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Abstract – Manages deep networks of various parameters 

during the training and testing phase. As the number of 

parameters increases, these networks acquire the ability 

to adapt to different types of data records, contributing to 

incredible strength. However, this ability can also make 

neuronal networks sensitive, which are prone to over-

adaptation. Over--Several strategies can be used to tackle 

the problem of adaptation. In this article, we will explore 

various methods to prevent the model from limiting model 

complexity, data expansion, weight normalization, 

occurrence, and early stopping. 
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I. INTRODUCTION 

 

A wide range of parameters, from thousands to 

millions, provides considerable flexibility to networks 

of neurons, allowing them to absorb a wide range of 

complex data records. This unique ability has advanced 

in many areas that have pose challenges in the 

traditional age of machine learning, such as image 

detection, object detection, and natural language 

processing. However, this important advantage can also 

represent a potential drawback. Inadequate control over 

the model's learning process can lead to over-

regulation. This is a scenario in which neuronal 

networks are over-tuned to training data, hindering 

their ability to generalize and create accurate 

predictions. It is important to understand the underlying 

causes of this problem and to investigate strategies to 

ensure the effective design of neuronal networks. 

In practice, the detection of over-adjusting in models 

can be a major challenge. It is not uncommon for a 

trained model to be used for production before you 

realize the problem. The true validity of a model can 

only be assessed when exposed to new data. Therefore, 

during the training phase it is important to simulate the 

actual conditions as closely as possible. To achieve this, 

we recommend splitting the data record across three 

segments. Training statements, development rates (also 

known as cross-validation or holdout), and test sets. 

The model is only learned from the training statement 

during the holdout set to monitor progress and gain 

knowledge for model optimization. The test set is 

reserved for evaluation of the power of the model after 

completing the training process. Using completely new 

data allows for a fair assessment of the effectiveness of 

the algorithm. Only then can we be confident that 

decisions made during the learning process will lead to 

more effective solutions. Historically, the data standard 

employed a division of 60:20:20. In the age of big data, 

where data records can contain millions of entries, these 

fixed conditions are no longer suitable. Ultimately, the 

corresponding split depends on the size of the data 

record. For example, if millions of entries are available, 

the 98:1:1 division could have a greater advantage. Our 

development and test sets must be large enough to 

ensure high reliability in the performance of the model. 

Several approaches, such as recording additional data, 

are widely used and consistently effective. In contrast, 

methods such as forms of regularization require 

differentiated understanding and considerable 

expertise. Excessive and strict limitations in neural 

networks can interfere with learning functions. Now 

let's take some of the most frequently used strategies, 

over adapt, and investigate the reasons for their 

effectiveness. 

 

II. METHODS  

 

1. Constraining Model Complexity 

A model trained with almost unlimited numbers of 

examples ultimately reaches a point where its learning 

ability is stable. Its capabilities are sufficient to 

overcome the training dataset. By reducing the power 

of the model, the likelihood of over adaptation can be 

minimized. The complexity of the neural network 

model that defines its capacity is determined by its 
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architecture, not only by its weights, but also the 

number of nodes and layers. As a result, it is possible 

to reduce the complexity of neuronal networks and 

reduce over adaptation in two ways. 

a. Change the network architecture (weight volume) to 

adjust the complexity of the network. 

b. Changes in network complexity (weight values) due 

to variations in network parameters. 

As a result, the network cannot remember all data 

points because it has fewer parameters to learn, and 

instead forces them to generalize. During the 

implementation of this method, the number of layers to 

eliminate the appropriate size of the network must be 

decided.  

 
Fig. 1 Neural Networks are compressed through pruning 

 

When employing this technique to address the problem, 

it is essential to consider the input and output 

dimensions of the different layers within the neural 

network. During the implementation of this method, it 

is necessary to ascertain the following: 

● The number of layers to eliminate 

● The appropriate size of your network 

● The quantity of neurons required in each layer 

 

Although there is no definitive guideline for answering 

these questions, several well-known strategies exist, 

which are outlined as Grid Search which uses Grid 

Search Cross-Validation to find the best number of 

neurons or layers to take out and trimming which is 

used to enhance our overfitted model, we can gradually 

remove nodes or connections until it performs well on 

new datasets, aligning with the model development 

process. This method mainly focuses on simplifying the 

neural network to lower the chances of overfitting. 

 

2. Data Augmentation.  

One effective method for mitigating overfitting is to 

expand the training dataset. As previously mentioned, 

a smaller training dataset allows the network to exert 

more influence over the data. To enhance the training 

dataset's size, specifically by increasing the number of 

images, data augmentation can be employed. This 

approach is a straightforward way to diversify the 

dataset and enlarge the training set. Various prevalent 

techniques for image augmentation encompass 

flipping, translation, rotation, scaling, brightness 

adjustment, and the introduction of noise, among 

others. In practical situations, acquiring large volumes 

of data can be labour-intensive and time-consuming, 

making the collection of new data an impractical 

solution. This technique is shown in the below diagram.  

 

 
Fig. 2 Data Augmentation Techniques 

 

Data augmentation facilitates the generation of multiple 

analogous images, which enables the network to learn 

from diverse representations of the same category of 

objects observed from various perspectives. This 

strategy not only enhances the dataset but also reduces 

the risk of overfitting. By incorporating additional data, 

the model is less prone to memorizing every sample, 

thereby encouraging improved generalization. The 

images obtained through Data Augmentation will 

feature a lion presented in various ways, including: 

● a rotated perspective, 

● an upside-down view, or 

● a cropped section highlighting the lion's mane. 

 

The application of the latest augmentation technique, 

known as cut-out, enables the network to associate the 

defining feature of male lions—their mane—with the 

corresponding class. Data augmentation primarily 

seeks to expand the training dataset, thereby reducing 

the likelihood of the network overfitting to the entire 

dataset, which consists of both original and augmented 

images. This process promotes better generalization. 

However, it may also lead to an increase in overall 

training loss, as the network may struggle to make 

accurate predictions for the augmented images. 

Consequently, the optimizer, the algorithm tasked with 

optimization, adjusts the network to enhance its ability 

to recognize generalized patterns within the training 

dataset. A visual representation of this discussion is 

provided below: 
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Before Data Augmentation: 

 
Fig. 3 Overfitting: high train-test gap 

Source: Stackexchange.com 

 

After Data Augmentation:  

 
Fig. 4 Optimal generalization: test exceeds training. 

Source: Stackexchange.com 

 

3. Weight Regularization.  

This approach to minimizing FIT overnight emphasizes 

the stabilization of congested networks by 

incorporating a "weight" parameter that regulates 

excessively high weight values within the network. As 

a rule, excessive models are problematic, as even a 

small change at the beginning can lead to significant 

variations in the output. Weight control deals with the 

fact that large weights impose punishment. This 

encourages the optimization algorithm to decrease 

these values, thereby enhancing network stability and 

overall performance. This method mustn't alter the 

network's architecture; only the weight values are 

modified. To prevent excessive adjustments, penalties 

or constraints are incorporated into the loss function. 

The concept of regularization acts as a framework for 

optimization algorithms, such as probabilistic gradient 

descent, which not only minimizes the difference 

between predicted and actual values but also aims to 

reduce the loss function. 

L1 Regularization (Lasso Regression): 

The cost function incorporates the total of the absolute 

values of the weights (Wj). This approach promotes 

sparsity within the model, leading to the elimination of 

certain weights and facilitating feature selection. 

Formula: Cost = Σ (yi - Σ xijWj)² + λ Σ |Wj| 

 

L2 Regularization (Ridge Regression): 

The cost function includes the sum of the squares of the 

weights (Wj²). This shrinks the weights towards zero 

but doesn't typically eliminate them entirely. It helps to 

reduce the impact of less important features. 

Formula: Cost = Σ (yi - Σ xijWj)² + λ Σ Wj² 

 

The above two equations represent L1 & L2 Weight 

Regularization Techniques.  The Regularized Equation 

consists of two key elements: 

(i) The initial element signifies the discrepancy 

between the actual target and the predicted target, 

commonly referred to as the loss function. 

(ii) The following component represents the weight 

penalty, commonly referred to as the regularization 

term. 

 

Types of Regularization:  

● L1 regularization: This technique incorporates a 

penalty on weights, which is determined by the 

aggregate of the absolute values of the weights 

present in the network. 

● L2 regularization: This method involves 

introducing a penalty on weights that is derived 

from the sum of the squares of the weights within 

the network.  

 

Table 1. Types of Regularization 

L1 Regularization L2 Regularization 

The penalty component 

relies on the absolute 

magnitudes of the model's 

parameters 

he penalty component relies 

on the squares of the model's 

parameters 

It results in sparse 

solutions, where certain 

parameters are reduced 

towards zero 

This leads to solutions that 

are not sparse, indicating 

that the model employs all 

available parameters. 

This method is 

particularly sensitive to 

outliers. . 

This approach is resilient to 

outliers 

It identifies a selection of 

the most significant 

features. 

This model incorporates all 

features into the model. 
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Optimization is non-

convex. 
Optimization is convex. 

The penalty component 

exhibits reduced 

sensitivity to correlated 

features. 

Additionally, the penalty 

term exhibits heightened 

sensitivity to correlated 

features 

The presence of numerous 

correlated features in 

high-dimensional datasets 

is beneficial. 

 It is particularly beneficial 

for high-dimensional 

datasets with numerous 

correlated features 

This approach is 

commonly referred to as 

Lasso regularization. 

This method is commonly 

referred to as Ridge 

regularization. 

L2 regularization is preferable for complex data, as it 

effectively captures the underlying patterns, while L1 

regularization is suitable for simpler datasets. 

Consequently, selecting the appropriate regularization 

method hinges on the specific problem we aim to 

address. 

 

4. Dropout.  

Dropout is a regularization method aimed at reducing 

overfitting in neural networks. In contrast to 

conventional techniques like L1 and L2 regularization, 

which modify the cost function, Dropout changes the 

structure of the network itself. Throughout the training 

process, it randomly disables a portion of the neurons, 

except for those in the output layer, during each 

iteration. This can also be achieved by assigning a 

probability known as the Dropout Rate (typically set at 

0.5) to each neuron, thereby temporarily removing 

them from the calculations. As training progresses, 

neurons with the highest probability of being dropped 

are removed, effectively creating a smaller network 

with each epoch. The variability in input values 

promotes a balanced strategy within the network, 

ensuring that it does not become excessively dependent 

on particular features, which in turn minimizes bias and 

noise. 

 
Fig. 5 Dropout: an easy method to stop overfitting in 

neural networks 

Source: towardsdatascience.com 

This approach is sometimes known as the Ensemble 

Technique for Neural Networks. It emulates the 

training of several neural networks by selectively 

disabling different clusters of neurons. Consequently, 

each of these networks may overfit in unique manners, 

and the overall impact of dropout is to mitigate 

overfitting. This technique to prevent overfitting has 

proven to reduce overfitting to a variety of problem 

statements that include,  

• Image classification,  

• Image segmentation,  

• Word embedding,  

• Semantic matching etcetera, etc. 

 

5. Early Stopping.  

Early stopping is a regularization approach employed 

in the training of models that utilize iterative methods 

such as Gradient Descent. Given that all neural 

networks rely on optimization algorithms such as 

gradient descent for learning, early stopping is relevant 

across various problems. This method aids in reducing 

overfitting by adjusting the model to more accurately 

correspond with the training data during each iteration. 

It is widely recognized that prolonged training can 

result in overfitting within neural networks. Initially, 

the model's performance on the test set improves, but 

beyond a certain threshold, further adjustments to 

enhance the model's fit to the training data can actually 

increase generalization error. Early stopping serves as 

a guideline for determining the optimal number of 

iterations to execute before the model starts to overfit. 

This concept is illustrated in the diagram below. 

 
Fig. 6 The model on the left is too simple, It overfits 

to the right. 

It is clear that after multiple iterations, the test error 

starts to increase while the training error keeps 

decreasing. This suggests that the model is undergoing 

overfitting. To mitigate this problem, we stop the 

training process as soon as overfitting is identified. The 
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network parameters at this point of early termination 

are considered the best configuration for the model. To 

further decrease the test error beyond this early 

stopping stage, the following strategies may be 

implemented. Decreasing the learning rate. Use a 

learning rate scheduler algorithm would be 

recommended.  

• Use a different Optimization Algorithm.  

• Use weight regularization techniques like L1 or L2 

regularization.  

III. CONCLUSION  

 

To summarize, in our detailed discussion, we delved 

into the critical concept of overfitting and its common 

occurrence within the realm of neural networks, 

emphasizing the need for effective strategies to counter 

this phenomenon during the training process. We 

discussed five essential strategies that have been shown 

to be effective in mitigating overfitting in neural 

networks: reducing model complexity to improve 

generalization, utilizing early stopping to avoid 

excessive training, harnessing data augmentation to 

expand the training dataset, applying regularization 

techniques to impose limits and prevent overly large 

parameter values, and strategically using dropouts to 

bolster the model's resilience. By comprehensively 

understanding and implementing these methods, 

practitioners of neural networks can significantly 

enhance the model's capacity to generalize to new, 

unseen data, thereby improving overall performance 

and dependability. Recognizing the importance of these 

techniques is vital, as they provide the groundwork for 

developing more robust and precise neural network 

models, ensuring that the issue of overfitting is 

effectively managed during the training process. 

Ultimately, adhering to these recommendations and 

continuously refining training methodologies will 

enable practitioners to navigate the intricacies of neural 

network training with greater assurance and skill, 

facilitating the advancement of more effective and 

influential AI applications across various fields. 
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