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Abstract—The increasing demand for clean and 

sustainable energy has led to the development of 

advanced hybrid renewable energy systems. This study 

focuses on the modelling, control, and energy 

management of a hybrid grid-connected power system 

that integrates wind energy, photovoltaic (PV) systems, 

a battery energy storage system (BESS), fuel cells (FC), 

and an electrolyser. The proposed system configuration 

eliminates the need for a separate PV converter by 

combining wind and PV as primary energy sources, 

BESS as a secondary source, and the combination of FC 

and electrolyser as tertiary sources. This design not only 

simplifies the system architecture but also enhances 

cost-effectiveness and overall reliability. 

To achieve optimal performance, a Hybrid Artificial 

Neural Network (ANN) controller is implemented, 

which provides adaptive, intelligent, and non-linear 

control for maintaining system stability and efficient 

energy flow under variable wind and solar conditions. 

The system stability is further improved using a lead 

compensator with an integrator, which minimizes 

steady-state errors and ensures an appropriate phase 

margin. The Rotor Side Controller (RSC) and Grid 

Side Controller (GSC) operate cooperatively to 

maintain grid synchronization, provide frequency 

support, and ensure efficient power distribution from 

renewable sources. 

The ANN-based controller effectively compensates for 

the intermittency and power fluctuations inherent in 

renewable energy sources by dynamically adjusting 

power flow between the BESS, FC, and electrolyser. 

The electrolyser stores excess energy by producing 

hydrogen during high-generation periods, which is later 

utilized by the fuel cell during low-generation 

conditions, thus ensuring continuous power supply. The 

advanced energy management system also prevents 

BESS overcharging, minimizes power oscillations, and 

guarantees a stable power output to the grid. 

The proposed ANN-based control technique effectively 

minimizes oscillations in the DC-link voltage, improves 

transient response, and enhances the overall system 

stability when compared to conventional control 

methods. The simulation results, obtained using 

MATLAB/Simulink, clearly validate that the ANN-

based hybrid system ensures steady power flow, 

efficient energy management, reduced converter count, 

and higher overall efficiency under various 

environmental and operational conditions. In the 

previously used control method, the system’s power 

output settled between 8.5 to 12 seconds. However, with 

the implementation of the ANN controller, the power 

settles at its final steady-state positive value much 

faster, reaching stability at around 0.35 seconds. This 

demonstrates a significant improvement in the dynamic 

performance and response speed of the system. 

 

I. INTRODUCTION 

 

1.1 Overview 

The advancement and expansion of electrical power 

systems face numerous challenges that extend 

beyond technological limitations to include 

environmental, social, economic, and financial 

considerations. In the 21st century, climate change 

and sustainable development have emerged as critical 

issues affecting energy and environmental security. 

Conventional energy sources such as coal, oil, and 

natural gas not only increase the cost of electricity 

generation but also have detrimental environmental 

impacts, contributing to pollution and greenhouse gas 

emissions. The rapid growth in energy demand 

exacerbates these effects, leading to long-term 

consequences for the environment. These challenges 

can be mitigated by adopting renewable energy 

sources such as wind power, solar photovoltaics 
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(PV), and tidal energy, which offer sustainable 

alternatives with minimal environmental impact. 

However, renewable sources are inherently 

intermittent due to climatic variations such as solar 

irradiance, temperature, and wind speed, which can 

limit consistent power generation. To address this 

issue, Hybrid Energy Systems (HES) have been 

developed, allowing for efficient, reliable, and 

economical utilization of renewable resources. This 

approach combines multiple energy sources, along 

with energy storage and control systems, to ensure a 

continuous power supply. The project focuses on 

designing power management and control strategies, 

as well as testing and validating associated 

algorithms within a simulated environment. 

Mathematical modeling plays a crucial role in 

simulating energy conversion systems, including 

solar PV and windbased units. 

Modern power grids are increasingly incorporating 

advanced technologies to enhance efficiency, 

reliability, and flexibility. In this context, microgrids 

are poised to be a key driver of transformation in 

electrical infrastructure, supported by technical, 

economic, and social factors. The declining costs of 

PV panels and inverters, along with the relatively low 

cost of natural gas and diesel in certain regions, have 

made distributed generation comparable to traditional 

grid power, further motivating the integration of 

renewable energy sources as a long-term solution. 

Globally, there is growing recognition that 

independent hybrid solar-wind power systems 

provide a superior alternative for supplying 

electricity to remote areas where grid connection is 

not feasible. For example, according to the 2006 

Statistics Canada Census, 194,281 people lived in 

292 remote settlements that were not connected to the 

main power grid. These regions possess significant 

wind energy potential, yet rely primarily on diesel 

generators, consuming approximately 1,477,415 

MWh annually. To reduce both the high operational 

costs and environmental impact of diesel-based 

generation, innovative strategies aimed at minimizing 

diesel usage are essential. Between 2008 and 2011, 

solar PV generation in Canada grew at an annual rate 

of 147.3%, while wind energy utilization also 

increased, with projections indicating it could 

account for 12% of global electricity generation by 

2020. 

As a result, the concept of hybrid operation has 

attracted increasing attention in the power sector. The 

Techno Centre Éolien (TCÉ) has implemented a 

hybrid renewable energy system in Gaspé, Quebec, 

combining a wind power plant, compressed air 

storage, motor-generator electric drive (MGSet), 

battery storage, heat exchanger, resistive loads, 

secondary loads, and remote monitoring systems. The 

primary objective of such research is to assess the 

functionality, reliability, and autonomous operation 

of hybrid energy systems, providing a sustainable 

solution for power generation in both remote and 

grid-connected areas. 

The proposed ANN-based control technique 

effectively minimizes oscillations in the DC-link 

voltage, improves transient response, and enhances 

the overall system stability when compared to 

conventional control methods. The simulation results, 

obtained using MATLAB/Simulink, clearly validate 

that the ANN-based hybrid system ensures steady 

power flow, efficient energy management, reduced 

converter count, and higher overall efficiency under 

various environmental and operational conditions. In 

the previously used control method, the system’s 

power output settled between 8.5 to 12 seconds. 

However, with the implementation of the ANN 

controller, the power settles at its final steady-state 

positive value much faster, reaching stability at 

around 0.35 seconds. This demonstrates a significant 

improvement in the dynamic performance and 

response speed of the system. 

 

1.2 Literature Review 

The integration of renewable energy sources into 

electrical grids has become a significant research 

focus due to the increasing demand for sustainable 

and environmentally friendly power generation. 

Conventional energy sources such as coal, oil, and 

natural gas have detrimental effects on the 

environment, leading to global efforts to adopt 

renewable energy technologies, including wind, 

solar, and hybrid systems. However, renewable 

energy sources are inherently intermittent and 

variable, making it challenging to maintain grid 

stability, voltage regulation, and reliable power 

supply. To address these challenges, Hybrid Energy 

Systems (HES) combining multiple renewable 

sources with energy storage and intelligent control 

mechanisms have been widely studied. 
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Wind-Diesel Hybrid Systems have been one of the 

earliest hybrid configurations explored. Pena-Alzola 

[1] demonstrated that independent wind-diesel 

systems can significantly reduce fuel consumption 

when operated in Wind Only mode, minimizing 

diesel generator usage. Achieving this mode requires 

advanced control strategies and energy storage 

mechanisms, particularly batteries, which reduce the 

start-stop cycles of diesel generators. Batteries are 

preferred for short-term storage due to their high 

efficiency and fast response compared to other 

storage options. These systems typically use three-

phase bridges to interface the battery with the 

isolated grid, ensuring compliance with power 

standards. 

Hirose and Matsuo [2] proposed a freestanding 

hybrid system combining wind, solar, battery storage, 

and diesel generation, operating independently of a 

commercial grid. Advanced power control techniques 

were implemented to regulate active-reactive power 

and dump loads, enabling multiple sources to connect 

to a single line and allowing flexible system 

expansion. Such systems are particularly suited for 

isolated islands and rural areas lacking grid access, 

contributing to sustainable energy development. 

 

Overall, the literature indicates that hybrid renewable 

systems integrated with intelligent ANN-based 

controllers provide a viable approach for achieving 

efficient, reliable, and sustainable power generation. 

The combination of wind, solar, energy storage, and 

advanced control not only reduces reliance on fossil 

fuels but also ensures stable power delivery in 

remote, islanded, or grid-connected microgrids. 

Despite significant progress, ongoing research is 

focused on improving control strategies, optimizing 

system architecture, and enhancing the predictive 

capabilities of ANN controllers to further improve 

the performance and reliability of hybrid 

converterless microgrids. 

1.3 Problem Formulation  

The integration of hybrid renewable energy sources, 

such as wind turbines and solar PV systems, into the 

AC utility grid presents a significant challenge due to 

their intermittent and variable nature. In a 

converterless microgrid, the direct coupling of DC 

renewable sources to the grid further complicates 

voltage and frequency regulation, resulting in 

potential power quality issues such as voltage sag, 

frequency deviations, and harmonic distortions. The 

Battery Energy Storage System (BESS) and fuel cells 

can help mitigate these fluctuations, but their 

operation is constrained by charging/discharging 

limits, state-of-charge requirements, and response 

time. 

Traditional control methods such as PI or PID 

controllers are limited in handling the nonlinearities, 

dynamic interactions, and uncertainties inherent in 

multi-source hybrid microgrids. Moreover, in 

minimized-converter architectures, the strong 

coupling between the DC bus and PV system requires 

advanced control strategies that can adapt in real time 

to variations in renewable generation and load 

demand. This creates a complex control problem: 

ensuring stable, efficient, and high-quality power 

exchange between the hybrid microgrid and the grid, 

while simultaneously managing bidirectional power 

flow, maximum power point tracking (MPPT) for PV 

and wind, and energy storage coordination. 

The primary objective is therefore to design an 

Artificial Neural Network (ANN)-based controller 

capable of: 

1. Predicting and compensating for the 

intermittency of PV and wind sources. 

2. Coordinating power flow from multiple DC 

and AC sources to maintain grid stability. 

3. Managing BESS and fuel cell operation to 

provide continuous, high-quality power. 

4. Operating effectively in a converterless 

microgrid topology, minimizing reliance on 

conventional converters while improving power 

quality. 

In summary, the problem is to develop an intelligent, 

adaptive control strategy that can ensure reliable, 

efficient, and stable operation of a hybrid microgrid 

with minimal converter architecture, enabling 

seamless integration with the utility grid while 

addressing the inherent challenges of renewable 

energy intermittency, load variability, and limited 

energy storage capabilities. 

 

1.4 Objectives of project: 

The primary objectives of this project focus on the 

design, simulation, and control of a hybrid renewable 

energy system to ensure efficient, reliable, and high-

quality power delivery. These objectives are: 

1. Maximize Power Extraction from Renewable 

Sources Develop a simulation model of the 
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hybrid system and implement Maximum Power 

Point Tracking (MPPT) techniques for solar PV 

and wind energy to operate at optimal power 

levels. 

2. Autonomous Hybrid System Simulation 

Construct a simulation model of a Solar-Wind-

Fuel Hybrid Energy System (SWHES) to 

analyze performance under varying 

environmental and load conditions. 

3. Integration and Control of Multi-Source 

Microgrid: Implement an ANN-based controller 

to manage bidirectional power flow, coordinate 

BESS and fuel cell operation, and enable 

seamless grid integration in a converterless 

microgrid architecture.Comprehensive 

Simulation and Testingof the simulation model 

to evaluate system stability, power quality, and 

energy management strategies under realistic 

operating conditions. 

 

DESIGN AND ANALYSIS OF ANN-BASED 

INTELLIGENT CONTROLLER 

 

III. ARTIFICIAL NEURAL NETWORK 

 

3.1 Introduction  

An Artificial Neural Network (ANN) Controller is an 

intelligent control system that uses artificial neural 

networks to model, learn, and control complex and 

nonlinear dynamic systems. Unlike conventional 

controllers such as PID, which require a precise 

mathematical model, ANN controllers can learn the 

system behavior from data through training. ANNs 

are inspired by the biological structure of the human 

brain, consisting of interconnected processing 

elements called neurons. These neurons work 

together to process information and make decisions. 

3.2 Fundamentals and OperatingPrinciples of ANN 

Controller 

The basic idea behind an ANN controller is to use a 

trained neural network to map the relationship 

between: 

• Input variables (such as error, change in 

error, etc.) 

• Output control signals (such as voltage, 

current, speed, or duty cycle) 

Once trained, the ANN can generate control actions 

automatically to achieve the desired output, even 

under changing or uncertain conditions. 

3.3Structure and Architecture of ANN Controller 

An Artificial Neural Network (ANN) controller 

typically consists of three main layers: the Input 

Layer, Hidden Layer(s), and Output Layer. Each of 

these layers plays a vital role in processing 

information and generating control signals. The Input 

Layer accepts input signals from the system, such as 

the error signal (e = reference – actual output) and the 

rate of change of error (Δe). These signals represent 

the system’s deviation from desired performance and 

help the controller make corrective adjustments. The 

Hidden Layer(s) contain several neurons that process 

input data using activation functions, performing 

nonlinear mapping from input to output. Common 

activation functions include the Sigmoid, Tanh, and 

ReLU functions, which allow the network to handle 

complex, nonlinear relationships in control systems. 

The Output Layer produces  

Figure 3.1: Basic architecture of a neural network. 
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The final control signal that drives the system, such 

as the duty cycle in a DC–DC converter or control 

voltage in a motor drive. 

In a typical neural network structure, biases are 

included as additional neurons in both the input and 

hidden layers. These biases have a fixed, non-zero 

value (often 1) and are multiplied by specific weight 

coefficients before being added to the weighted input 

sums. Figure 3.1 illustrates the architecture of a two-

layer neural network. In the hidden layer, each 

neuron first sums all incoming weighted signals and 

then passes the result through an activation function, 

also known as a limiter. The Sigmoid function is a 

commonly used limiter and is defined as: 

 
This function is preferred because it can be easily 

differentiated, a property essential for training the 

network. Similar neuron structures exist in the output 

layer, where the inputs are signals from the hidden 

layer. 

 
Figure 3.2: Layers of Artificial neural network. 

 

The accuracy of an ANN depends on the weight 

coefficients, which determine how strongly each 

input affects the output. Proper tuning of these 

weights allows the network to approximate complex 

mappings between input and output data, represented 

mathematically as . While a 

suitable mapping can be found without using bias 

terms, including them generally improves accuracy. 

Adding more hidden layers allows the network to 

perform nonlinear mappings, enhancing flexibility 

and precision. The process of refining these weight 

coefficients is known as training the neural network. 

Training involves two main steps: feedforward and 

backpropagation. During the feedforward phase, the 

predicted output (ŷ) is calculated as: 

 
The difference between the predicted output (ŷ) and 

the desired output (y) is measured using a loss 

function, which quantifies the network’s error. A 

simple and widely used loss function is the sum-of-

squares error. The goal of training is to minimize this 

loss by adjusting the weights, a process that requires 

finding the global minimum of the loss function. 

Since the loss function depends indirectly on the 

weights, the chain rule is applied to calculate the 

partial derivatives with respect to each weight: 

 
 

This forms the basis of the backpropagation 

algorithm, where errors are propagated backward 

from the output layer through the hidden layer to 

update weights. The derivative of the Sigmoid 

function used in this process is: 

 
 

This simple derivative allows efficient computation 

during training. The backpropagation process 

iteratively updates the weights between the layers 

(W₁, W₂) to minimize error, ultimately enabling the 

ANN to accurately map inputs to outputs and control 

the system effectively. 

3.5 OperationalWorking of ANN Controller 
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An Artificial Neural Network (ANN) controller for a 

smart grid function as an intelligent and adaptive 

system capable of learning from real-time and 

historical data to manage power flow, regulate 

voltage, and detect faults effectively. Acting as a 

complex, parallel processing unit, it continuously 

monitors grid parameters such as voltage, current, 

load demand, and renewable energy generation. This 

information is processed through multiple 

interconnected layers, enabling the ANN to ensure 

stable and efficient grid performance even under 

fluctuating conditions. 

The input layer of the ANN receives real-time data 

from the smart grid, including voltage and current 

levels, power demand, and renewable source outputs 

like solar and wind. Historical grid stability and fault 

records are also used to enhance learning accuracy. 

This input data serves as the foundation for the 

ANN’s decision-making process. The hidden layers 

perform complex mathematical operations using 

weighted interconnections and activation functions. 

Each neuron processes the data, identifies non-linear 

relationships, and extracts patterns essential for 

optimizing grid performance. During training, the 

ANN adjusts these connection weights to minimize 

errors and improve prediction accuracy, effectively 

“learning” how to respond optimally under different 

operating conditions. 

After processing through the hidden layers, the 

output layer generates control signals that are sent to 

grid components such as inverters, switches, and 

energy storage systems. These control signals 

perform key functions like adjusting power flow to 

balance supply and demand, optimizing renewable 

and conventional energy distribution, maintaining 

voltage and reactive power stability, managing 

battery charging and discharging, and detecting as 

well as mitigating faults such as line-to-ground 

failures or islanding. Additionally, the ANN 

coordinates inverter operations to maintain 

synchronization and ensure high power quality within 

the grid. 

One of the most significant advantages of ANN-

based controllers is their real-time control capability, 

allowing them to make continuous adjustments to 

grid operations based on changing conditions. Their 

adaptive learning ability enables them to respond 

effectively to variations in load and renewable 

generation, outperforming conventional controllers 

like proportional-integral (PI) systems. Furthermore, 

their predictive capabilities allow early detection of 

potential instabilities and faults, enabling proactive 

intervention to prevent system failures. By reducing 

harmonic distortions, enhancing voltage stability, and 

improving power quality, ANN controllers play a 

crucial role in ensuring a cleaner, more efficient, and 

reliable smart grid. 

 

3.6Advantages of ANN Controller. 

ANN (Artificial Neural Network) controllers provide 

several significant advantages that make them highly 

effective for modern control and optimization tasks. 

They are particularly well-suited for 307tilized307 

complex, non-linear systems and demonstrate strong 

adaptive and self-learning capabilities, allowing them 

to handle system uncertainties and dynamic 

variations efficiently. One of their key strengths is 

their ability to generalize from training data, enabling 

them to make accurate predictions and control 

decisions even in new or unseen operating 

conditions. In addition, ANN controllers exhibit fault 

tolerance, maintaining system functionality even 

when some components fail, and support parallel 

processing, which allows them to handle multiple 

tasks simultaneously and perform complex 

computations in real time. 

A major advantage of ANN controllers is their 

capability to model complex and non-linear systems. 

Unlike traditional control approaches that require 

precise mathematical models, ANNs can learn 

intricate input–output relationships directly from 

operational data. This makes them ideal for 

controlling systems that are difficult to model 

analytically, such as chemical reactors, rolling mills, 

and renewable energy systems. Their adaptability and 

self-learning features enable continuous improvement 

of control performance based on real-time data, 

ensuring stable and efficient operation even under 

varying environmental or load conditions. 

Another distinctive benefit of ANN controllers is that 

they do not require a predefined system model. 

Instead, they can learn directly from observed input 

and output data, which simplifies implementation in 

complex systems where analytical 307tilized307 is 

challenging. Additionally, their ability to generalize 

allows them to respond effectively to new scenarios 

after being trained on representative datasets. Their 

fault-tolerant nature ensures that the overall control 
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system remains operational even if individual 

neurons or components malfunction, and their 

parallel processing capability enhances 

computational efficiency. Moreover, ANNs impose 

no restrictions on input variables, making them 

flexible and versatile for a wide range of data types 

and control applications. 

 

3.7Applications of ANN Controller in Power System 

Artificial Neural Network (ANN) controllers are 

highly versatile and are applied across a wide range 

of fields, including process control, optimization, 

healthcare, power systems, machine vision, 

agriculture, and adaptive control. They excel at 

modelling complex, non-linear systems and learning 

from data, which makes them essential for solving 

dynamic and data-driven problems. In process control 

and optimization, ANN controllers are used to model 

and regulate intricate industrial processes such as 

anaerobic reactors for methane production and power 

electronic converters for improving efficiency and 

minimizing harmonics. In the healthcare sector, 

ANNs are applied for medical image analysis, 

disease detection such as cancer, predicting health 

risks, and developing personalized treatment plans 

based on patient data. 

Virtual personal assistants like Siri, Alexa, and 

Google Assistant also utilize ANNs to understand 

and process natural language, allowing them to 

interpret voice commands and respond intelligently 

to user requests. In social media and e-commerce, 

ANN models are used to analyze user behavior, 

personalize content, recommend products, and 

deliver targeted advertisements, thereby enhancing 

user engagement and experience. In power systems, 

ANN controllers play a vital role in improving the 

reliability, efficiency, and control of electrical drives 

and renewable energy systems. Similarly, in machine 

vision applications, ANNs are used for food safety 

and quality control, interpreting spectroscopic data to 

detect the physical and chemical properties of food 

products. 

In agriculture, ANN-based systems are used for 

optimizing the operation of agricultural machinery 

such as combine harvesters, particularly for cruise 

control systems that adjust engine speed and other 

settings for improved efficiency. Furthermore, in 

adaptive control systems, ANNs are often combined 

with traditional control methods like PID controllers 

to create intelligent, self-learning systems capable of 

adapting to changing conditions and maintaining 

optimal performance. Overall, ANN controllers 

bridge the gap between classical control theory and 

modern intelligent systems, enabling advanced 

automation, precise optimization, and high-

performance control across numerous industrial and 

real-world applications. 

 

SYSTEM MODELING 

 

V. MODELING OF MICROGRID 

 

5.1 Introduction 

To power local needs, the proposed setup is a diesel-

wind-solar PV standalone microgrid connected to a 

battery storage system. The overall network 

architecture is depicted in Fig. The following 

considerations led to the decision to employ a SyRG 

as the DG and a PMBLDCG for the wind. Both of 

these generators are brushless, meaning they require 

less upkeep than their brushed counterparts. In an 

asynchronous DG, a SyRG is used in place of a 

traditional synchronous generator; this eliminates the 

requirement for a speed governor and automatic 

voltage regulator, but leaves VSC to handle voltage 

and frequency regulation. A wind turbine provides 

the power for the PMBLDC generator. Following 

what is depicted in Figure. The WECS is linked to 

the VSC’s dc connection through a diode rectifier 

and a boost converter, as shown in 4.1. Due to the 

trapezoidal shape of the back EMF, PMBLDCG 

works well for unsupervised rectification. A low-

ripple torque is generated, and the machine functions 

smoothly, if the winding currents are also made 

quasi-squarewave. PMSG lacks this quality because 

the EMF generated is sinusoidal, leading to a varying 

torque from the quasi-square wave currents. The 

PMBLDC machine has a high energy density despite 

its compact size, making it an excellent choice for 

pole-mounted installations. In order to transport 

energy from the dc link of the VSC to the ac side 

where loads are located, the suggested topology also 

includes a solar PV system. As was previously said, 

the battery energy storagedevice is necessary to 

preserve the power balance and supply reliability. 

Therefore, a battery bank is set up at the VSC’s dc 

link. 
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In order to maximise fuel economy and extract as 

much free energy as possible, an operational strategy 

is devised to take use of the proposed system 

topology’s multiple sources. Since the DG is the only 

ac source, the system and load endfrequency are 

directly tied to the DG’s performance. Since the 

SyRG generator operates at a constant speed, a 

constant system frequency implies the same. Some 

claim that diesel engines are less efficient at lower 

loads because their fuel consumption remains 

relatively constant at fixed speeds during operation. 

Between 80% and 100% of their rated capacity, 

diesel engines perform efficiently. Here, we build the 

DG’s control strategy so that it operates only within 

the loading range depicted in Figure 5.1. Since 

renewable energy sources and a battery energy 

storage device are already available, there is no need 

for a DG with a full load rating. 

 
Figure 5.1 VSC’s method of control. 

 

The WECS has a PMBLDC generator, a DBR with 

three phases, and a boost converter. After the DBR, 

an inductor maintains a nearly constant dc current, 

which appears as a nearly square ac current 

waveform, which is useful for the operation of 

PMBLDCG. Having no requirement for a mechanical 

sensor for MPPT greatly simplifies the use of the 

WECS. The Vdc and Idc sensors are not necessary 

for the MPPT algorithm to function. This maximum 

power point tracking (MPPT) methodology is 

identical to the perturb and observe method used in 

solar PV systems. 

 

5.2. Modeling of Distributed Generation (DG)Units  

The Fourier series provides a method for dissecting a 

distorted voltage or current signal into its component 

dc and sinusoidal signals of varying frequency. Using 

composite observers, we can estimate all of these 

frequency components in real time. The 

fundamentalfrequency components are all that’s 

needed for the control algorithm in this system. Here 

we present the fundamental structure of a composite 

observer, which generates in-phase and quadrature-

phase components of the input signal at a certain 

frequency, allowing us to extract the fundamental 

frequency component of the load currents. When 

there are multiple units of a composite observer 

present, each one has a tendency to extract the 

harmonic component for which it is tuned. Therefore, 

the sum of these parts is closer to the true signal. 

Therefore, the “e” error becomes zero in this form of 

system. But the proposed method only employs the 

unit that corresponds to the fundamental frequency, 

so only the fundamental frequency component is 

extracted. Load currents are used to estimate their 

active and reactive power components, as shown in 

Figure 5.1, where the in-phase component is obtained 

as the system’s output and the quadrature-phase is 

obtained as the system’s internal state. 4.2. It is 

necessary to have both in-phase and quadrature-phase 
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unitvectors of PCC voltage in order to produce 

reference source currents. The voltage-frequency 

controller (VSC) control algorithm is depicted in 

Figure. The voltage support converter (VSC) keeps 

the generator’s active power output constant, in turn 

controlling the frequency indirectly. 

 

5.5. Battery Energy Storage System (BESS) 

modelling and control 

Though the study primarily focuses on the hybrid 

generation system, this section is devoted to 

elucidating the power flows in the topology and 

offering suggestions for managing the battery’s 

charge and discharge. Large-scale demonstration of 

power flow between the various sources is shown in 

Figure 5.4. Since all other currents and powers are 

known, it should be straightforward to estimate the 

battery current and act accordingly. Topology and 

controls presented allow for independent regulation 

of battery charge and discharge by independent 

regulation of each power source and load, as depicted 

in Figure 5.4. A current sensor can detect the current 

flowing through the battery in the event that precise 

monitoring of the charge discharge is required. 

Battery voltage readings are already being taken, so 

they can be 310tilized to calculate state of charge and 

other discharge-control parameters. 

 

 
Figure 5.4 Flow of power and system controls 

 

SIMULATION RESULTS 

 

VI. SIMULATION 

 

6.1Configuration and Operation of a DC-Coupled Hybrid Microgrid 
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Figure 6.1Simulation Diagram of Hybrid PV–Wind–Fuel Cell Microgrid System with Grid Integration  

The Figure 6.1 illustrates a typical configuration of a DC-coupled hybrid microgrid system. This setup is designed to 

integrate multiple energy sources, condition and regulate their outputs on a shared DC bus, and deliver high-quality 

AC power to both local loads and the main utility grid. The architecture ensures optimal power management, 

seamless source coordination, and efficient energy utilization across renewable and auxiliary units. 

 

 
Figure 6.2 Simulink Model of a Photovoltaic (PV) Cell/Module 
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The renewable energy sources in the system 

primarily include a Photovoltaic (PV) array and a 

Wind Energy Conversion System (WECS). The PV 

array generates direct current (DC) power, which is 

interfaced to the main DC bus through a dedicated 

DC/DC converter.  

This converter regulates the PV output voltage and 

current to maintain maximum power point tracking 

(MPPT) and ensure stable integration with the DC 

bus. The WECS, on the other hand, produces 

alternating current (AC) power through a wind 

turbine generator. This AC output is rectified by an 

AC/DC converter (rectifier) before being connected 

to the DC bus. Together, these renewable sources 

contribute to the primary energy generation capacity 

of the hybrid microgrid. 

 
Figure 6.3 Simulink Model of a Doubly Fed Induction Generator (DFIG) Wind Energy System 

 

The system also includes energy storage and 

auxiliary power components that enhance reliability 

and stability. A Battery Energy Storage System 

(BESS) is connected to the DC bus through a bi-

directional DC/DC converter, enabling both charging 

and discharging operations. The BESS supports load 

balancing, power quality improvement, and grid 

support during transient conditions. In addition, a 

Fuel Cell (FC) unit is included as a clean DC power 

source, interfaced to the DC bus via a converter 

(labeled DC–DC1). Complementing the fuel cell is 

an Electrolyzer block,typically labeled “Electr” or 

“Electrolysis,” which converts surplus electrical 

energy into hydrogen through the electrolysis 

process. This stored hydrogen can later be utilized by 

the fuel cell to regenerate electrical power, effectively 

closing the power-to-gas-to-power cycle and 

providing an efficient auxiliary energy pathway. 

At the heart of this architecture lies the common DC 

bus, denoted as . This bus serves as the central 

power aggregation and regulation point where all 

source and storage units are interconnected. A 

capacitor bank (C) is installed across the DC link 

 
Figure 6.4Controlled DC-DC Buck Converter Circuit Simulation 
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to smooth voltage fluctuations, filter noise, and 

stabilize the DC voltage under dynamic load 

variations. From this DC bus, the power is fed into a 

DC/AC inverter, which performs the critical task of 

converting the regulated DC voltage into a high-

quality three-phase AC signal suitable for supply to 

AC loads and grid interconnection. 

The output and grid interface section ensures that the 

generated AC power meets grid standards and load 

requirements. The inverter output passes through an 

LC filter, composed of inductors and capacitors, 

which attenuates switching harmonics and refines the 

AC waveform, ensuring compliance with grid power 

quality norms. The filtered AC output is then 

delivered to the Point of Common Coupling (PCC), 

labeled as grid1, which represents the interface 

between themicrogrid and the utility network. From 

this point, the system can either export power to the 

grid when local generation exceeds demand or import 

power when renewable sources are insufficient. The 

local load, represented as a three-phase AC load, 

receives stable and conditioned power from the same 

PCC, ensuring uninterrupted operation of connected 

homes, industries, or community systems. 

 

6.3 PV System Input Irradiance Profile Over Time 
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Figure 6.8 PV system input irradiance 

 

This figure 6.8 represents the input solar irradiance 

applied to a photovoltaic (PV) system over time, 

typically as part of a simulation in a hybrid renewable 

energy system or DC microgrid. The irradiance 

pattern defines how much solar power is incident on 

the PV panels during the simulation, directly 

affecting the output power of the PV array.X-Axis 

(Time in seconds) The simulation time runs from 0 to 

1 second.Each segment represents a different 

irradiance level applied at a specific time interval. Y-

Axis (Irradiance in W/m²) Irradiance values range 

from 0 to 1200 W/m².This represents the intensity of 

sunlight falling on the PV array surface.A higher 

irradiance value means more sunlight and, therefore, 

higher PV output power. Initial Condition (0 – 0.1 

sec)Irradiance = 0 W/m²At the start, the PV array 

receives no sunlight, simulating nighttime or a no-

input condition.Hence, the PV system produces no 

electrical power during this period.First Step Change 

(≈ 0.1 – 0.3 sec)Irradiance increases to around 400 

W/m² at 0.1 sec and then to 1000 W/m² at 0.3 

sec.These two step increases mimic morning solar 

intensity rise as the sun begins to shine.The PV 

system’s output voltage and current will increase 

proportionally with irradiance, as per the PV cell 

characteristic equation where depends directly on 

irradiance. 
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6.4 Current and Power Output vs. Voltage for the PV Array 

 
Figure 6.9 I–V (Current vs. Voltage) and P–V (Power vs. Voltage) characteristics of a photovoltaic (PV) 

 

The given diagram illustrates the I–V (Current vs. 

Voltage) and P–V (Power vs. Voltage) characteristics 

of a photovoltaic (PV) array, specifically for the 

Advance Power API-M305 module type. The array 

consists of 30 modules connected in series and 120 

parallel strings. There are two plots shown in the 

figure: the top plot represents the Current (A) versus 

Voltage (V) characteristic, and the bottom plot 

represents the Power (W) versus Voltage (V) 

characteristic. Both curves are plotted for two 

different operating temperatures, 25°C (red curve) 

and 45°C (blue curve), to study the effect of 

temperature on array performance. 

In the I–V curve, the current remains nearly constant 

as the voltage increases up to a certain point known 

as the knee point or maximum power point (MPP). 

Beyond this point, the current drops sharply to zero. 

As the temperature increases, the open-circuit voltage 

(Voc) decreases, while the short-circuit current (Isc) 

increases slightly. This indicates that at higher 

temperatures, the voltage output of the PV array 

decreases, and although the current increases 

marginally, the overall power generation capability is 

reduced. 

In the P–V curve, the power output rises with voltage 

until it reaches the maximum power point (Pmax), 

after which it declines rapidly. At 25°C, the 

maximum power is higher and occurs at a higher 

voltage, whereas at 45°C, the maximum power 

decreases and occurs at a lower voltage. This 

demonstrates that the efficiency of a PV module 

decreases with increasing temperature. 

6.5 Output Power Characteristics of PV Array 

Figure 6.10 illustrates how the power output from a 

solar photovoltaic (PV) array varies with time under 

changing solar irradiance or environmental 

conditions. The x-axis represents time in seconds, 

and the y-axis represents PV power in megawatts 

(MW × 10⁵). The curve shows distinct step changes 

in PV output, indicating how the PV system responds 

dynamically to sudden variations in sunlight intensity 

or load demand. During the initial period from 0 to 

0.2 seconds, the PV power remains at zero, signifying 

no solar generation, which 
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Figure 6.10PV Power vs. Time Characteristics 

may occur before sunlight exposure or during system 

startup. Between 0.2 and 0.3 seconds, the power rises 

sharply to about 5 × 10⁵ MW, representing an 

increase in solar irradiance or system activation. 

From 0.3 to 0.8 seconds, the PV output maintains a 

steady high level of approximately 10 × 10⁵ MW, 

corresponding to maximum power generation under 

full sunlight conditions. Finally, from 0.8 to 1.2 

seconds, the power drops back to around 5 × 10⁵ 

MW, which may be due to partial shading, a decrease 

in irradiance, or a change in load. Overall, this figure 

represents the dynamic response of PV power 

generation to varying solar irradiance or 

environmental conditions, demonstrating the ability 

of the PV system to quickly adjust its output and 

maintain stability under transient changes. 

6.6 DC-Link Voltage (Vdc) Tracking its Step-

Changed Reference (Vdcref) 

This figure 6.6 shows the DC-link voltage dynamic 

response in a DFIG-based wind energy system (or 

any grid-connected converter system). The x-axis 

represents Time (sec) and the y-axis represents DC-

link Voltage (V).Two signals are plotted blue line 

(Vdc ref) Reference DC-link voltage (desired voltage 

set by the control system) and red line (Vdc) Actual 

DC-link voltage measured during operation. The Vdc 

controller (part of the Grid Side Converter control 

loop) is performing voltage regulation effectively. 

The transient overshoot is quickly damped, showing 

that the ANN or PI controller is well-tuned. The 

tracking of Vdc ref after both step increases and 

decreases demonstrates: Fast dynamic response, 

Strong disturbance rejection, and accurate steady-

state control. Maintaining a stable DC-link voltage 

ensures 
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Figure6.11 DC reference voltage and measured 
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continuous and bidirectional power flow between 

generator and grid with minimum ripple.This figure 

illustrates the excellent DC-link voltage control 

performance of the converter system. The voltage 

closely follows its reference under both steady and 

transient conditions, ensuring smooth energy transfer 

between the machine and the grid. The small 

overshoots and quick settling confirm the controller’s 

robustness, fast.Such behavior is essential in 

renewable energy systems (like DFIG wind systems) 

to maintain power quality, voltage stability, and 

reliable grid interfacing. 

6.7 Battery Power Response to System 

Load/Irradiance Changes 

Power flow management under varying conditions 

The system's control strategy, enabled by the ANN, 

effectively manages fluctuations in power supply and 

demand to maintain stability. Handling excess power 

(charging): When excess generation causes the DC 

bus voltage to rise, the ANN controller commands 

the converter to switch to buck mode, absorbing 

energy and charging the battery. This is represented 

by the negative power region (0.3–0.8 sec), which 

relieves stress on the DC bus. Handling power 

demand (discharging): The system handles load 

increases or generation drops by discharging the 

battery. This is implied in the final phase (0.8–1.0 

sec) as the 
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Figure 6.12 Battery Power 

 

power moves toward zero or slightly positive, 

indicating the battery is ready to supply power if 

needed. Maintaining DC bus voltage stability: The 

core function of the BESS is to act as a buffer. By 

absorbing excess power and injecting power during 

deficits, the battery system helps to regulate the DC 

bus voltage, keeping it within a stable operating 

range. The plot's smooth and stable power control 

demonstrates the ANN's success in achieving this. 

X-Axis (Time in seconds) The simulation runs from 

0 to 1 second.This time interval captures both 

transient and steady-state performance of the battery. 

Y-Axis (Battery Power in kW) The power value 

ranges approximately from -4000 to +8000 

kW.Positive power represents battery is discharging 

(supplying power to the system).Negative power 

represents battery is charging (absorbing power from 

the DC bus).Initial Transient (0 – 0.1 sec) at the very 

start, there are sharp oscillations between +8000 kW 

and -3000 kW.This represents the dynamic transient 

response of the system when it first begins operation. 

Causes of this transient are sudden connection of the 

battery system to the DC bus.Initial imbalance 

between reference voltage/current and actual 

conditions, Controller (ANN) adjusting duty cycle of 

the DC-DC converter to stabilize power flowand The 

Artificial Neural Network (ANN) controller works to 

quickly suppress these oscillations, stabilizing the 

system.First Steady-State Region (≈ 0.1 – 0.3 sec) the 

power settles close to 0 kW (a nearly flat line). This 

means the battery neither charges nor discharges 

significantly. The DC bus voltage is stable, and other 

sources (like PV or grid) are managing the load. In 

Second Operating Phase (≈ 0.3 – 0.8 sec) around 0.3 

sec, the power drops to about -2000 kW.This 

negative region indicates the battery is charging. It 
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happens typically when the DC bus voltage exceeds 

its reference (excess generation).ANN controller 

signals the DC-DC converter to absorb energy from 

the bus between 0.3 and 0.8 sec, the battery maintains 

this charging mode steadily, showing effective 

control by the ANN.Final Phase (≈ 0.8 – 1 sec) 

Around 0.8 sec, the power briefly moves up towards 

0 or slightly positive. This implies The battery 

transitions back toward discharge mode or becomes 

idle. It responds to a load increase or generation drop. 

The smooth transitions again reflect fast adaptation 

and robust performance of the ANN-controlled 

converter. 

Figure 6.12 Battery Power demonstrates that The 

battery responds dynamically to system changes. The 

ANN controller ensures rapid stabilization and 

accurate power control. The system transitions 

smoothly between charging and discharging modes, 

indicating effective coordination between the battery, 

DC-DC converter, and the overall hybrid energy 

system. 

6.8 Transient and Steady-State Response of Stator 

Active and Reactive Power 

This figure 6.8 Stator Active and Reactive Power — 

shows the dynamic performance of the stator (likely 

from an induction generator or motor in a renewable 

energy system, such as a wind turbine or hybrid DC 

microgrid) during the simulation period. It depicts 

how both active power (P) and reactive power (Q) 

vary with time under control of the associated 

converter andANN controller. The figure consists of 

two subplots Top plot is Stator Active Power (W) and 

Bottom plot: Stator Reactive Power (VAR) both are 

plotted as a function of time (seconds) from 0 to 1 

second. The curve rises sharply from 0 W at 

to around 6 × 10⁵ W (600 kW) after the initial 

rise (within ~0.08 s), it rapidly settles to a nearly 

constant small value close to zero for the rest of the 

simulation (0.1 – 1 s).  
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Figure 6.13 Stator Active and Reactive Power 

 

and current to balance power exchange.The stator 

active power flow becomes minimal once steady DC 

bus voltage is achieved, meaning the generator is 

operating efficiently with minimal losses or is idling 

under no-load condition.The initial peak indicates 

dynamic response capability.The flat steady portion 

shows that active power control is well-damped, 

ensuring stability.A well-designed controller should 

show exactly this kind of quick settling with no 

sustained oscillations. 

Stator Reactive Power starts high, near 2 × 10⁵ VAR 

(200 kVAR) at .It rapidly decays to zero by 

around 0.05–0.08 s and then remains flat at zero for 

the rest of the simulation. Reactive power is 

associated with the magnetizing component of 

current in AC machines.The high initial reactive 
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power is required to build up the magnetic field in the 

stator windings when the system is first 

energized.Once the magnetic field stabilizes, reactive 

power demand drops. 

In a hybrid renewable system, this figure likely 

corresponds to the generator or motor stator 

connected through a DC-AC converter (inverter) 

controlled by an Artificial Neural Network 

(ANN).During the start-up phase, the ANN controller 

ensures smooth transient performance by minimizing 

oscillations in both active and reactive power.The 

fast decay of both and indicates High control 

accuracy, reduced electromagnetic torque ripples, 

andStable coupling between the stator and DC 

bus.Thus, the figure confirms the dynamic stability 

and fast convergence of the machine’s electrical 

parameters under ANN control.Both active and 

reactive powers exhibit short-lived peaks due to 

initial magnetization.The ANN controller ensures 

rapid damping and zero steady-state error.The system 

achieves steady-state operation within 0.1 seconds, 

confirming the robustness and fast response of the 

control strategy used. 

6.9 Transient and Steady-State Response of Rotor Active and Reactive Power 
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Figure 6.14 Rotor Active and Reactive Power 

 

This figure 6.14 Rotor Active and Reactive Power — 

shows the dynamic performance of the rotor (most 

likely of a Doubly Fed Induction Generator (DFIG) 

or Induction Machine) under varying conditions 

controlled by a power electronic converter, typically 

with an ANN (Artificial Neural Network) 

controller.It represents how both rotor active power 

(P) and rotor reactive power (Q) evolve over time 

during the system’s transient and steady-state 

operation.The figure 6.9 contains two subplots Top 

Plot: Rotor Active Power (W)Bottom Plot: Rotor 

Reactive Power (VAR)The x-axis for both plots is 

Time (seconds), running from 0 to 1 second. 

The rotor active power starts with a small oscillation 

around 0 W at the beginning (0–0.05 s).Then it rises 

positively and settles at a constant value near 5 × 10⁵ 

W (500 kW) by approximately 0.1 seconds.After this 

transient, the power remains steady until the end of 

the simulation.The rotor active power represents the 

real electrical power either generated or absorbed by 

the rotor circuit.The initial oscillation corresponds to 

sudden connection of the rotor to the converter and 

establishment of electromagnetic coupling between 

rotor and stator fields.Inrush current due to the 

difference between mechanical and electrical rotor 

speeds at startup.The settling region shows that the 

ANN-based control effectively damps out transients 

and stabilizes power flow.Once steady state is 

reached the rotor supplies active power to the grid or 

DC bus (positive direction) if operating as a 

generator.The stabilized value (~500 kW) indicates 

effective energy conversion and minimal losses. 

Figure 6.14 Rotor Active and Reactive Power 

illustrates the dynamic performance and steady-state 

stability of the rotor circuit in a controlled generator 

or motor system.Both active and reactive power 

exhibit small, short-lived oscillations during system 

startup.The active power stabilizes rapidly, indicating 
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efficient real power transfer.The reactive power 

converges to zero, confirming effective power factor 

correction and magnetic flux stabilization.The ANN 

controller provides robust damping and precise 

control, minimizing overshoot and settling time. 

Figure 6.14 clearly demonstrates that the rotor circuit, 

controlled via ANN and converter, achieves a fast 

transient response, stable steady-state operation, and 

excellent power quality with negligible reactive 

power flow. This reflects optimized control 

coordination between rotor, stator, and the converter 

interface in a hybrid energy conversion system. 

6.10 Grid-Side Converter Active Power Response to 

System Operating Condition Changes 

The figure 6.10 plots the Grid Side Converter (GSC) 

Active Power (in watts) on the y-axis against Time 

(in seconds) on the x-axis.The time range is from 0 to 

1 second, and the active power varies approximately 

between −1.5 × 10⁶ W and +1.2 × 10⁶ W. 

This figure 6.10 represents the active power 

exchange between the Grid Side Converter (GSC) 

and the utility grid in a Doubly Fed Induction 

Generator (DFIG)-based Wind Energy Conversion 

System (WECS) or in a similar hybrid system where 

a grid-connected converter controls the power flow.  

Understanding Active Power behaviour initial Period 

(0 – 0.1 sec): Transient 
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Figure 6.15 Grid side converter Active Power 

 

ResponseAt the start (0–0.1 sec), the waveform 

shows oscillations and negative power peaks up to 

−1.2 × 10⁶ W.This indicates transient conditions due 

to system startup or a sudden change in grid or wind 

conditions.Negative active power means the 

converter is absorbing power from the grid, which 

could occur when the DC link capacitor charges up or 

when the control loop stabilizes.Transition Period 

(0.1 – 0.3 sec): System StabilizationAfter 0.1 sec, the 

oscillations gradually reduce.Around 0.2 sec, the 

power becomes positive and starts to stabilize near 

0.6 × 10⁶ W.This shows that the GSC control loop is 

stabilizing the DC link voltage and synchronizing 

with the grid frequency.The converter now exports 

active power to the grid, meaning the DFIG is 

generating electricity.Steady-State Region (0.3 – 0.8 

sec): Constant Power DeliveryBetween 0.3 and 0.8 

sec, the active power stabilizes at around 1 × 10⁶ W 

(1 MW).This steady output signifies normal grid-

connected operation under stable wind or load 

conditions.During this period, the GSC regulates the 

DC-link voltage and ensures constant power delivery 

to the grid.The constant output reflects that the rotor 

side converter and grid side converter are working in 

coordination maintaining power balance between 

rotor and grid sides.End Period (0.8 – 1 sec): Load or 

Wind Variation after 0.8 sec, there is a slight drop in 

active power to around 0.6 × 10⁶ W. This change 

might correspond to A decrease in wind speed,A 

change in grid demand, orA control action (e.g., 

reference power reduction).Despite the drop, the 

waveform remains smooth, showing that the system 

remains stable and well-controlled. 

The Grid Side Converter Active Power plot shows 

how the converter transitions from transient to steady 

operation.It successfully stabilizes the DC-link 
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voltage and exports constant active power to the grid 

after initial oscillations.The small fluctuations 

demonstrate the converter’s dynamic response and 

power regulation capability under changing 

conditions.Overall the GSC ensures smooth and 

stable power delivery, confirming the effectiveness of 

the ANN controller used. 

6.11 Transient Power Response Comparison of Hybrid and Conventional Systems 

 
Figure 6.16Power comparison plot (Proposed Hybrid System vs. Conventional System). 

 

This figure 6.16 illustrates a comparative analysis of 

power output (kW) between a Proposed Hybrid 

System and a Conventional System over a time 

duration of 1.6 seconds. 

The X-axis represents Time (seconds), and the Y-axis 

represents Power (kW), ranging approximately from 

–40 kW to 100 kW. The red curve denotes the 

Proposed Hybrid System, while the blue curve 

represents the Conventional System. 

At the initial transient period (0–0.1 s), both systems 

show start-up fluctuations. The Conventional System 

experiences a negative dip (around –25 kW), whereas 

the Proposed System exhibits a positive overshoot 

reaching nearly 90 kW. 

During the first steady state (0.2–0.6 s), both systems 

stabilize at a constant power level. When the first 

step change (at 0.6 s) occurs, the output power 

increases to a higher level, and both systems track 

this step with minimal transient differences. 

In the second steady-state region (0.8–1.25 s), both 

maintain nearly the same power output. However, 

when the second step change (at 1.25 s) is applied, a 

clear performance distinction appears. The 

Conventional System (blue) shows a significant 

undershoot (around 55 kW) and a slower settling 

time. In contrast, the Proposed Hybrid System (red) 

exhibits only a small overshoot (around 92 kW) and 

settles faster with minimal oscillations. 

 

VII. CONCLUSION 

 

This study proposes the integration of a Photovoltaic 

(PV) system and a Wind Energy Conversion System 

(WECS) for an autonomous micro-grid, with an 

Artificial Neural Network (ANN)-based control 

system to optimize performance. The ANN controller 

is trained to predict the maximum power point (MPP) 

under varying irradiance, temperature, and wind 

conditions, enabling efficient operation of a boost 

converter for PV power extraction. Dual PI loops 

manage the DC bus voltage and battery charging, 

while the ANN dynamically adjusts control 

parameters to respond to fluctuations in renewable 

generation and load demand. 

The battery bank stores excess energy when 

generation exceeds load and supplies power when 

renewable output is insufficient. The ANN controller 

safeguards the batteries against overcharging and 



© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002 

IJIRT 140001 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 321 

over-discharging by monitoring the state of charge 

(SOC). It disconnects PV and wind sources when 

SOC exceeds 80% and reconnects them when SOC 

drops below 75%. If SOC falls below 20%, the 

inverter and loads are disconnected to prevent 

damage. 

By integrating ANN control, the micro-grid operates 

autonomously, efficiently managing energy 

generation, storage, and load demands while adapting 

to dynamic environmental and load conditions. This 

approach improves system reliability, stability, and 

energy utilization compared to conventional PI-based 

control alone. 

The proposed ANN-based control technique 

effectively minimizes oscillations in the DC-link 

voltage, improves transient response, and enhances 

the overall system stability when compared to 

conventional control methods. The simulation results, 

obtained using MATLAB/Simulink, clearly validate 

that the ANN-based hybrid system ensures steady 

power flow, efficient energy management, reduced 

converter count, and higher overall efficiency under 

various environmental and operational conditions. In 

the previously used control method, the system’s 

power output settled between 8.5 to 12 seconds. 

However, with the implementation of the ANN 

controller, the power settles at its final steady-state 

positive value much faster, reaching stability at 

around 0.35 seconds. This demonstrates a significant 

improvement in the dynamic performance and 

response speed of the system. 

 

VIII. FUTURE SCOPE 

 

The following key future research directions and 

practical developments can be identified: 

1. Optimization and Efficiency Enhancement 

2. System Reliability and Lifespan Improvement 

3. Real-Time Implementation and Hardware 

Validation 

4. Grid Integration and Smart Grid Applications 

5. Economic and Environmental Analysis 

6. Scalability and Microgrid Applications 

 

REFERENCES 

 

[1] Bendary, A.F.; Ismail, M.M. Battery charge 

management for hybrid PV/wind/fuel cell with 

storage battery. Energy Procedia 2019, 162, 

107–116. [CrossRef] 

[2] Elavarasan, R.M.; Ghosh, A.; Mallick, T.K.; 

Krishnamurthy, A.; Saravanan, M. Investigations 

on performance enhancement measures of the 

bidirectional converter in PV–wind 

interconnected microgrid system. Energies 2019, 

12, 2672. [CrossRef]  

[3] Muriithi, G.; Chowdhury, S. Optimal energy 

management of a grid-tied solar PV-battery 

microgrid: A Reinforcement learning approach. 

Energies 2021, 14, 2700. [CrossRef]  

[4] Shan, Y.; Hu, J.; Chan, K.W.; Fu, Q.; Guerrero, 

J.M. Model predictive control of bidirectional 

DC-DC converters and AC/DC interlinking 

converters—A new control method for PV-wind-

battery microgrids. IEEE Trans. Sustain. Energy 

2019, 10, 1823–1833. [CrossRef] 

[5] Mahesh, A.; Sandhu, K.S. Hybrid 

wind/photovoltaic energy system developments: 

Critical review and findings. Renew. Sustain. 

Energy Rev. 2015, 52, 1135–1147. [CrossRef]  

[6] Berardi, U.; Tomassoni, E.; Khaled, K. A 

smart hybrid energy system grid for energy 

efficiency in remote areas for the army. 

Energies 2020, 13, 2279. [CrossRef]  

[7] Murty, V.V.S.N.; Kumar, A. Multi-objective 

energy management in microgrids with hybrid 

energy sources and battery energy storage 

systems. Prot. Control Mod. Power Syst. 2020, 

5, 1–20. [CrossRef] 

[8] Alhasnawi, B.N.; Jasim, B.H.; Esteban, M.D. A 

new robust energy management and control 

strategy for a hybrid microgrid system based on 

green energy. Sustainability 2020, 12, 5724. 

[CrossRef]  

[9] Kumar, G.R.P.; Sattianadan, D.; Vijayakumar, 

K. A survey on power management strategies of 

hybrid energy systems in microgrid. Int. J. 

Electr. Comput. Eng. IJECE 2020, 10, 1667–

1673. [CrossRef]  

[10] Datta, U.; Kalam, A.; Shi, J. Hybrid PV–wind 

renewable energy sources for microgrid 

application: An overview. In HybridRenewable 

Energy Systems in Microgrids; Elsevier BV: 

Amsterdam, The Netherlands, 2018; pp. 1–22.  

[11] Rehman, S.; Habib, H.U.R.; Wang, S.; Buker, 

M.S.; Alhems, L.M.; Al Garni, H.Z. Optimal 

design and model predictive control of 



© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002 

IJIRT 140001 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 322 

standalone HRES: A real case study for 

residential demand side management. IEEE 

Access 2020, 8, 29767–29814. [CrossRef]  

[12] Fathy, A.; Kaaniche, K.; Alanazi, T.M. Recent 

approach Based social spider optimizer for 

optimal sizing of hybrid PV/wind/battery/diesel 

integrated microgrid in Aljouf region. IEEE 

Access 2020, 8, 57630–57645. [CrossRef]  

[13] Luo, Y.; Yang, D.; Yin, Z.; Zhou, B.; Sun, Q. 

Optimal configuration of hybrid-energy 

microgrid considering the correlation and 

randomness of the wind power and photovoltaic 

power. IET Renew. Power Gener. 2020, 14, 

616–627. [CrossRef] 

[14] Yahaya, A.A.; Al-Muhaini, M.; Heydt, G.T. 

Optimal design of hybrid DG systems for 

microgrid reliability enhancement. IET Gener. 

Transm. Distrib. 2020, 14, 816–823. [CrossRef]  

[15] Samy, M.; Mosaad, M.I.; Barakat, S. Optimal 

economic study of hybrid PV-wind-fuel cell 

system integrated to unreliable electric utility 

using hybrid search optimization technique. Int. 

J. Hydrog. Energy 2021, 46, 11217–11231. 

[CrossRef] 

[16] Lamichhane, A.; Zhou, L.; Yao, G.; Luqman, M. 

LCL Filter based grid-connected photovoltaic 

system with battery energy storage. In 

Proceedings of the 2019 14th IEEE Conference 

on Industrial Electronics and Applications 

(ICIEA), Xi’an, China, 19–21 June 2019; 

Institute of Electrical and Electronics Engineers 

(IEEE): New York, NY, USA, 2019; pp. 1569–

1574.  

[17] STH-215-P Solar Panel from 1Soltech 

Specifications. Available online: 

http://www.posharp.com/1sth-215-p-solar-panel-

from 1soltech_p1621902445d.aspx (accessed on 

25 July 2021).  

[18] Al-Mahmodi, M.; Al-Quraan, A. On-grid solar 

energy system—A study case in Irbid. In 

Proceedings of the 6th Global Conference on 

Renewable Energy and Energy Efficiency for 

Desert Regions (GCREEDER 2018), Amman, 

Jordan, 3–5 April 2018. 

[19] Rathore, A.; Patidar, N. Reliability assessment 

using probabilistic modelling of pumped storage 

hydro plant with PV-wind based standalone 

microgrid. Int. J. Electr. Power Energy Syst. 

2019, 106, 17–32. [CrossRef]  

[20] Al-Quraan, A.; Stathopoulos, T.; Pillay, P. 

Comparison of wind tunnel and onsite 

measurements for urban wind energy estimation 

of potential yield. J. Wind. Eng. Ind. Aerodyn. 

2016, 158, 1–10. [CrossRef]. 

[21] Stathopoulos, T.; Alrawashdeh, H.; Al-Quraan, 

A.; Blocken, B.; Dilimulati, A.; Paraschivoiu, 

M.; Pilay, P. Urban wind energy: Some views on 

potential and challenges. J. Wind Eng. Ind. 

Aerodyn. 2018, 179, 146–157. [CrossRef]  

[22] 22.Yang, D.; Jiang, C.; Cai, G.; Huang, N. 

Optimal sizing of a wind/solar/battery/diesel 

hybrid microgrid based on typical scenarios 

considering meteorological variability. IET 

Renew. Power Gener. 2019, 13, 1446–1455. 

[CrossRef] 


