
CONFAB_2025 ISSN: 2349-6002

186509 © January 2025 | Volume 11 Issue 8 | IJIRT | www.ijirt.org 306

CONFAB_2025

Evaluating Methods to Prevent Overfitting in Neural

Networks Through Complexity Reduction

Chayan Bhattacharjee1, Pooja Amin2
1,2Department of Information Technology, Patkar Varde College

Abstract – Manages deep networks of various parameters

during the training and testing phase. As the number of

parameters increases, these networks acquire the ability

to adapt to different types of data records, contributing to

incredible strength. However, this ability can also make

neuronal networks sensitive, which are prone to over-

adaptation. Over--Several strategies can be used to tackle

the problem of adaptation. In this article, we will explore

various methods to prevent the model from limiting model

complexity, data expansion, weight normalization,

occurrence, and early stopping.

Keywords- Overfitting, Neural network generalization,

Regularization, Model simplification

I. INTRODUCTION

A wide range of parameters, from thousands to

millions, provides considerable flexibility to networks

of neurons, allowing them to absorb a wide range of

complex data records. This unique ability has advanced

in many areas that have pose challenges in the

traditional age of machine learning, such as image

detection, object detection, and natural language

processing. However, this important advantage can also

represent a potential drawback. Inadequate control over

the model's learning process can lead to over-

regulation. This is a scenario in which neuronal

networks are over-tuned to training data, hindering

their ability to generalize and create accurate

predictions. It is important to understand the underlying

causes of this problem and to investigate strategies to

ensure the effective design of neuronal networks.

In practice, the detection of over-adjusting in models

can be a major challenge. It is not uncommon for a

trained model to be used for production before you

realize the problem. The true validity of a model can

only be assessed when exposed to new data. Therefore,

during the training phase it is important to simulate the

actual conditions as closely as possible. To achieve this,

we recommend splitting the data record across three

segments. Training statements, development rates (also

known as cross-validation or holdout), and test sets.

The model is only learned from the training statement

during the holdout set to monitor progress and gain

knowledge for model optimization. The test set is

reserved for evaluation of the power of the model after

completing the training process. Using completely new

data allows for a fair assessment of the effectiveness of

the algorithm. Only then can we be confident that

decisions made during the learning process will lead to

more effective solutions. Historically, the data standard

employed a division of 60:20:20. In the age of big data,

where data records can contain millions of entries, these

fixed conditions are no longer suitable. Ultimately, the

corresponding split depends on the size of the data

record. For example, if millions of entries are available,

the 98:1:1 division could have a greater advantage. Our

development and test sets must be large enough to

ensure high reliability in the performance of the model.

Several approaches, such as recording additional data,

are widely used and consistently effective. In contrast,

methods such as forms of regularization require

differentiated understanding and considerable

expertise. Excessive and strict limitations in neural

networks can interfere with learning functions. Now

let's take some of the most frequently used strategies,

over adapt, and investigate the reasons for their

effectiveness.

II. METHODS

1. Constraining Model Complexity

A model trained with almost unlimited numbers of

examples ultimately reaches a point where its learning

ability is stable. Its capabilities are sufficient to

overcome the training dataset. By reducing the power

of the model, the likelihood of over adaptation can be

minimized. The complexity of the neural network

model that defines its capacity is determined by its

CONFAB_2025 ISSN: 2349-6002

186509 © January 2025 | Volume 11 Issue 8 | IJIRT | www.ijirt.org 307

CONFAB_2025

architecture, not only by its weights, but also the

number of nodes and layers. As a result, it is possible

to reduce the complexity of neuronal networks and

reduce over adaptation in two ways.

a. Change the network architecture (weight volume) to

adjust the complexity of the network.

b. Changes in network complexity (weight values) due

to variations in network parameters.

As a result, the network cannot remember all data

points because it has fewer parameters to learn, and

instead forces them to generalize. During the

implementation of this method, the number of layers to

eliminate the appropriate size of the network must be

decided.

Fig. 1 Neural Networks are compressed through pruning

When employing this technique to address the problem,

it is essential to consider the input and output

dimensions of the different layers within the neural

network. During the implementation of this method, it

is necessary to ascertain the following:

● The number of layers to eliminate

● The appropriate size of your network

● The quantity of neurons required in each layer

Although there is no definitive guideline for answering

these questions, several well-known strategies exist,

which are outlined as Grid Search which uses Grid

Search Cross-Validation to find the best number of

neurons or layers to take out and trimming which is

used to enhance our overfitted model, we can gradually

remove nodes or connections until it performs well on

new datasets, aligning with the model development

process. This method mainly focuses on simplifying the

neural network to lower the chances of overfitting.

2. Data Augmentation.

One effective method for mitigating overfitting is to

expand the training dataset. As previously mentioned,

a smaller training dataset allows the network to exert

more influence over the data. To enhance the training

dataset's size, specifically by increasing the number of

images, data augmentation can be employed. This

approach is a straightforward way to diversify the

dataset and enlarge the training set. Various prevalent

techniques for image augmentation encompass

flipping, translation, rotation, scaling, brightness

adjustment, and the introduction of noise, among

others. In practical situations, acquiring large volumes

of data can be labour-intensive and time-consuming,

making the collection of new data an impractical

solution. This technique is shown in the below diagram.

Fig. 2 Data Augmentation Techniques

Data augmentation facilitates the generation of multiple

analogous images, which enables the network to learn

from diverse representations of the same category of

objects observed from various perspectives. This

strategy not only enhances the dataset but also reduces

the risk of overfitting. By incorporating additional data,

the model is less prone to memorizing every sample,

thereby encouraging improved generalization. The

images obtained through Data Augmentation will

feature a lion presented in various ways, including:

● a rotated perspective,

● an upside-down view, or

● a cropped section highlighting the lion's mane.

The application of the latest augmentation technique,

known as cut-out, enables the network to associate the

defining feature of male lions—their mane—with the

corresponding class. Data augmentation primarily

seeks to expand the training dataset, thereby reducing

the likelihood of the network overfitting to the entire

dataset, which consists of both original and augmented

images. This process promotes better generalization.

However, it may also lead to an increase in overall

training loss, as the network may struggle to make

accurate predictions for the augmented images.

Consequently, the optimizer, the algorithm tasked with

optimization, adjusts the network to enhance its ability

to recognize generalized patterns within the training

dataset. A visual representation of this discussion is

provided below:

CONFAB_2025 ISSN: 2349-6002

186509 © January 2025 | Volume 11 Issue 8 | IJIRT | www.ijirt.org 308

CONFAB_2025

Before Data Augmentation:

Fig. 3 Overfitting: high train-test gap

Source: Stackexchange.com

After Data Augmentation:

Fig. 4 Optimal generalization: test exceeds training.

Source: Stackexchange.com

3. Weight Regularization.

This approach to minimizing FIT overnight emphasizes

the stabilization of congested networks by

incorporating a "weight" parameter that regulates

excessively high weight values within the network. As

a rule, excessive models are problematic, as even a

small change at the beginning can lead to significant

variations in the output. Weight control deals with the

fact that large weights impose punishment. This

encourages the optimization algorithm to decrease

these values, thereby enhancing network stability and

overall performance. This method mustn't alter the

network's architecture; only the weight values are

modified. To prevent excessive adjustments, penalties

or constraints are incorporated into the loss function.

The concept of regularization acts as a framework for

optimization algorithms, such as probabilistic gradient

descent, which not only minimizes the difference

between predicted and actual values but also aims to

reduce the loss function.

L1 Regularization (Lasso Regression):

The cost function incorporates the total of the absolute

values of the weights (Wj). This approach promotes

sparsity within the model, leading to the elimination of

certain weights and facilitating feature selection.

Formula: Cost = Σ (yi - Σ xijWj)² + λ Σ |Wj|

L2 Regularization (Ridge Regression):

The cost function includes the sum of the squares of the

weights (Wj²). This shrinks the weights towards zero

but doesn't typically eliminate them entirely. It helps to

reduce the impact of less important features.

Formula: Cost = Σ (yi - Σ xijWj)² + λ Σ Wj²

The above two equations represent L1 & L2 Weight

Regularization Techniques. The Regularized Equation

consists of two key elements:

(i) The initial element signifies the discrepancy

between the actual target and the predicted target,

commonly referred to as the loss function.

(ii) The following component represents the weight

penalty, commonly referred to as the regularization

term.

Types of Regularization:

● L1 regularization: This technique incorporates a

penalty on weights, which is determined by the

aggregate of the absolute values of the weights

present in the network.

● L2 regularization: This method involves

introducing a penalty on weights that is derived

from the sum of the squares of the weights within

the network.

Table 1. Types of Regularization

L1 Regularization L2 Regularization

The penalty component

relies on the absolute

magnitudes of the model's

parameters

he penalty component relies

on the squares of the model's

parameters

It results in sparse

solutions, where certain

parameters are reduced

towards zero

This leads to solutions that

are not sparse, indicating

that the model employs all

available parameters.

This method is

particularly sensitive to

outliers. .

This approach is resilient to

outliers

It identifies a selection of

the most significant

features.

This model incorporates all

features into the model.

CONFAB_2025 ISSN: 2349-6002

186509 © January 2025 | Volume 11 Issue 8 | IJIRT | www.ijirt.org 309

CONFAB_2025

Optimization is non-

convex.
Optimization is convex.

The penalty component

exhibits reduced

sensitivity to correlated

features.

Additionally, the penalty

term exhibits heightened

sensitivity to correlated

features

The presence of numerous

correlated features in

high-dimensional datasets

is beneficial.

 It is particularly beneficial

for high-dimensional

datasets with numerous

correlated features

This approach is

commonly referred to as

Lasso regularization.

This method is commonly

referred to as Ridge

regularization.

L2 regularization is preferable for complex data, as it

effectively captures the underlying patterns, while L1

regularization is suitable for simpler datasets.

Consequently, selecting the appropriate regularization

method hinges on the specific problem we aim to

address.

4. Dropout.

Dropout is a regularization method aimed at reducing

overfitting in neural networks. In contrast to

conventional techniques like L1 and L2 regularization,

which modify the cost function, Dropout changes the

structure of the network itself. Throughout the training

process, it randomly disables a portion of the neurons,

except for those in the output layer, during each

iteration. This can also be achieved by assigning a

probability known as the Dropout Rate (typically set at

0.5) to each neuron, thereby temporarily removing

them from the calculations. As training progresses,

neurons with the highest probability of being dropped

are removed, effectively creating a smaller network

with each epoch. The variability in input values

promotes a balanced strategy within the network,

ensuring that it does not become excessively dependent

on particular features, which in turn minimizes bias and

noise.

Fig. 5 Dropout: an easy method to stop overfitting in

neural networks

Source: towardsdatascience.com

This approach is sometimes known as the Ensemble

Technique for Neural Networks. It emulates the

training of several neural networks by selectively

disabling different clusters of neurons. Consequently,

each of these networks may overfit in unique manners,

and the overall impact of dropout is to mitigate

overfitting. This technique to prevent overfitting has

proven to reduce overfitting to a variety of problem

statements that include,

• Image classification,

• Image segmentation,

• Word embedding,

• Semantic matching etcetera, etc.

5. Early Stopping.

Early stopping is a regularization approach employed

in the training of models that utilize iterative methods

such as Gradient Descent. Given that all neural

networks rely on optimization algorithms such as

gradient descent for learning, early stopping is relevant

across various problems. This method aids in reducing

overfitting by adjusting the model to more accurately

correspond with the training data during each iteration.

It is widely recognized that prolonged training can

result in overfitting within neural networks. Initially,

the model's performance on the test set improves, but

beyond a certain threshold, further adjustments to

enhance the model's fit to the training data can actually

increase generalization error. Early stopping serves as

a guideline for determining the optimal number of

iterations to execute before the model starts to overfit.

This concept is illustrated in the diagram below.

Fig. 6 The model on the left is too simple, It overfits

to the right.

It is clear that after multiple iterations, the test error

starts to increase while the training error keeps

decreasing. This suggests that the model is undergoing

overfitting. To mitigate this problem, we stop the

training process as soon as overfitting is identified. The

CONFAB_2025 ISSN: 2349-6002

186509 © January 2025 | Volume 11 Issue 8 | IJIRT | www.ijirt.org 310

CONFAB_2025

network parameters at this point of early termination

are considered the best configuration for the model. To

further decrease the test error beyond this early

stopping stage, the following strategies may be

implemented. Decreasing the learning rate. Use a

learning rate scheduler algorithm would be

recommended.

• Use a different Optimization Algorithm.

• Use weight regularization techniques like L1 or L2

regularization.

III. CONCLUSION

To summarize, in our detailed discussion, we delved

into the critical concept of overfitting and its common

occurrence within the realm of neural networks,

emphasizing the need for effective strategies to counter

this phenomenon during the training process. We

discussed five essential strategies that have been shown

to be effective in mitigating overfitting in neural

networks: reducing model complexity to improve

generalization, utilizing early stopping to avoid

excessive training, harnessing data augmentation to

expand the training dataset, applying regularization

techniques to impose limits and prevent overly large

parameter values, and strategically using dropouts to

bolster the model's resilience. By comprehensively

understanding and implementing these methods,

practitioners of neural networks can significantly

enhance the model's capacity to generalize to new,

unseen data, thereby improving overall performance

and dependability. Recognizing the importance of these

techniques is vital, as they provide the groundwork for

developing more robust and precise neural network

models, ensuring that the issue of overfitting is

effectively managed during the training process.

Ultimately, adhering to these recommendations and

continuously refining training methodologies will

enable practitioners to navigate the intricacies of neural

network training with greater assurance and skill,

facilitating the advancement of more effective and

influential AI applications across various fields.

REFERENCE

[1] Srivastava Nitish, Hinton Geoffrey, Krizhevsky

Alex, Sutskever Ilya, & Salakhutdinov Ruslan.

(2014). Dropout: a simple way to prevent neural

networks from overfitting. Journal of Machine

Learning Research, 15(1), 1929–1958.

[2] Seitz, P., & Schmitt, J. (2023). Alternating

Transfer Functions to Prevent Overfitting in Non-

Linear Regression with Neural Networks. Journal

of Experimental and Theoretical Artificial

Intelligence.

[3] Iscen, A., Tolias, G., Avrithis, Y., & Chum, O.

(2018). A Simple Way to Prevent Neural Networks

from Overfitting. Proceedings of the IEEE

Computer Society Conference on Computer

Vision and Pattern Recognition, 15, 7642–7651

[4] Piotrowski, A. P., & Napiorkowski, J. J. (2013). A

comparison of methods to avoid overfitting in

neural networks training in the case of catchment

runoff modelling. Journal of Hydrology, 476, 97–

111.

[5] Wang, M., He, L., Lin, J., & Wang, Z. (2022).

Rethinking Adaptive Computing: Building a

Unified Model Complexity-Reduction Framework

With Adversarial Robustness. IEEE Transactions

on Neural Networks and Learning Systems, 33(4),

1803–1

