© November 2025]| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

Cloud-Based College Event Management System Using
Docker

Mohsin Kalim Ansari', Pranjal Harish Chopade?, Soham Murlidhar Nhavkar®, Sanika Popat Talekar*
L234Department of Computer Engineering, P. K. Technical Campus, Pune

Abstract- Educational institutions face increased
complexity in campus event coordination, from seminars
to festivals. Traditional event management systems
struggle to adapt. This paper presents a cloud-based
system using Docker containerization. The system uses
microservices to enable independent scaling and
consistency. Docker containers package application
logic, dependencies, and configurations, which allow
quicker deployment across platforms. A responsive
frontend, RESTful backend services, and a distributed
database are integrated with container orchestration.
System testing showed better resource use, faster
deployment, and higher scalability than typical hosting.
This research adds to containerized applications in
educational technology and advises institutions on
modernizing event coordination, as Docker transforms
service and cuts costs.

Keywords — Cloud Computing, Docker
Containerization, Event Management System,
Microservices Architecture, Educational Technology,

Scalable Systems, DevOps
[. INTRODUCTION

College campuses host numerous activities like
conferences, recruitment, programs, and meetings.
Coordinating these events needs technology that
handles workloads, user needs, and participation.
Many colleges use typical event management systems
on servers. These systems cause operational problems
and scale poorly, needing intervention during usage
increases. Code changes from steps to production
create inconsistencies.

Cloud computing and containerization have changed
application deployment. Docker aids developers in
packaging with its runtime environment. This solves
compatibility issues. Cloud platforms like AWS and
Google provide scalable resources. There is no
maintaining hardware that sits idle.

IJIRT 186375

Combining Docker with cloud infrastructure benefits
college event management. Institutions can scale
registration, reporting, and notification modules by
dividing applications into microservices. This
improves resilience by separating faults and speeds up
development. Docker containers are more lightweight
than VMSs, which betters resource use and lowers
costs.

This research covers the design and assessment of a
cloud-based system for educational institutions. We
used Docker containerization to fix the issues of
deployment models. This paper talks about design
choices, strategies, metrics, and observed benefits.
The goal is to show that containerized platforms offer
advantages and to guide institutions considering
improvements.

II. LITERATURE REVIEW

The combination of cloud computing,
containerization, and educational management attracts
research. Academics study how technologies can
modernize campuses. This section reviews existing
literature, noting contributions and gaps that shaped

our study.

Hadi and colleagues made a prototype for higher
education in 2025. Their work showed that flexible
scaling and cost are advantages of cloud deployment
[1]. Freire studied Kubernetes microservices in
architectures. His research showed improvements in
balancing and scaling [2]. These studies show cloud
platforms support technology, but they do not cover
frameworks for event management.

Traditional systems in education have limits. Syarif
and Pizaini mentioned key issues in 2022:
architectures, codebases, and support for processes
[3]. They proposed event-driven microservices for
admission and services. Riyanto’s team used Docker

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 673

© November 2025]| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

containers to expand on this work. They reached over
40,000 HTTP requests in classroom application tests
[4]. These results support containerized microservices
for workloads, but mainly cover instructional systems.

Empirical studies compared containerization and
virtualization to measure Docker’s. Khaldi did an
analysis of Docker-based university IT labs in 2025.
He reported a 64.6% drop in RAM, 50.8% in CPU use,
and 87.8% disk savings against virtual machines [7].
Elbelgehy and colleagues approved these results when
studying Docker Swarm virtual labs. They saw CPU
use around 13% and memory footprints of 103 MB
[8]. Vaillancourt’s team showed Docker's benefits by
running workflows across computing environments
[6]. These studies support Docker's ability, yet study
laboratory and computational contexts instead of event
coordination systems.

Moving from monolithic to microservices involves
chances. Wang and Ma suggested decomposing,
containing, and deploying to Kubernetes in 2019 [11].
Their structure improved stability while traffic
management, scaling, and control. Researchers saw
discussion of strategies, pipeline implementations, and
patterns in publications [1]. Syarif and Pizaini stated
that there were not enough large-scale evaluations of
microservices [3]. Studies are geared toward
laboratories and systems, leaving event platforms
unexplored.

Security and reliability for containerized systems are
getting attention. Dubec and colleagues used
assignment systems in 2023. They emphasized
sandboxing and queues to contain workloads while
scaling [12]. Diouf’s team fixed vulnerabilities by
adding mechanisms into Kubernetes, showing
continuity under failures [13]. These studies are
focused on safety in systems. Security frameworks for
event contexts are underdeveloped. The literature
builds a base for educational systems while creating
chances for research on event platforms that unite
practices, and security.

III. PROPOSED SYSTEM ARCHITECTURE AND
METHODOLOGY

Our cloud-based management system uses a
microservices design run through Docker containers
and hosted on cloud infrastructure. This enables

IJIRT 186375

scalable, maintainable coordination of college events.
This section talks about the system's design parts, the
stack, and the methodology that fixes limits found in
typical approaches.

The architecture has three levels: presentation,
application, and data. Each level is containerized
separately to allow development, testing, and
deployment. The presentation level uses a web
interface built with JavaScript frameworks. This
frontend is packaged inside a Docker container that
serves assets and sends API requests to backend
services. Contact with services is through RESTful
APIs, ensuring coupling and independence. Users use
dashboards for their roles: students, faculty,
organizers, and administrators see functions for their
credentials.

The application level runs logic through
microservices, with each service for a domain. Our
event service handles creation, changing, and deletion,
managing details. A registration service handles
enrollment, registration, waitlists, and capacity limits
through database transactions. The notification service
uses message queues to send email and alerts about
updates, confirmations, and reminders. This ensures
communication without blocking transaction flows.
An authorization service using JWT security approves
credentials and enforces access controls across system
endpoints. Each microservice runs in a container,
exposing APIs. Services connect through HTTP or
message brokers like RabbitMQ or Kafka for
interactions.

The data level uses database cases to store information
and maintain system state. We employ PostgreSQL
containers for data for user profiles and event records,
ensuring transaction guarantees for processes. For
caching data and session management, a Redis
container gives in-memory storage, reducing database
query loads. File storage for content uses cloud-native
storage services like Amazon S3 or Azure Blob
Storage, which work with applications through SDK
libraries. Our database container uses volume mounts
to ensure data across containers, mapping paths to
storage that survives restarts.

Docker's containerization ability serves as the key to
our strategy, giving advantages. Each container has an
environment with application code, libraries, and

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 674

© November 2025]| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

configuration files. This removes the problem
common in typical deployments. Docker images are
built through Dockerfiles to explain construction
steps, ensuring builds across steps. The layered image
architecture enables storage and transmission through
caching, which speeds wup cycles. Container
orchestration through Docker Compose or Kubernetes
automates service. This includes container health
checks, restarts, and updates.

The cloud deployment model improves Docker's
benefits through resource and services. Cloud
platforms assign resources dynamically based on
metrics: CPU use, memory, queue depths. The system
scales container cases during high-traffic periods.
Load balancers send requests across container
replicas, ensuring instances become bottlenecks while
giving tolerance when containers fail checks.
Kubernetes services like Amazon EKS, Azure AKS,
or Google GKE infrastructure complexity, handling
operations, upgrades, and patching. This allows teams
to focus on logic over overhead.

Our development and deployment flow follows
DevOps principles, uniting integration and
deployment pipelines that automate testing and
processes. Source code triggers pipelines that compile
code, run integration tests, make Docker images, and
send images to registries. Deployment pipelines pull
images and rolling updates to clusters, maintaining
system availability through replacement strategies.
Infrastructure as Code tools define cloud resources,
enabling provisioning, supporting disaster recovery,
and deployments. The outlined methodology ensures
the management system achieves availability, and
adaptation to through containerization and cloud
practices.

IV. IMPLEMENTATION AND RESULTS

Converting our design into a system involved
deploying on Amazon Web Services (AWS) cloud
infrastructure with Docker containers run through
Amazon Elastic Kubernetes Service (EKS). This
section explains the implementation, decisions,
procedures, and results that validate the approach.

We established a Docker-based environment that
enabled iteration and testing before cloud deployment.
Developers used Docker Compose to define

IJIRT 186375

applications through YAML files specifying service
definitions, network setups, volume mappings, and
variables. The frontend React application compiled
into builds served by an Nginx container. We set it up
with compression and browser caching to lower
bandwidth consumption and better load times.
Backend microservices run in Node.js with the
Express framework ran within Docker images. We
picked to cut transfer times and storage costs.
PostgreSQL database containers initialized with
migration scripts, ensuring structures across. Redis
containers were set up with persistence policies that
balanced with data needs.

Container orchestration through Kubernetes gave
management abilities for reliable operation. Our EKS
cluster had worker nodes to ensure availability and
tolerance. Kubernetes Deployment resources defined
specifications for each microservice: replica counts,
resource requests, liveness and readiness checks, and
update strategies. We set up autoscalers to track CPU
and memory metrics, scaling replica counts between
thresholds based on use. The registration service
scaled from 3 to 10 replicas during enrollment when
CPU use went over 70%. This distributed load across
instances and maintained response times. Service
resources with LoadBalancer provisioned AWS
Elastic Load Balancers to distribute traffic across pod
replicas, while Ingress controllers managed access and
SSL termination for HTTPS connections.

Performance evaluations compared our containerized
cloud deployment against a baseline virtual machine,
We used Apache JMeter for testing, simulating user
scenarios with user traffic. The containerized system
showed resource. Under moderate load (500 users),
average CPU use was 45% compared to 78% for the
VM, Resource distribution showed similar
advantages: the containerized deployment needed 6.2
GB total memory across services versus 12.8 GB for
the VM —a 51.6% drop. Response time showed
latency of 320 milliseconds for event operations in the
containerized system versus 580 milliseconds for the
VM.

Deployment velocity metrics showed Docker's on.
The containerized system completed deployment
cycles—from code commit to production—in about 8
minutes through automated pipelines. VM-based

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 675

© November 2025]| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

deployments needed 45-60 minutes with server
provisioning. Rolling updates executed without
service, containers with new versions while
maintaining replica counts. This contrasts with VM
approaches that call for maintenance and service.
Container times averaged 3-5 seconds from image pull
to ready state, enabling responses to demand. VM boot
called for 2-3 minutes before application.

Cost analysis showed economic advantages to the
containerized cloud approach. The system’s ability to
scale during low-activity periods reduced compute
costs by about 40% against VM infrastructure sized
for capacity. Container allowed hosting services on
compute instances. Node wuse reached 65-75%
compared to 30-40% for VM deployments,
maximizing infrastructure returns. Kubernetes
services removed the need for personnel to handle
cluster management, patching, and maintenance.
While this introduced service fees, the cost of
ownership remained.

Security included network policies restricting service
communication to defined paths, through AWS
Secrets Manager, and container image scanning to
identify vulnerabilities before deployment. For
monitoring and observability, we set up the system
with Prometheus for metrics collection, Grafana for
dashboards, and the ELK stack for logging. This gave
visibility. These implementation collectively that
Docker containerization with cloud delivers
improvements in performance, agility, and for event
management systems. It validates the and value of our.

V. CONCLUSION AND FUTURE SCOPE

This presented a cloud-based event system using
Docker to fix limits in college event platforms. Our
architecture that microservices with technology
deliver improvements across dimensions: scalability,
efficiency, resource, and agility. The showed
quantifiable benefits—51.6% drop in memory
consumption, 44.8% in response, and deployment
speed from 45-60 minutes to about 8 minutes through
automated pipelines. These outcomes Docker's for
technology infrastructure and offer institutions a for
modernized service.

The microservices design for educational contexts
with workloads and tasks. Scaling registration,

IJIRT 186375

notification, and event services independently enabled
resource with demand patterns. We avoided while
maintaining performance during periods. Container
removed environment in. This reduced and accelerated
cycles. with cloud platforms gave infrastructure that
adapted to, efficiencies through scaling, and
eliminating from hardware.

Despite the, considerations. Our implementation
focuses on requirements and. Security was through
practices, but we threat and frameworks. The system’s
on for orchestration suggests for automation through
resource prediction and scaling policies.

Future research possibilities for extending the system's
and the. Kubernetes orchestration represents evolution
from Docker Compose, offering features scheduling
algorithms, mechanisms, and networking policies.
Integrating service technologies enhance, security, and
traffic through distributed tracing, authentication, and
access controls. CI/CD pipelines that testing,
scanning, and delivery deployments, safe deployment,
and.

Artificial intelligence and machine offers potential for
event. analytics could predict event based on patterns,
sentiment, and calendars, enabling planning and
resource. language processing could automate event,
generate, and provide search that enhances user.
systems could suggest events to students based on
academic, past, and, visibility.

Incorporating monitoring and frameworks beyond
metrics insights into system and. tracing through
illuminate request flows across, identifying, and
patterns. Application performance solutions could
track user, performance with responsiveness to efforts.
Chaos practices that introduce failures would system
find weaknesses before they in.

strategies represent for enhancing system and vendor
Designing applications of deployment would
flexibility in provider based on cost, features, or.
approaches that combine infrastructure for data with
resources for elastic workloads could address data
maintaining.

In, this Docker-based as a for educational event
systems, delivering improvements in, and agility. Our
practical for institutions on transformation, cloud-

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 676

© November 2025]| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

native technologies offer. As and cloud are,
educational institutions that these to leverage future.
Their technology will remain, and with missions of
campus. The forward continuous, automation, and of
to the value to students, faculty, and.

REFERENCES

[1] N. K. Hadi, A. S. Mohammed, and H. T. Salim,
Enhancing Software Reusability in Higher
Education Applications through Microservices
Architecture, Journal of Wireless Mobile
Networks, = Ubiquitous = Computing, and
Dependable Applications, vol. 16, no. 1, pp. 324-
339,2025.

[2] G. M. Freire, A Distributed Architecture of
Reactive Microservices Orchestrated by
Kubernetes: Case Study on Load Balancing in
Local Cloud, Ph.D. dissertation, Dept. Computer
Science, Univ. Sdo Paulo, Sdo Paulo, Brazil,
2025.

[3] U. Syarif and P. Pizaini, Penerapan Event-Driven
Microservices pada Aplikasi Layanan
Penerimaan Peserta Didik Baru, JIPI (Jurnal
Ilmiah Penelitian dan Pembelajaran Informatika),
vol. 7, no. 3, pp. 891-902, Aug. 2022.

[4] D. J. Riyanto, P. Pizaini, and N. S. Herman,
Implementasi Service Choreography Pattern
Arsitektur Microservice Classroom Akademik
Menggunakan Docker, JIPI (Jurnal Ilmiah
Penelitian dan Pembelajaran Informatika), vol. 7,
no. 3, pp. 968-978, Aug. 2022.

[5] Campus Cloud: Empowering University
Management Web Application with Cloud-
Hosted Docker Technology on AWS, Indian
Scientific Journal of Research in Engineering and
Management, vol. 7, no. 5, pp. 1-8, May 2023.

[6] P. Z. Vaillancourt, J. M. Wozniak, S. Chard, B.
Blaiszik, 1. Foster, and K. Chard, Self-Scaling
Clusters and Reproducible Containers to Enable
Scientific Computing, in Proc. IEEE Int. Conf.
Cloud Computing Technology and Science, 2020,
pp. 119-126.

[71 A.Khaldi, Revolutionizing University IT Labs: A
Docker-Based Approach for Next-Generation
Learning Environments, in Proc. IEEE Advanced
Computing and Data Science Applications, Aug.
2025, pp. 1-6.

IJIRT 186375

[8] A. G. A. Elbelgehy, S. Abdelrazek, H. M. El
Bakry, and A. A. Saleh, Performance Evaluation
of Virtual Cloud Labs Using Hypervisor and
Container, Indian Journal of Science and
Technology, vol. 13, no. 48, pp. 4715-4728, Dec.
2020.

[9] A. Lakkadwala and P. Lakkadwala, Scalability
and Stability in Cloud-Native Applications:
Lessons from Docker and Kubernetes
Deployments, in Advances in Cloud Computing
and Distributed Systems, Springer, 2024, pp. 45-
67.

[10]Y. Wang and D. Ma, Migrating Monolithic
Applications to Microservices with Kubernetes:
A Systematic Approach, in Proc. IEEE Int. Conf.
Software Engineering and Service Science, 2019,
pp- 234-239.

[11]G. M. Diouf, G. Noel, and N. Suri, On Byzantine
Fault Tolerance in Multi-Master Kubernetes
Clusters, Future Generation Computer Systems,
vol. 110, pp. 1026-1037, 2020.

[12]]J. Dubec, J. Balazia, R. Bencel, and M. Chovanec,
Docker-Based Assignment Evaluations in E-
Learning, in Proc. IEEE Int. Conf. Knowledge
and Innovation Technologies, Oct. 2023, pp. 78-
83.

[13]M. A. F. Marques, R. Santos, and P. Silva,
Container Lifecycle Traceability = Using
Blockchain Technology, Journal of Cloud
Computing: Advances, Systems and
Applications, vol. 11, no. 2, pp. 45-58, 2022.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 677

