°C (blue curve), to study the effect of
temperature on array performance.

In the -V curve, the current remains nearly constant
as the voltage increases up to a certain point known
as the knee point or maximum power point (MPP).
Beyond this point, the current drops sharply to zero.
As the temperature increases, the open-circuit voltage
(Voc) decreases, while the short-circuit current (Isc)
increases slightly. This indicates that at higher
temperatures, the voltage output of the PV array
decreases, and although

the current increases
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marginally, the overall power generation capability is
reduced.

In the P-V curve, the power output rises with voltage
until it reaches the maximum power point (Pmax),
after which it declines rapidly. At 25°C, the
maximum power is higher and occurs at a higher
voltage, whereas at 45°C, the maximum power
decreases and occurs at a lower voltage. This
demonstrates that the efficiency of a PV module
decreases with increasing temperature.

6.5 Output Power Characteristics of PV Array

Figure 6.10 illustrates how the power output from a
solar photovoltaic (PV) array varies with time under
changing solar irradiance or
conditions. The x-axis represents time in seconds,
and the y-axis represents PV power in megawatts
(MW x 10%). The curve shows distinct step changes
in PV output, indicating how the PV system responds
dynamically to sudden variations in sunlight intensity
or load demand. During the initial period from 0 to
0.2 seconds, the PV power remains at zero, signifying
no solar generation, which

environmental
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Figure 6.10PV Power vs. Time Characteristics

may occur before sunlight exposure or during system
startup. Between 0.2 and 0.3 seconds, the power rises
sharply to about 5 x 10° MW, representing an
increase in solar irradiance or system activation.
From 0.3 to 0.8 seconds, the PV output maintains a
steady high level of approximately 10 x 10° MW,
corresponding to maximum power generation under
full sunlight conditions. Finally, from 0.8 to 1.2
seconds, the power drops back to around 5 x 10°
MW, which may be due to partial shading, a decrease
in irradiance, or a change in load. Overall, this figure
represents the dynamic response of PV power
generation to  varying
environmental conditions, demonstrating the ability
of the PV system to quickly adjust its output and
maintain stability under transient changes.

6.6 DC-Link Voltage (Vdc) Tracking its Step-
Changed Reference (Vdcref)

solar irradiance or

0.6 0.8 1.0 1.2
Time (s)

This figure 6.6 shows the DC-link voltage dynamic
response in a DFIG-based wind energy system (or
any grid-connected converter system). The x-axis
represents Time (sec) and the y-axis represents DC-
link Voltage (V).Two signals are plotted blue line
(Vdc ref) Reference DC-link voltage (desired voltage
set by the control system) and red line (Vdc) Actual
DC-link voltage measured during operation. The Vdc
controller (part of the Grid Side Converter control
loop) is performing voltage regulation effectively.
The transient overshoot is quickly damped, showing
that the ANN or PI controller is well-tuned. The
tracking of Vdc ref after both step increases and
decreases demonstrates: Fast dynamic response,
Strong disturbance rejection, and accurate steady-
state control. Maintaining a stable DC-link voltage
ensures
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Figure6.11 DC reference voltage and measured

IJIRT 140001

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY

315



© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

continuous and bidirectional power flow between
generator and grid with minimum ripple.This figure
illustrates the excellent DC-link voltage control
performance of the converter system. The voltage
closely follows its reference under both steady and
transient conditions, ensuring smooth energy transfer
between the machine and the grid. The small
overshoots and quick settling confirm the controller’s
robustness, fast.Such behavior is essential
renewable energy systems (like DFIG wind systems)
to maintain power quality, voltage stability, and
reliable grid interfacing.
6.7 Battery Power
Load/Irradiance Changes

in

Response to  System

Power flow management under varying conditions
The system's control strategy, enabled by the ANN,
effectively manages fluctuations in power supply and
demand to maintain stability. Handling excess power
(charging): When excess generation causes the DC
bus voltage to rise, the ANN controller commands
the converter to switch to buck mode, absorbing
energy and charging the battery. This is represented
by the negative power region (0.3-0.8 sec), which
relieves stress on the DC bus. Handling power
demand (discharging): The system handles load
increases or generation drops by discharging the
battery. This is implied in the final phase (0.8-1.0
sec) as the
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Figure 6.12 Battery Power

power moves toward zero or slightly positive,
indicating the battery is ready to supply power if
needed. Maintaining DC bus voltage stability: The
core function of the BESS is to act as a buffer. By
absorbing excess power and injecting power during
deficits, the battery system helps to regulate the DC
bus voltage, keeping it within a stable operating
range. The plot's smooth and stable power control
demonstrates the ANN's success in achieving this.

X-Axis (Time in seconds) The simulation runs from
0 to 1 second.This time interval captures both
transient and steady-state performance of the battery.
Y-Axis (Battery Power in kW) The power value
ranges approximately from -4000 to +8000
kW.Positive power represents battery is discharging
(supplying power to the system).Negative power
represents battery is charging (absorbing power from
the DC bus).Initial Transient (0 — 0.1 sec) at the very
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start, there are sharp oscillations between +8000 kW
and -3000 kW.This represents the dynamic transient
response of the system when it first begins operation.
Causes of this transient are sudden connection of the
battery system to the DC bus.Initial imbalance
between reference voltage/current and actual
conditions, Controller (ANN) adjusting duty cycle of
the DC-DC converter to stabilize power flowand The
Artificial Neural Network (ANN) controller works to
quickly suppress these oscillations, stabilizing the
system.First Steady-State Region (= 0.1 — 0.3 sec) the
power settles close to 0 kW (a nearly flat line). This
means the battery neither charges nor discharges
significantly. The DC bus voltage is stable, and other
sources (like PV or grid) are managing the load. In
Second Operating Phase (= 0.3 — 0.8 sec) around 0.3
sec, the power drops to about -2000 kW.This
negative region indicates the battery is charging. It
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happens typically when the DC bus voltage exceeds
its reference (excess generation).ANN controller
signals the DC-DC converter to absorb energy from
the bus between 0.3 and 0.8 sec, the battery maintains
this charging mode steadily, showing effective
control by the ANN.Final Phase (= 0.8 — 1 sec)
Around 0.8 sec, the power briefly moves up towards
0 or slightly positive. This implies The battery
transitions back toward discharge mode or becomes
idle. It responds to a load increase or generation drop.
The smooth transitions again reflect fast adaptation
and robust performance of the ANN-controlled
converter.

Figure 6.12 Battery Power demonstrates that The
battery responds dynamically to system changes. The
ANN controller ensures rapid stabilization and
accurate power control. The system transitions
smoothly between charging and discharging modes,
indicating effective coordination between the battery,

x 10

DC-DC converter, and the overall hybrid energy
system.

6.8 Transient and Steady-State Response of Stator
Active and Reactive Power

This figure 6.8 Stator Active and Reactive Power —
shows the dynamic performance of the stator (likely
from an induction generator or motor in a renewable
energy system, such as a wind turbine or hybrid DC
microgrid) during the simulation period. It depicts
how both active power (P) and reactive power (Q)
vary with time under control of the associated
converter andANN controller. The figure consists of
two subplots Top plot is Stator Active Power (W) and
Bottom plot: Stator Reactive Power (VAR) both are
plotted as a function of time (seconds) from 0 to 1
second. The curve rises sharply from 0 W at

t = Otoaround 6 x 10°'W (600 kW) after the initial

rise (within ~0.08 s), it rapidly settles to a nearly
constant small value close to zero for the rest of the
simulation (0.1 — 1 s).
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Figure 6.13 Stator Active and Reactive Power

and current to balance power exchange.The stator
active power flow becomes minimal once steady DC
bus voltage is achieved, meaning the generator is
operating efficiently with minimal losses or is idling
under no-load condition.The initial peak indicates
dynamic response capability.The flat steady portion
shows that active power control is well-damped,
ensuring stability. A well-designed controller should

IJIRT 140001

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY

show exactly this kind of quick settling with no
sustained oscillations.
Stator Reactive Power starts high, near 2 x 10° VAR

(200 kVAR) att = 0.1t rapidly decays to zero by

around 0.05-0.08 s and then remains flat at zero for
the rest of the simulation. Reactive power is
associated with the magnetizing component of
current in AC machines.The high initial reactive
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power is required to build up the magnetic field in the
stator windings when the system is first
energized.Once the magnetic field stabilizes, reactive
power demand drops.

In a hybrid renewable system, this figure likely
corresponds to the generator or motor stator
connected through a DC-AC converter (inverter)
controlled by an Artificial Neural Network
(ANN).During the start-up phase, the ANN controller
ensures smooth transient performance by minimizing
oscillations in both active and reactive power.The

fast decay of both Pand Qindicates High control

accuracy, reduced electromagnetic torque ripples,
andStable coupling between the stator and DC
bus.Thus, the figure confirms the dynamic stability
and fast convergence of the machine’s electrical
parameters under ANN control.Both active and
reactive powers exhibit short-lived peaks due to
initial magnetization.The ANN controller ensures
rapid damping and zero steady-state error.The system
achieves steady-state operation within 0.1 seconds,
confirming the robustness and fast response of the
control strategy used.

6.9 Transient and Steady-State Response of Rotor Active and Reactive Power
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Figure 6.14 Rotor Active and Reactive Power

This figure 6.14 Rotor Active and Reactive Power —
shows the dynamic performance of the rotor (most
likely of a Doubly Fed Induction Generator (DFIG)
or Induction Machine) under varying conditions
controlled by a power electronic converter, typically
with  an ANN (Artificial Neural Network)
controller.It represents how both rotor active power
(P) and rotor reactive power (Q) evolve over time
during the system’s transient and steady-state
operation.The figure 6.9 contains two subplots Top
Plot: Rotor Active Power (W)Bottom Plot: Rotor
Reactive Power (VAR)The x-axis for both plots is
Time (seconds), running from 0 to 1 second.

The rotor active power starts with a small oscillation
around 0 W at the beginning (0-0.05 s).Then it rises
positively and settles at a constant value near 5 x 10°
W (500 kW) by approximately 0.1 seconds.After this
transient, the power remains steady until the end of
the simulation.The rotor active power represents the
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real electrical power either generated or absorbed by
the rotor circuit.The initial oscillation corresponds to
sudden connection of the rotor to the converter and
establishment of electromagnetic coupling between
rotor and stator fields.Inrush current due to the
difference between mechanical and electrical rotor
speeds at startup.The settling region shows that the
ANN-based control effectively damps out transients
and stabilizes power flow.Once steady state is
reached the rotor supplies active power to the grid or
DC bus (positive direction) if operating as a
generator.The stabilized value (~500 kW) indicates
effective energy conversion and minimal losses.

Figure 6.14 Rotor Active and Reactive Power
illustrates the dynamic performance and steady-state
stability of the rotor circuit in a controlled generator
or motor system.Both active and reactive power
exhibit small, short-lived oscillations during system
startup.The active power stabilizes rapidly, indicating
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efficient real power transfer.The reactive power
converges to zero, confirming effective power factor
correction and magnetic flux stabilization.The ANN
controller provides robust damping and precise
control, minimizing overshoot and settling time.
Figure 6.14 clearly demonstrates that the rotor circuit,
controlled via ANN and converter, achieves a fast
transient response, stable steady-state operation, and
excellent power quality with negligible reactive
power flow. This reflects optimized control
coordination between rotor, stator, and the converter
interface in a hybrid energy conversion system.

6.10 Grid-Side Converter Active Power Response to
System Operating Condition Changes

The figure 6.10 plots the Grid Side Converter (GSC)
Active Power (in watts) on the y-axis against Time
(in seconds) on the x-axis.The time range is from 0 to
1 second, and the active power varies approximately
between —1.5 x 10° W and +1.2 x 10° W.

This figure 6.10 represents the active power
exchange between the Grid Side Converter (GSC)
and the utility grid in a Doubly Fed Induction
Generator (DFIG)-based Wind Energy Conversion
System (WECS) or in a similar hybrid system where
a grid-connected converter controls the power flow.
Understanding Active Power behaviour initial Period
(0 —0.1 sec): Transient

Grid side Active Power (W)

[ [ [ [

A5 I I I I I
0 0.1 0.2 0.3 0.4 05
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Figure 6.15 Grid side converter Active Power

ResponseAt the start (0-0.1 sec), the waveform
shows oscillations and negative power peaks up to
—1.2 x 10° W.This indicates transient conditions due
to system startup or a sudden change in grid or wind
conditions.Negative power means the
converter is absorbing power from the grid, which
could occur when the DC link capacitor charges up or
when the control loop stabilizes.Transition Period
(0.1 — 0.3 sec): System StabilizationAfter 0.1 sec, the
oscillations gradually reduce.Around 0.2 sec, the
power becomes positive and starts to stabilize near
0.6 x 10° W.This shows that the GSC control loop is
stabilizing the DC link voltage and synchronizing
with the grid frequency.The converter now exports
active power to the grid, meaning the DFIG is

active

generating electricity.Steady-State Region (0.3 — 0.8
sec): Constant Power DeliveryBetween 0.3 and 0.8
sec, the active power stabilizes at around 1 x 10° W
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(1 MW).This steady output signifies normal grid-
connected operation under stable wind or load
conditions.During this period, the GSC regulates the
DC-link voltage and ensures constant power delivery
to the grid. The constant output reflects that the rotor
side converter and grid side converter are working in
coordination maintaining power balance between
rotor and grid sides.End Period (0.8 — 1 sec): Load or
Wind Variation after 0.8 sec, there is a slight drop in
active power to around 0.6 x 10° W. This change
might correspond to A decrease in wind speed,A
change in grid demand, orA control action (e.g.,
reference power reduction).Despite the drop, the
waveform remains smooth, showing that the system
remains stable and well-controlled.

The Grid Side Converter Active Power plot shows
how the converter transitions from transient to steady
operation.It successfully stabilizes the DC-link
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voltage and exports constant active power to the grid
after oscillations.The small fluctuations
demonstrate the converter’s dynamic response and
regulation capability under changing

initial

power

conditions.Overall the GSC ensures smooth and
stable power delivery, confirming the effectiveness of
the ANN controller used.

6.11 Transient Power Response Comparison of Hybrid and Conventional Systems

100 T T T

80 -

60 -

40

20

Power (KW)

=20

1

Proposed Hybrid System
Conventional System

1 1 1

_40 L 1 1
0 0.2 0.4 0.6

0.8 1.0 1.2 1.4 1.6

Time (seconds)

Figure 6.16Power comparison plot (Proposed Hybrid System vs. Conventional System).

This figure 6.16 illustrates a comparative analysis of
power output (kW) between a Proposed Hybrid
System and a Conventional System over a time
duration of 1.6 seconds.

The X-axis represents Time (seconds), and the Y-axis
represents Power (kW), ranging approximately from
—40 kW to 100 kW. The red curve denotes the
Proposed Hybrid System, while the blue curve
represents the Conventional System.

At the initial transient period (0-0.1 s), both systems
show start-up fluctuations. The Conventional System
experiences a negative dip (around —25 kW), whereas
the Proposed System exhibits a positive overshoot
reaching nearly 90 kW.

During the first steady state (0.2—0.6 s), both systems
stabilize at a constant power level. When the first
step change (at 0.6 s) occurs, the output power
increases to a higher level, and both systems track
this step with minimal transient differences.

In the second steady-state region (0.8—1.25 s), both
maintain nearly the same power output. However,
when the second step change (at 1.25 s) is applied, a
clear performance distinction appears. The
Conventional System (blue) shows a significant
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undershoot (around 55 kW) and a slower settling
time. In contrast, the Proposed Hybrid System (red)
exhibits only a small overshoot (around 92 kW) and
settles faster with minimal oscillations.

VII. CONCLUSION

This study proposes the integration of a Photovoltaic
(PV) system and a Wind Energy Conversion System
(WECS) for an autonomous micro-grid, with an
Artificial Neural Network (ANN)-based control
system to optimize performance. The ANN controller
is trained to predict the maximum power point (MPP)
under varying irradiance, temperature, and wind
conditions, enabling efficient operation of a boost
converter for PV power extraction. Dual PI loops
manage the DC bus voltage and battery charging,
while the ANN dynamically adjusts control
parameters to respond to fluctuations in renewable
generation and load demand.
The battery bank stores
generation exceeds load and supplies power when
renewable output is insufficient. The ANN controller
safeguards the batteries against overcharging and

excess energy when
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over-discharging by monitoring the state of charge
(SOC). It disconnects PV and wind sources when
SOC exceeds 80% and reconnects them when SOC
drops below 75%. If SOC falls below 20%, the
inverter and loads are disconnected to prevent
damage.

By integrating ANN control, the micro-grid operates
autonomously,  efficiently = managing  energy
generation, storage, and load demands while adapting
to dynamic environmental and load conditions. This
approach improves system reliability, stability, and
energy utilization compared to conventional PI-based
control alone.

The proposed ANN-based control technique
effectively minimizes oscillations in the DC-link
voltage, improves transient response, and enhances
the overall system stability when compared to
conventional control methods. The simulation results,
obtained using MATLAB/Simulink, clearly validate
that the ANN-based hybrid system ensures steady
power flow, efficient energy management, reduced
converter count, and higher overall efficiency under
various environmental and operational conditions. In
the previously used control method, the system’s
power output settled between 8.5 to 12 seconds.
However, with the implementation of the ANN
controller, the power settles at its final steady-state
positive value much faster, reaching stability at
around 0.35 seconds. This demonstrates a significant
improvement in the dynamic performance and
response speed of the system.

VIII. FUTURE SCOPE

The following key future research directions and
practical developments can be identified:

1. Optimization and Efficiency Enhancement

2. System Reliability and Lifespan Improvement

3. Real-Time Implementation and Hardware
Validation

4. Grid Integration and Smart Grid Applications

5. Economic and Environmental Analysis

6. Scalability and Microgrid Applications
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