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Abstract: The aim of this research is to identify novel
antimicrobial peptides (AMPs) in fish species using
bioinformatics tools, aiming to discover candidates for
anticancer therapeutics and pathogen interaction.
AMPs are small, positively charged molecules crucial
in innate immunity, capable of killing pathogens and
modulating host defenses, with some showing promise
as anticancer agents. This study focuses on
constructing plasmids containing AMPs with dual
functionalities: combating food pathogens and
exhibiting anticancer properties. Proteomic data from
UniProt was analyzed, focusing on AMPs from
snakehead murrel. Prediction tools like AMP Scanner,
iAMPpred, AntiBP3, and CAMPR3 identified
potential AMP candidates. Antigenicity and
allergenicity of selected AMPs were evaluated using
tools such as SVMTrip, Vaxijen, and AlgPred.
Structural modeling and docking studies with CXCR1
and E.coli O157:H7 highlighted the potential of these
AMPs, with promising results suggesting effective
binding. These findings indicate that these AMPs could
be valuable in food preservation and cancer therapy.
Further studies could explore the in vivo efficacy of
these peptides. This research underscores the promise
of AMPs in medicine and food preservation, addressing
antibiotic resistance and exploring their potential
applications in cancer therapy.
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I INTRODUCTION

Antibiotic resistance has become a global health
crisis, necessitating the search for alternative
therapeutic  strategies. ~Antimicrobial peptides
(AMPs) have emerged as promising candidates due
to their potent ability to kill pathogens and modulate
host immune responses. These small, positively

charged molecules are found across various
organisms and play a crucial role in innate immunity
by combating a wide range of microbes, including
bacteria, viruses, parasites, and fungi. In addition to
their antimicrobial properties, some AMPs have
shown potential as anticancer agents, offering a
dual-functional approach to addressing both
infectious diseases and cancer[36].

The significance of AMPs in innate immunity is
underscored by their efficiency and rapid action.
Unlike the acquired immune system, which relies
on the time-consuming production of antibodies,
AMPs are part of the innate immune system,
enabling a quick and energy-efficient response to
microbial invasion[25]. This is particularly crucial
for organisms that lack a lymphocyte-based
immune system, such as insects, which rely on
synthesizing antibacterial compounds to combat
invading microorganisms. AMPs have been
identified in  diverse  sources, including
microorganisms, plants, invertebrates, fish,
amphibians, reptiles, birds, and mammals, each
with specific roles in their respective host
organisms[3].

AMPs can be categorized based on their amino acid
sequences, net charge, protein structure, and source.
Key subgroups include anionic and cationic alpha
helical AMPs, cationic beta-sheet AMPs, and
extended cationic AMPs[25]. These peptides exert
their antimicrobial effects primarily by disrupting
microbial membranes, a strategy that limits the
potential for resistance development. Notably,
bacteriocins, a type of AMP, exhibit narrow or
broad antibacterial activity and can be synthesized
by ribosomes or non-ribosomes. Examples like
nisin, used as a natural food preservative, and
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copsin, which disrupts bacterial cell wall
biosynthesis, highlight the diverse applications of
AMPs[14],[41]. CXCRI1, also known as C-X-C
motif chemokine receptor 1, is a crucial protein in
cancer biology. It serves as a marker for cancer stem
cells (CSCs), which are a subset of cells within
tumors that possess the ability to self-renew and
drive tumor growth[23]. Additionally, CXCR1 plays
a role in the inflammatory tumor microenvironment,
promoting tumor progression and metastasis[33]. As
a receptor for interleukin-8 (IL-8), CXCRI1 is vital
for neutrophil chemotaxis, aiding in the creation of a
pro-inflammatory environment that supports cancer
progression[42]. Inhibiting CXCR1 has shown
potential in disrupting cancer cell proliferation and
metastasis, making it a promising therapeutic target
. Furthermore, high CXCR1 expression is associated
with poor prognosis in various cancers, highlighting
its clinical relevance[54].

Escherichia coli O157:H7 is a particularly harmful
strain of E. coli. It is one of the Shiga toxin producing
types of E. coli (STEC), known for producing toxins
that can cause severe foodborne illness (CDC, 2020).
Infections often lead to severe, acute hemorrhagic
diarrhea and abdominal cramps. In some cases, it can
also cause hemolytic-uremic syndrome (HUS), a
serious condition that can lead to kidney failure,
especially in young children, the elderly, and those
with compromised immune systems[38]. The
primary mode of transmission is through
consumption of contaminated food or water, with
common sources including undercooked ground
beef, raw milk, and raw vegetables[62]. Preventing
infection involves proper food handling, thoroughly
cooking meat, and practicing good hygiene to reduce
the risk of contamination[69].

Given the rising threat of antibiotic resistance,
AMPs offer a promising alternative for developing
new antimicrobial therapies. This study focuses on
identifying and characterizing AMPs in snakehead
murrel (Channa striata), leveraging bioinformatics
tools to discover peptides with both antimicrobial
and anticancer properties[48]. Proteomic data from
UniProt was meticulously analyzed, and prediction
tools such as AMP Scanner, iAMPpred, AntiBP3,
and CAMPR3 were employed to identify potential
AMP candidates[67]. To ensure their safety and
therapeutic potential, antigenicity and allergenicity
were evaluated using SVMTrip, Vaxijen, and

AlgPred[6],[20]. Structural modeling and docking
studies were conducted to investigate the interaction
of these AMPs with CXCR1 and E. coli O157:H7,
revealing promising binding capabilities[27].

The findings of this study suggest that these AMPs
could play a significant role in food preservation
and cancer therapy, addressing the dual challenges
of antibiotic resistance and cancer treatment. Future
research should focus on in vivo studies to further
validate the efficacy and safety of these peptides,
paving the way for their potential application in
medicine and food technology[24].

II. LITERATURE REVIEW

Antimicrobial peptides (AMPs) have garnered
significant attention as potential therapeutic agents
due to their dual functionalities in combating
infectious diseases and cancer. These small,
positively charged molecules are integral to the
innate immune system across various species,
including humans and fish, where they serve as
frontline defenders against pathogens. AMPs are
known for their broad-spectrum antimicrobial
activity, targeting bacteria, fungi, viruses, and even
cancer cells[66]. Their mechanism of action
typically involves disrupting microbial membranes,
leading to cell death[7]. Beyond their antimicrobial
properties, several AMPs have exhibited anticancer
activities by inducing apoptosis, inhibiting
angiogenesis, and modulating the immune response.
Advances in bioinformatics have revolutionized the
discovery and characterization of AMPs. Tools like
AMP Scanner, iAMPpred, AntiBP3, and CAMPR3
have been instrumental in predicting and identifying
novel AMPs with high accuracy[21]. These
computational methods allow for the efficient
screening of large proteomic datasets, facilitating
the discovery of peptides with potential therapeutic
applications.

Fish species are a rich source of AMPs due to their
diverse immune systems and constant exposure to
aquatic pathogens. Snakehead murrel (Channa
striata), in particular, has been studied for its potent
AMPs, which exhibit strong antimicrobial and
anticancer activities. The unique peptides derived
from fish not only enhance our understanding of
innate immunity but also provide valuable leads for
developing new therapeutics.
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The application of structural modeling and docking
studies has provided deeper insights into the
interaction dynamics of AMPs with their targets.
These studies have shown that AMPs can effectively
bind to receptors such as CXCR1 and pathogens like
E.coli O157:H7, highlighting their potential as
therapeutic agents[15]. The use of tools like
SVMTrip (SVMTriP: a tool to predict linear
antigenic  epitopes), Vaxijen (Vaxilen), and
predicted antigenic peptide (Immunomedicine
Group: Tools >> PREDICTED ANTIGENIC
PEPTIDES) further ensures the antigenicity and
allergenicity of these peptides, crucial for their safe
application in medicine.

While the potential of AMPs in medicine and food
preservation is promising, several challenges
remain. The stability, bioavailability, and potential
resistance mechanisms of AMPs need to be
thoroughly investigated. Additionally, in vivo
studies are essential to validate the efficacy and
safety of these peptides, paving the way for their
potential application in clinical and food technology
settings.

This literature review highlights the significant
progress made in the discovery and application of
AMPs, particularly from fish species, using
bioinformatics tools. The dual functionality of these
peptides in antimicrobial and anticancer activities
positions them as valuable candidates in addressing
the global challenges of antibiotic resistance and
cancer therapy. Future research should continue to
focus on overcoming current challenges and
exploring the full therapeutic potential of AMPs.

III. RESEARCH METHODOLOGY

This study outlines a comprehensive approach for
predicting, analyzing, and validating antimicrobial
peptides (AMPs) from the fish specimen Channa
striata. The methodology consists of several
meticulously planned steps to ensure thorough
checks for allergenicity, antigenicity, and
functionality, followed by structural modeling and
refinement. Each phase of the methodology was
designed to maximize the reliability and relevance of
the findings.

Channa striata was chosen for this study due to its
well-documented bioactive properties. The selection
was based on the hypothesis that this fish species

may possess unique antimicrobial peptides that
could contribute significantly to medical and
environmental applications. Protein sequence was
retrieved from UniProt.

To identify potential antimicrobial peptides, several
advanced bioinformatics tools were employed.
These tools included AMP Scanner[64], iIAMPpred,
AntiBP3[32], and CAMPR3[65]. Each tool utilizes
different algorithms to analyze the sequence data,
predicting peptides with antimicrobial properties.
The combined use of multiple prediction tools
enhances the accuracy and confidence in the
identified AMPs.

Safety is a critical factor when developing bioactive
compounds. Therefore, the allergenicity of the
predicted AMPs was assessed using multiple online
tools: AlgPred[52], AllergenFP[18],
AllergenTOOL and AllerTOP[17]. These tools
evaluate the sequences against known allergens to
predict potential allergenic properties. Only
peptides predicted to be non-allergenic were
selected for further analysis, ensuring the safety of
these compounds for potential therapeutic use.
Following allergenicity assessment, the antigenicity
of the peptides was evaluated using VaxiJen[20],
Predicted Antigenic Peptide[9], and SVMTrip[72].
These tools predict the immune response potential
of the peptides, which is crucial for determining
their suitability as vaccine candidates or therapeutic
agents. Peptides that showed high antigenicity
scores were prioritized for further functional
analysis.

To explore additional therapeutic potentials, the
anti-cancer properties of the peptides were
predicted using tools such as AntiCP2 and
ACPred[11]. These tools assess the sequences for
characteristics common in anti-cancer peptides,
broadening the potential applications of the
identified AMPs. Peptides showing strong anti-
cancer properties were noted for further
experimental validation.

Based on the results from the AMP prediction and
safety assessments, the most promising sequences
were selected for vector construction. These vectors
are essential for the genetic and functional analysis
of the peptides. The sequences were cloned into
appropriate vectors using standard molecular
biology techniques, ensuring they are ready for
expression and further analysis[53].
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A sequence homology search using BLAST[2]
ensured the uniqueness and identified similar
sequences of AMPs. InterProScan[28] was used to
predict the biological roles of the peptides, providing
a comprehensive view of their potential activities.
The secondary structures of the peptides were
predicted using PSIPRED[71], aiding in stability and
interaction analyses.

The constructed vectors containing the selected
peptide sequences were modeled using I-TASSER
(Iterative Threading ASSEmbly Refinement)[71]. 1
TASSER predicts the 3D structure of proteins based
on the sequence data and threading alignments. The
predicted models were analyzed to understand the
structural conformations and potential functional
sites of the peptides.

To ensure the accuracy of the predicted protein
structures, verification was carried out using SAVES
(Structure Analysis and Verification Server)[35] and
ProSA (Protein Structure Analysis)[68]. SAVES
includes multiple verification tools like VERIFY3D
and ERRAT, which assess the quality of the protein
models. ProSA evaluates the overall model quality
by comparing it with a database of known structures.
Only models that passed these verification checks
were selected for further refinement.

The selected protein models were refined using
ModRefiner[70] and Galaxy Web[29]. ModRefiner
improves the structure by optimizing the atomic
interactions, while Galaxy Web provides a suite of
tools for further refinement and validation. This step
should only be carried out if the protein quality
doesn’t meet the standards.The refined models were
assessed for stability and functional relevance,
ensuring that they are suitable for subsequent
docking studies.

The final step involved protein docking studies using
ClusPro[13], a widely used tool for predicting
protein-protein interactions. ClusPro performs rigid
body docking and ranks the resulting complexes
based on their interaction energy. The docking
studies provided insights into the binding
interactions and potential efficacy of the peptides,
aiding in the identification of promising candidates
for further experimental validation.

This comprehensive methodology integrates
multiple bioinformatics tools and techniques to
predict, analyze, and validate antimicrobial peptides
from Channa striata. Each step is designed to ensure
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the reliability and applicability of the findings,
contributing to the development of safe and
effective antimicrobial agents. The approach not
only emphasizes the discovery of novel AMPs but
also ensures their safety, functionality, and
therapeutic potential through rigorous validation
and analysis.

IV.RESULTS

MAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAVAAAGAAPAGAAVEAAEEQ
SEFDVILEAAGDKKIGVIKVVREIVSGLGLKEAKDLVDGAPKPLLEKVAKEAADEAKAKL

EAAGATVTVKEAAAKIVLLMLTQQVCAGPWAFQVQGPGPGUVLIMLTQQVCAGPWAFQVGPGPGVLLMLT

Fig 1. Vector construct includes genes encoding
antimicrobial peptides and anticancer peptides,
along with regulatory elements.
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Fig 2. Vector Map of plasmid in vector builder
displays the plasmid VB240620-1431hyv, 6275
base pairs in length. The plasmid is designed for
cloning, gene expression and vaccine development
and the vaccine construct 1 encodes the target
antigen for vaccine development.

Fig 3. 3D structure of a vector construct modelled
using I-TASSER, providing insights into the
structural conformation and stability of the vector
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Fig 4. Validation of the predicted protein structure
modelled using [-TASSER, assessed by ERRAT2.
An overall quality factor above 95% is considered
indicative of a good quality model, while values
below this threshold suggest that the model may
require further refinement.
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Fig 5. Local model quality assessment of the protein
structure modeled using I-TASSER, validated by
ProSA-web. The graph shows knowledge-based
energy plotted against sequence position for window
sizes 10 (light green) and 40 (dark green). Ideally,
lower energy values indicate better model quality.
The fluctuations in the graph highlight areas where
the model may require further refinement to achieve
optimal structural stability.
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Fig 6. Refined 3D structure of the protein model
generated using GalaxyWeb. The refinement
process has optimized the folding and spatial
arrangement of the protein, enhancing the accuracy
of the structural representation.
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Fig 7. Validation of the refined protein structure
using GalaxyWEB, assessed by SAVEServer. The
overall quality factor is 97.74%, which indicates
good quality.
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Fig 8. Local model assessment of the refined protein
structure using GalaxyWEB, assessed by ProSA
web.The dark green line demonstrates a smoother
trend compared to the light green line, indicating
more stable energy values across the sequence. This
analysis is crucial for understanding the stability
and reliability of the model across different

sequence positions
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Fig 9. Cluster scores for the predicted protein
structures against CXCR1 using ClusPro. The scores
were generated through docking between the refined
protein (predicted protein) and CXCRI1. Lower
scores indicate more stable protein conformations,
with Cluster 1’s Lowest Energy representative
showing the lowest weighted score of -
15461.1kcal/mol, suggesting it as the most stable
predicted structure.
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Fig 10. Cluster scores were generated through
docking between the refined protein (predicted
protein) and EcoliO157:H7 by using ClusPro. Lower
scores indicate more stable protein conformations,
with Cluster 1's Lowest Energy Representative
showing the lowest weighted score of -889.5
suggesting it as the most stable predicted structure.

Figure 1 depicts the vector construct, where the
black-colored sequence represents the adjuvant,
specifically a 50S ribosomal L7/L12 adjuvant.
Sequences screened through various tools for
antimicrobial peptides are indicated. The allergenic
and antigenic properties were evaluated, and
anticancer properties were assessed. Sequences that
passed all these evaluations are shown in green,
while linkers (EAAAK and GPGPG) are depicted in
red. Figure 2 illustrates the vector map of the
plasmid, which incorporates the vector construct into
the plasmid of a bacterium. After constructing the
vector, the 3D structural modeling was performed
using I-TASSER, as seen in Figure 3. The initial
model's validity was assessed using I TASSER and
SAVEServer, with the results presented in Figures 4
and 5. Due to the initial model not meeting the
desired quality standards, the protein model
underwent refinement using the Galaxy web tool.
The refined model is shown in Figure 6. The refined
model’s validity was further confirmed using
SAVEserver and Prosa web, as presented in Figures
7 and 8. Docking studies were conducted to assess

the interaction between the modeled protein and
target proteins using the ClusPro tool. The docking
results for the interaction between the antimicrobial
peptide (AMP) and CXCRI are shown in Figure 9,
while those for the interaction between the AMP
and E. coli O157:H7 are presented in Figure 10.

V. CONCLUSION

In this study, an insilico approach was utilized to
design a plasmid containing antimicrobial peptides
(AMPs) with dual functionality combating food
pathogens and exhibiting anticancer properties. We
collected relevant proteomic data from UniProt,
focusing on AMPs from snakehead murrel. AMP
prediction was performed using multiple tools,
including AMP Scanner, iAMPpred, AntiBP3, and
CAMPR3. These tools helped identify potential
AMP candidates with antimicrobial activity. As
AMPs play a crucial role in innate immunity across
various organisms, they exhibit inhibitory effects
against bacteria, fungi, parasites, and viruses. As
antibiotic-resistant microorganisms become more
prevalent, AMPs offer promise in medicine, food,
animal husbandry, agriculture, and aquaculture.
They are also found in dairy products, generated
through milk enzymatic hydrolysis. We further
evaluated the antigenicity and allergenicity of the
selected AMP candidates using various tools:
SVMTrip, Vaxijen, AlgPred, AllergenFP,
Allercatop, and AllerTop. These evaluations were
critical to balance antimicrobial efficacy with safety
considerations, ensuring practical applications. We
also investigated the presence of anticancer peptides
(ACPs) using AntiCp2.0 and ACPred tools, which
is essential for assessing immunogenicity, safety,
and designing effective vaccines and therapeutic
applications.

The AMPs screened through these tools were
finalized and used to make a vector construct. The
initial part of the vector construct consisted of an
adjuvant, followed by linkers that joined the AMPs,
and then more AMPs and linkers. Once the
construct was prepared, it was incorporated into the
plasmid of a bacterium. The vector construct was
modeled using [-TASSER and validated using
SAVEServer and ProSAweb tools. However, the
initial model quality was not satisfactory and was
below the threshold value. Therefore, the protein
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model was refined using the GalaxyWeb tool. Post-
refinement, the model's validity increased from
78.83% to 97.74%, as observed in SAVEServer,
where ERRAT score above 95% is considered a
good quality model. The Ramachandran plot of the
modelled protein showed 6 residues in disallowed
regions and post refinement 1 residue in disallowed
region(Fig A2 and A3). ProSAweb further
confirmed the model quality, although some portions
in Figure 5 indicated errors in the later part of the
sequence. As seen in Fig A4 and A5 the z score of
the protein model was -4.6 and after refinement its -
4.92, which indicates that the refinement model is
more good, as more less the z score indicates better
protein quality.

Once validation was completed, the predicted
proteins were docked against CXCR1 and E. coli
O157:H7 wusing the ClusPro tool. The docking
studies revealed good binding affinity, with scores
less than -800 for both CXCR1 and E. coli O157:H7,
indicating stable interactions. However, while the
computational models provided significant insights,
it is important to acknowledge the limitations
inherent in in silico approaches. These models may
not fully capture the complexity of in vivo
conditions, necessitating further experimental
validation. Simulations and wet lab experiments are
crucial for substantiating these findings and fully
understanding the AMP interactions.

Future research should prioritize in vitro and in vivo
studies to confirm the efficacy of these peptides.
Additionally, exploring the interaction dynamics
over time and under varying conditions could offer
deeper insights into the behavior and efficacy of
these AMPs. Understanding their in vivo efficacy
will be pivotal for their potential application in food
preservation and cancer therapy. This study
underscores the potential of AMPs designed through
an in silico approach, providing valuable insights
into their structural and interaction dynamics. The
promising results from docking studies highlight
their potential for practical applications in combating
food pathogens and cancer, paving the way for future
experimental  validations and therapeutic
developments.

VI. FUTURE PROSPECTS

Future research should focus on the in vivo

validation of the antimicrobial and anticancer
efficacy of the designed plasmid, using relevant
animal models to confirm its safety and
effectiveness. Ensuring the safety profile and
immunogenicity of the AMPs in vivo is crucial to
avoid adverse immune responses. Additionally,
optimizing the plasmid design to enhance its
expression and stability in bacterial hosts, and
exploring different promoter and terminator
sequences to improve performance, will be
essential. Peptide engineering could further enhance
the stability, efficacy, and spectrum of activity of
the AMPs, improving their pharmacokinetic and
pharmacodynamic properties.

Targeting  protein-protein  interactions (PPIs)
through in silico tools offers a promising approach
for treating various diseases, including cancer,
infectious  diseases, and neurodegenerative
conditions. High-throughput screening of large
peptide libraries, identifying “hotspots” on protein
surfaces, and 3D peptide modelling are crucial for
designing effective interfering peptides. Hybrid
peptides, combining natural and synthetic
components, can be created using in silico-based
design to combat multidrug-resistant pathogens,
leveraging computational approaches to utilize
biological resources effectively.

In food preservation, in silico-designed AMPs can
be incorporated into plasmids to inhibit spoilage
bacteria, molds, and yeasts, thereby extending the
shelf life of perishable foods. Evaluating their
stability, solubility, and toxicity is essential for
designing plasmids to express these AMPs in food
matrices. AMPs can also disrupt biofilms formed by
foodborne pathogens such as Salmonella and E.
coli, enhancing food safety by preventing bacterial
attachment. Prediction of AMPs targeting biofilm
components, followed by optimization of peptide
length and charge, is crucial for effective biofilm
penetration.

For cancer therapy, in silico prediction of AMPs
with anticancer properties can help specifically
target cancer cells while minimizing damage to
healthy tissues. Screening databases for AMPs with
tumor-specific receptors and predicting binding
affinity using molecular docking simulations are
essential steps. AMPs can induce apoptosis in
cancer cells by disrupting cell membranes or
intracellular processes, inhibiting tumor growth.
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Identifying AMPs that disrupt
function or inhibit anti-apoptotic proteins, followed
by optimization of peptide stability and cellular

mitochondrial

uptake, is vital for effective cancer treatment.
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Fig Al. Bioinformatics pipeline. This figure
illustrates the comprehensive workflow employed
in this study, detailing each step from data
collection and preprocessing to analysis and

ISSN: 2349-6002

Combination therapy involving plasmids containing
AMPs alongside conventional chemotherapy can
enhance drug delivery, reduce side effects, and
combat drug-resistant cancer cells. Predicting
interactions between AMPs and chemotherapeutic
drugs and optimizing drug delivery using AMP
conjugated nanoparticles are promising strategies.
Additionally, AMPs can modulate immune
responses, aiding in wound healing and tissue repair,
and enhance the host’s defense against pathogens in
food safety. Predicting AMP interactions with
immune receptors and optimizing peptide stability
and immunomodulatory effects are essential for
harnessing these benefits.

Overall, the integration of computational tools in the
design and evaluation of AMPs provides a robust
framework for developing novel therapeutic agents
with dual functionality. Scaling up production
methods for industrial applications and ensuring
cost-effectiveness and regulatory compliance will
facilitate industrial and clinical translation. Finally,
designing and conducting clinical trials to assess the
safety and efficacy of AMPs in humans, in
collaboration ~with clinical researchers and
healthcare institutions, will be essential to bringing
these innovations from the lab to the clinic.
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85.6% of residues are in the most favoured regions,
12.0% of residues are in additional allowed regions
and 0.8% of residues are in disallowed regions.

Overall model quality Hiws

-4.6

200 w0 o w0 1000

Fig A4. The quality of the protein modelled using I
TASSER was validated using ProSAweb so it
illustrates the relationship between the number of
residues in protein structures and their Z-scores, with
lower Z-score indicating better model quality. The
models derived from X-ray crystallography has a
good quality than NMR.

-4.92

Fig AS5. The quality of the refined protein is
validated using ProSAweb which reveals a specific
high-quality model is highlighted with a z-score,
more less the value indicates a high quality model
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Fig A6. Docking interactions of the predicted
antimicrobial peptide (vector construct) protein
with  CXCR1, showing different binding
conformations. Cluster scores indicate binding
stability, with lower scores suggesting more stable
interactions. Cluster scores for this are represented
in Fig 9.
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Fig A7. Docking interactions of the predicted
antimicrobial peptide (vector construct) protein
with EcoliO157:H7, showing different binding
conformations. Cluster scores indicate binding
stability, with lower scores suggesting more stable
interactions. Cluster scores for this are represented
in Fig 10.
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