
© November 2025| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186375 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 673

Cloud-Based College Event Management System Using

Docker

Mohsin Kalim Ansari1, Pranjal Harish Chopade2, Soham Murlidhar Nhavkar3, Sanika Popat Talekar4

1,2,3.4Department of Computer Engineering, P. K. Technical Campus, Pune

Abstract- Educational institutions face increased

complexity in campus event coordination, from seminars

to festivals. Traditional event management systems

struggle to adapt. This paper presents a cloud-based

system using Docker containerization. The system uses

microservices to enable independent scaling and

consistency. Docker containers package application

logic, dependencies, and configurations, which allow

quicker deployment across platforms. A responsive

frontend, RESTful backend services, and a distributed

database are integrated with container orchestration.

System testing showed better resource use, faster

deployment, and higher scalability than typical hosting.

This research adds to containerized applications in

educational technology and advises institutions on

modernizing event coordination, as Docker transforms

service and cuts costs.

Keywords — Cloud Computing, Docker

Containerization, Event Management System,

Microservices Architecture, Educational Technology,

Scalable Systems, DevOps

I. INTRODUCTION

College campuses host numerous activities like

conferences, recruitment, programs, and meetings.

Coordinating these events needs technology that

handles workloads, user needs, and participation.

Many colleges use typical event management systems

on servers. These systems cause operational problems

and scale poorly, needing intervention during usage

increases. Code changes from steps to production

create inconsistencies.

Cloud computing and containerization have changed

application deployment. Docker aids developers in

packaging with its runtime environment. This solves

compatibility issues. Cloud platforms like AWS and

Google provide scalable resources. There is no

maintaining hardware that sits idle.

Combining Docker with cloud infrastructure benefits

college event management. Institutions can scale

registration, reporting, and notification modules by

dividing applications into microservices. This

improves resilience by separating faults and speeds up

development. Docker containers are more lightweight

than VMs, which betters resource use and lowers

costs.

This research covers the design and assessment of a

cloud-based system for educational institutions. We

used Docker containerization to fix the issues of

deployment models. This paper talks about design

choices, strategies, metrics, and observed benefits.

The goal is to show that containerized platforms offer

advantages and to guide institutions considering

improvements.

II. LITERATURE REVIEW

The combination of cloud computing,

containerization, and educational management attracts

research. Academics study how technologies can

modernize campuses. This section reviews existing

literature, noting contributions and gaps that shaped

our study.

Hadi and colleagues made a prototype for higher

education in 2025. Their work showed that flexible

scaling and cost are advantages of cloud deployment

[1]. Freire studied Kubernetes microservices in

architectures. His research showed improvements in

balancing and scaling [2]. These studies show cloud

platforms support technology, but they do not cover

frameworks for event management.

Traditional systems in education have limits. Syarif

and Pizaini mentioned key issues in 2022:

architectures, codebases, and support for processes

[3]. They proposed event-driven microservices for

admission and services. Riyanto’s team used Docker

© November 2025| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186375 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 674

containers to expand on this work. They reached over

40,000 HTTP requests in classroom application tests

[4]. These results support containerized microservices

for workloads, but mainly cover instructional systems.

Empirical studies compared containerization and

virtualization to measure Docker’s. Khaldi did an

analysis of Docker-based university IT labs in 2025.

He reported a 64.6% drop in RAM, 50.8% in CPU use,

and 87.8% disk savings against virtual machines [7].

Elbelgehy and colleagues approved these results when

studying Docker Swarm virtual labs. They saw CPU

use around 13% and memory footprints of 103 MB

[8]. Vaillancourt’s team showed Docker's benefits by

running workflows across computing environments

[6]. These studies support Docker's ability, yet study

laboratory and computational contexts instead of event

coordination systems.

Moving from monolithic to microservices involves

chances. Wang and Ma suggested decomposing,

containing, and deploying to Kubernetes in 2019 [11].

Their structure improved stability while traffic

management, scaling, and control. Researchers saw

discussion of strategies, pipeline implementations, and

patterns in publications [1]. Syarif and Pizaini stated

that there were not enough large-scale evaluations of

microservices [3]. Studies are geared toward

laboratories and systems, leaving event platforms

unexplored.

Security and reliability for containerized systems are

getting attention. Dubec and colleagues used

assignment systems in 2023. They emphasized

sandboxing and queues to contain workloads while

scaling [12]. Diouf’s team fixed vulnerabilities by

adding mechanisms into Kubernetes, showing

continuity under failures [13]. These studies are

focused on safety in systems. Security frameworks for

event contexts are underdeveloped. The literature

builds a base for educational systems while creating

chances for research on event platforms that unite

practices, and security.

III. PROPOSED SYSTEM ARCHITECTURE AND

METHODOLOGY

Our cloud-based management system uses a

microservices design run through Docker containers

and hosted on cloud infrastructure. This enables

scalable, maintainable coordination of college events.

This section talks about the system's design parts, the

stack, and the methodology that fixes limits found in

typical approaches.

The architecture has three levels: presentation,

application, and data. Each level is containerized

separately to allow development, testing, and

deployment. The presentation level uses a web

interface built with JavaScript frameworks. This

frontend is packaged inside a Docker container that

serves assets and sends API requests to backend

services. Contact with services is through RESTful

APIs, ensuring coupling and independence. Users use

dashboards for their roles: students, faculty,

organizers, and administrators see functions for their

credentials.

The application level runs logic through

microservices, with each service for a domain. Our

event service handles creation, changing, and deletion,

managing details. A registration service handles

enrollment, registration, waitlists, and capacity limits

through database transactions. The notification service

uses message queues to send email and alerts about

updates, confirmations, and reminders. This ensures

communication without blocking transaction flows.

An authorization service using JWT security approves

credentials and enforces access controls across system

endpoints. Each microservice runs in a container,

exposing APIs. Services connect through HTTP or

message brokers like RabbitMQ or Kafka for

interactions.

The data level uses database cases to store information

and maintain system state. We employ PostgreSQL

containers for data for user profiles and event records,

ensuring transaction guarantees for processes. For

caching data and session management, a Redis

container gives in-memory storage, reducing database

query loads. File storage for content uses cloud-native

storage services like Amazon S3 or Azure Blob

Storage, which work with applications through SDK

libraries. Our database container uses volume mounts

to ensure data across containers, mapping paths to

storage that survives restarts.

Docker's containerization ability serves as the key to

our strategy, giving advantages. Each container has an

environment with application code, libraries, and

© November 2025| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186375 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 675

configuration files. This removes the problem

common in typical deployments. Docker images are

built through Dockerfiles to explain construction

steps, ensuring builds across steps. The layered image

architecture enables storage and transmission through

caching, which speeds up cycles. Container

orchestration through Docker Compose or Kubernetes

automates service. This includes container health

checks, restarts, and updates.

The cloud deployment model improves Docker's

benefits through resource and services. Cloud

platforms assign resources dynamically based on

metrics: CPU use, memory, queue depths. The system

scales container cases during high-traffic periods.

Load balancers send requests across container

replicas, ensuring instances become bottlenecks while

giving tolerance when containers fail checks.

Kubernetes services like Amazon EKS, Azure AKS,

or Google GKE infrastructure complexity, handling

operations, upgrades, and patching. This allows teams

to focus on logic over overhead.

Our development and deployment flow follows

DevOps principles, uniting integration and

deployment pipelines that automate testing and

processes. Source code triggers pipelines that compile

code, run integration tests, make Docker images, and

send images to registries. Deployment pipelines pull

images and rolling updates to clusters, maintaining

system availability through replacement strategies.

Infrastructure as Code tools define cloud resources,

enabling provisioning, supporting disaster recovery,

and deployments. The outlined methodology ensures

the management system achieves availability, and

adaptation to through containerization and cloud

practices.

IV. IMPLEMENTATION AND RESULTS

Converting our design into a system involved

deploying on Amazon Web Services (AWS) cloud

infrastructure with Docker containers run through

Amazon Elastic Kubernetes Service (EKS). This

section explains the implementation, decisions,

procedures, and results that validate the approach.

We established a Docker-based environment that

enabled iteration and testing before cloud deployment.

Developers used Docker Compose to define

applications through YAML files specifying service

definitions, network setups, volume mappings, and

variables. The frontend React application compiled

into builds served by an Nginx container. We set it up

with compression and browser caching to lower

bandwidth consumption and better load times.

Backend microservices run in Node.js with the

Express framework ran within Docker images. We

picked to cut transfer times and storage costs.

PostgreSQL database containers initialized with

migration scripts, ensuring structures across. Redis

containers were set up with persistence policies that

balanced with data needs.

Container orchestration through Kubernetes gave

management abilities for reliable operation. Our EKS

cluster had worker nodes to ensure availability and

tolerance. Kubernetes Deployment resources defined

specifications for each microservice: replica counts,

resource requests, liveness and readiness checks, and

update strategies. We set up autoscalers to track CPU

and memory metrics, scaling replica counts between

thresholds based on use. The registration service

scaled from 3 to 10 replicas during enrollment when

CPU use went over 70%. This distributed load across

instances and maintained response times. Service

resources with LoadBalancer provisioned AWS

Elastic Load Balancers to distribute traffic across pod

replicas, while Ingress controllers managed access and

SSL termination for HTTPS connections.

Performance evaluations compared our containerized

cloud deployment against a baseline virtual machine,

We used Apache JMeter for testing, simulating user

scenarios with user traffic. The containerized system

showed resource. Under moderate load (500 users),

average CPU use was 45% compared to 78% for the

VM, Resource distribution showed similar

advantages: the containerized deployment needed 6.2

GB total memory across services versus 12.8 GB for

the VM —a 51.6% drop. Response time showed

latency of 320 milliseconds for event operations in the

containerized system versus 580 milliseconds for the

VM.

Deployment velocity metrics showed Docker's on.

The containerized system completed deployment

cycles—from code commit to production—in about 8

minutes through automated pipelines. VM-based

© November 2025| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186375 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 676

deployments needed 45-60 minutes with server

provisioning. Rolling updates executed without

service, containers with new versions while

maintaining replica counts. This contrasts with VM

approaches that call for maintenance and service.

Container times averaged 3-5 seconds from image pull

to ready state, enabling responses to demand. VM boot

called for 2-3 minutes before application.

Cost analysis showed economic advantages to the

containerized cloud approach. The system’s ability to

scale during low-activity periods reduced compute

costs by about 40% against VM infrastructure sized

for capacity. Container allowed hosting services on

compute instances. Node use reached 65-75%

compared to 30-40% for VM deployments,

maximizing infrastructure returns. Kubernetes

services removed the need for personnel to handle

cluster management, patching, and maintenance.

While this introduced service fees, the cost of

ownership remained.

Security included network policies restricting service

communication to defined paths, through AWS

Secrets Manager, and container image scanning to

identify vulnerabilities before deployment. For

monitoring and observability, we set up the system

with Prometheus for metrics collection, Grafana for

dashboards, and the ELK stack for logging. This gave

visibility. These implementation collectively that

Docker containerization with cloud delivers

improvements in performance, agility, and for event

management systems. It validates the and value of our.

V. CONCLUSION AND FUTURE SCOPE

This presented a cloud-based event system using

Docker to fix limits in college event platforms. Our

architecture that microservices with technology

deliver improvements across dimensions: scalability,

efficiency, resource, and agility. The showed

quantifiable benefits—51.6% drop in memory

consumption, 44.8% in response, and deployment

speed from 45-60 minutes to about 8 minutes through

automated pipelines. These outcomes Docker's for

technology infrastructure and offer institutions a for

modernized service.

The microservices design for educational contexts

with workloads and tasks. Scaling registration,

notification, and event services independently enabled

resource with demand patterns. We avoided while

maintaining performance during periods. Container

removed environment in. This reduced and accelerated

cycles. with cloud platforms gave infrastructure that

adapted to, efficiencies through scaling, and

eliminating from hardware.

Despite the, considerations. Our implementation

focuses on requirements and. Security was through

practices, but we threat and frameworks. The system’s

on for orchestration suggests for automation through

resource prediction and scaling policies.

Future research possibilities for extending the system's

and the. Kubernetes orchestration represents evolution

from Docker Compose, offering features scheduling

algorithms, mechanisms, and networking policies.

Integrating service technologies enhance, security, and

traffic through distributed tracing, authentication, and

access controls. CI/CD pipelines that testing,

scanning, and delivery deployments, safe deployment,

and.

Artificial intelligence and machine offers potential for

event. analytics could predict event based on patterns,

sentiment, and calendars, enabling planning and

resource. language processing could automate event,

generate, and provide search that enhances user.

systems could suggest events to students based on

academic, past, and, visibility.

Incorporating monitoring and frameworks beyond

metrics insights into system and. tracing through

illuminate request flows across, identifying, and

patterns. Application performance solutions could

track user, performance with responsiveness to efforts.

Chaos practices that introduce failures would system

find weaknesses before they in.

strategies represent for enhancing system and vendor

Designing applications of deployment would

flexibility in provider based on cost, features, or.

approaches that combine infrastructure for data with

resources for elastic workloads could address data

maintaining.

In, this Docker-based as a for educational event

systems, delivering improvements in, and agility. Our

practical for institutions on transformation, cloud-

© November 2025| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186375 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 677

native technologies offer. As and cloud are,

educational institutions that these to leverage future.

Their technology will remain, and with missions of

campus. The forward continuous, automation, and of

to the value to students, faculty, and.

REFERENCES

[1] N. K. Hadi, A. S. Mohammed, and H. T. Salim,

Enhancing Software Reusability in Higher

Education Applications through Microservices

Architecture, Journal of Wireless Mobile

Networks, Ubiquitous Computing, and

Dependable Applications, vol. 16, no. 1, pp. 324-

339, 2025.

[2] G. M. Freire, A Distributed Architecture of

Reactive Microservices Orchestrated by

Kubernetes: Case Study on Load Balancing in

Local Cloud, Ph.D. dissertation, Dept. Computer

Science, Univ. São Paulo, São Paulo, Brazil,

2025.

[3] U. Syarif and P. Pizaini, Penerapan Event-Driven

Microservices pada Aplikasi Layanan

Penerimaan Peserta Didik Baru, JIPI (Jurnal

Ilmiah Penelitian dan Pembelajaran Informatika),

vol. 7, no. 3, pp. 891-902, Aug. 2022.

[4] D. J. Riyanto, P. Pizaini, and N. S. Herman,

Implementasi Service Choreography Pattern

Arsitektur Microservice Classroom Akademik

Menggunakan Docker, JIPI (Jurnal Ilmiah

Penelitian dan Pembelajaran Informatika), vol. 7,

no. 3, pp. 968-978, Aug. 2022.

[5] Campus Cloud: Empowering University

Management Web Application with Cloud-

Hosted Docker Technology on AWS, Indian

Scientific Journal of Research in Engineering and

Management, vol. 7, no. 5, pp. 1-8, May 2023.

[6] P. Z. Vaillancourt, J. M. Wozniak, S. Chard, B.

Blaiszik, I. Foster, and K. Chard, Self-Scaling

Clusters and Reproducible Containers to Enable

Scientific Computing, in Proc. IEEE Int. Conf.

Cloud Computing Technology and Science, 2020,

pp. 119-126.

[7] A. Khaldi, Revolutionizing University IT Labs: A

Docker-Based Approach for Next-Generation

Learning Environments, in Proc. IEEE Advanced

Computing and Data Science Applications, Aug.

2025, pp. 1-6.

[8] A. G. A. Elbelgehy, S. Abdelrazek, H. M. El

Bakry, and A. A. Saleh, Performance Evaluation

of Virtual Cloud Labs Using Hypervisor and

Container, Indian Journal of Science and

Technology, vol. 13, no. 48, pp. 4715-4728, Dec.

2020.

[9] A. Lakkadwala and P. Lakkadwala, Scalability

and Stability in Cloud-Native Applications:

Lessons from Docker and Kubernetes

Deployments, in Advances in Cloud Computing

and Distributed Systems, Springer, 2024, pp. 45-

67.

[10] Y. Wang and D. Ma, Migrating Monolithic

Applications to Microservices with Kubernetes:

A Systematic Approach, in Proc. IEEE Int. Conf.

Software Engineering and Service Science, 2019,

pp. 234-239.

[11] G. M. Diouf, G. Noel, and N. Suri, On Byzantine

Fault Tolerance in Multi-Master Kubernetes

Clusters, Future Generation Computer Systems,

vol. 110, pp. 1026-1037, 2020.

[12] J. Dubec, J. Balažia, R. Bencel, and M. Chovanec,

Docker-Based Assignment Evaluations in E-

Learning, in Proc. IEEE Int. Conf. Knowledge

and Innovation Technologies, Oct. 2023, pp. 78-

83.

[13] M. A. F. Marques, R. Santos, and P. Silva,

Container Lifecycle Traceability Using

Blockchain Technology, Journal of Cloud

Computing: Advances, Systems and

Applications, vol. 11, no. 2, pp. 45-58, 2022.

