CONFAB 2025

ISSN: 2349-6002

Evaluating Methods to Prevent Overfitting in Neural

Networks Through Complexity Reduction

Chayan Bhattacharjee!, Pooja Amin?
L2Department of Information Technology, Patkar Varde College

Abstract — Manages deep networks of various parameters
during the training and testing phase. As the number of
parameters increases, these networks acquire the ability
to adapt to different types of data records, contributing to
incredible strength. However, this ability can also make
neuronal networks sensitive, which are prone to over-
adaptation. Over--Several strategies can be used to tackle
the problem of adaptation. In this article, we will explore
various methods to prevent the model from limiting model
complexity, data expansion, weight normalization,
occurrence, and early stopping.

Keywords- Overfitting, Neural network generalization,
Regularization, Model simplification

[. INTRODUCTION

A wide range of parameters, from thousands to
millions, provides considerable flexibility to networks
of neurons, allowing them to absorb a wide range of
complex data records. This unique ability has advanced
in many areas that have pose challenges in the
traditional age of machine learning, such as image
detection, object detection, and natural language
processing. However, this important advantage can also
represent a potential drawback. Inadequate control over
the model's learning process can lead to over-
regulation. This is a scenario in which neuronal
networks are over-tuned to training data, hindering
their ability to generalize and create accurate
predictions. It is important to understand the underlying
causes of this problem and to investigate strategies to
ensure the effective design of neuronal networks.

In practice, the detection of over-adjusting in models
can be a major challenge. It is not uncommon for a
trained model to be used for production before you
realize the problem. The true validity of a model can
only be assessed when exposed to new data. Therefore,
during the training phase it is important to simulate the
actual conditions as closely as possible. To achieve this,
we recommend splitting the data record across three

186509

segments. Training statements, development rates (also
known as cross-validation or holdout), and test sets.
The model is only learned from the training statement
during the holdout set to monitor progress and gain
knowledge for model optimization. The test set is
reserved for evaluation of the power of the model after
completing the training process. Using completely new
data allows for a fair assessment of the effectiveness of
the algorithm. Only then can we be confident that
decisions made during the learning process will lead to
more effective solutions. Historically, the data standard
employed a division of 60:20:20. In the age of big data,
where data records can contain millions of entries, these
fixed conditions are no longer suitable. Ultimately, the
corresponding split depends on the size of the data
record. For example, if millions of entries are available,
the 98:1:1 division could have a greater advantage. Our
development and test sets must be large enough to
ensure high reliability in the performance of the model.
Several approaches, such as recording additional data,
are widely used and consistently effective. In contrast,
methods such as forms of regularization require
differentiated understanding and
expertise. Excessive and strict limitations in neural
networks can interfere with learning functions. Now
let's take some of the most frequently used strategies,
over adapt, and investigate the reasons for their
effectiveness.

considerable

II. METHODS

1. Constraining Model Complexity

A model trained with almost unlimited numbers of
examples ultimately reaches a point where its learning
ability is stable. Its capabilities are sufficient to
overcome the training dataset. By reducing the power
of the model, the likelihood of over adaptation can be
minimized. The complexity of the neural network
model that defines its capacity is determined by its

© January 2025 | Volume 11 Issue 8 | JIRT | www.ijirt.org 306

CONFAB 2025

CONFAB 2025

architecture, not only by its weights, but also the
number of nodes and layers. As a result, it is possible
to reduce the complexity of neuronal networks and
reduce over adaptation in two ways.

a. Change the network architecture (weight volume) to
adjust the complexity of the network.

b. Changes in network complexity (weight values) due
to variations in network parameters.

As a result, the network cannot remember all data
points because it has fewer parameters to learn, and
instead forces them to generalize. During the
implementation of this method, the number of layers to
eliminate the appropriate size of the network must be
decided.

[]
. i] [] A L]
.".j — Pruning — — Quantizaton —
i o,
]]

Pruned Neural Network Compressed sparse
FP32) Neural Network
(INTE)

Dense Neural Network
(FP32)

Fig. 1 Neural Networks are compressed through pruning

When employing this technique to address the problem,
it is essential to consider the input and output
dimensions of the different layers within the neural
network. During the implementation of this method, it
is necessary to ascertain the following:

e The number of layers to eliminate

e The appropriate size of your network

e The quantity of neurons required in each layer

Although there is no definitive guideline for answering
these questions, several well-known strategies exist,
which are outlined as Grid Search which uses Grid
Search Cross-Validation to find the best number of
neurons or layers to take out and trimming which is
used to enhance our overfitted model, we can gradually
remove nodes or connections until it performs well on
new datasets, aligning with the model development
process. This method mainly focuses on simplifying the
neural network to lower the chances of overfitting.

2. Data Augmentation.

One effective method for mitigating overfitting is to
expand the training dataset. As previously mentioned,
a smaller training dataset allows the network to exert
more influence over the data. To enhance the training
dataset's size, specifically by increasing the number of
images, data augmentation can be employed. This
approach is a straightforward way to diversify the

186509

ISSN: 2349-6002

dataset and enlarge the training set. Various prevalent
techniques for image augmentation encompass
flipping, translation, rotation, scaling, brightness
adjustment, and the introduction of noise, among
others. In practical situations, acquiring large volumes
of data can be labour-intensive and time-consuming,
making the collection of new data an impractical
solution. This technique is shown in the below diagram.

0 0 50

Fig. 2 Data Augmentation Techniques

Data augmentation facilitates the generation of multiple
analogous images, which enables the network to learn
from diverse representations of the same category of
objects observed from wvarious perspectives. This
strategy not only enhances the dataset but also reduces
the risk of overfitting. By incorporating additional data,
the model is less prone to memorizing every sample,
thereby encouraging improved generalization. The
images obtained through Data Augmentation will
feature a lion presented in various ways, including:

e a rotated perspective,

e an upside-down view, or

e a cropped section highlighting the lion's mane.

The application of the latest augmentation technique,
known as cut-out, enables the network to associate the
defining feature of male lions—their mane—with the
corresponding class. Data augmentation primarily
seeks to expand the training dataset, thereby reducing
the likelihood of the network overfitting to the entire
dataset, which consists of both original and augmented
images. This process promotes better generalization.
However, it may also lead to an increase in overall
training loss, as the network may struggle to make
accurate predictions for the augmented images.
Consequently, the optimizer, the algorithm tasked with
optimization, adjusts the network to enhance its ability
to recognize generalized patterns within the training
dataset. A visual representation of this discussion is
provided below:

© January 2025 | Volume 11 Issue 8 | JIRT | www.ijirt.org 307

CONFAB 2025

CONFAB 2025

Before Data Augmentation:

Model accuracy | Optimizer=Adamax | Img Size=128x128px
093

—— Train accuracy
Test accuracy

0.8

041

0z

D 100 200 300 400 500
Epoch
Fig. 3 Overfitting: high train-test gap
Source: Stackexchange.com

After Data Augmentation:

Model accuracy | Optimizer=Adamax | Img Size=128x128px

10 098
093

— Train accuracy

Test accuracy W

08

Accuracy

0.4

0.z
|

o 100 200 300 200 500
Epoch

Fig. 4 Optimal generalization: test exceeds training.
Source: Stackexchange.com

3. Weight Regularization.

This approach to minimizing FIT overnight emphasizes
the stabilization of congested networks by
incorporating a "weight" parameter that regulates
excessively high weight values within the network. As
a rule, excessive models are problematic, as even a
small change at the beginning can lead to significant
variations in the output. Weight control deals with the
fact that large weights impose punishment. This
encourages the optimization algorithm to decrease
these values, thereby enhancing network stability and
overall performance. This method mustn't alter the
network's architecture; only the weight values are
modified. To prevent excessive adjustments, penalties
or constraints are incorporated into the loss function.
The concept of regularization acts as a framework for
optimization algorithms, such as probabilistic gradient
descent, which not only minimizes the difference
between predicted and actual values but also aims to

ISSN: 2349-6002

L1 Regularization (Lasso Regression):

The cost function incorporates the total of the absolute
values of the weights (Wj). This approach promotes
sparsity within the model, leading to the elimination of
certain weights and facilitating feature selection.
Formula: Cost = X (yi - Z xijWj)* + L Z |Wj|

L2 Regularization (Ridge Regression):

The cost function includes the sum of the squares of the
weights (Wj?). This shrinks the weights towards zero
but doesn't typically eliminate them entirely. It helps to
reduce the impact of less important features.

Formula: Cost =X (yi - Z xijWj)* + AL £ Wj?

The above two equations represent L1 & L2 Weight
Regularization Techniques. The Regularized Equation
consists of two key elements:

(i) The initial element signifies the discrepancy
between the actual target and the predicted target,
commonly referred to as the loss function.

(i1) The following component represents the weight
penalty, commonly referred to as the regularization
term.

Types of Regularization:

e [1 regularization: This technique incorporates a
penalty on weights, which is determined by the
aggregate of the absolute values of the weights
present in the network.

e [2 regularization: This method involves
introducing a penalty on weights that is derived
from the sum of the squares of the weights within
the network.

Table 1. Types of Regularization

L1 Regularization L2 Regularization

The penalty component

. he penalty component relies
relies on the absolute penalty b ;
. .| onthe squares of the model's
magnitudes of the model's
parameters

parameters

It results in sparse | This leads to solutions that
solutions, where certain | are not sparse, indicating
parameters are reduced | that the model employs all
towards zero available parameters.
This method is

particularly sensitive to

This approach is resilient to

. outliers
outliers. .

It identifies a selection of . .
This model incorporates all

reduce the loss function. the —most significant | o e model.
features.
186509 © January 2025 | Volume 11 Issue 8 | IJIRT | www.ijirt.org 308

CONFAB 2025

CONFAB 2025

Optimization is non- T
Optimization is convex.
convex.

The penalty component | Additionally, the penalty

exhibits reduced | term exhibits heightened
sensitivity to correlated | sensitivity to correlated
features. features

The presence of numerous | It is particularly beneficial
correlated features in | for high-dimensional
high-dimensional datasets | datasets with numerous
is beneficial. correlated features

This approach is | This method is commonly
commonly referred to as | referred to as Ridge
Lasso regularization.
L2 regularization is preferable for complex data, as it
effectively captures the underlying patterns, while L1
regularization is suitable for simpler datasets.

regularization.

Consequently, selecting the appropriate regularization
method hinges on the specific problem we aim to
address.

4. Dropout.

Dropout is a regularization method aimed at reducing
overfitting in neural networks. In contrast to
conventional techniques like L1 and L2 regularization,
which modify the cost function, Dropout changes the
structure of the network itself. Throughout the training
process, it randomly disables a portion of the neurons,
except for those in the output layer, during each
iteration. This can also be achieved by assigning a
probability known as the Dropout Rate (typically set at
0.5) to each neuron, thereby temporarily removing
them from the calculations. As training progresses,
neurons with the highest probability of being dropped
are removed, effectively creating a smaller network
with each epoch. The variability in input values
promotes a balanced strategy within the network,
ensuring that it does not become excessively dependent
on particular features, which in turn minimizes bias and
noise.

a) Standard Neural Net (b) After applying dropout.

Fig. 5 Dropout: an easy method to stop overfitting in
neural networks
Source: towardsdatascience.com

186509

ISSN: 2349-6002

This approach is sometimes known as the Ensemble
Technique for Neural Networks. It emulates the
training of several neural networks by selectively
disabling different clusters of neurons. Consequently,
each of these networks may overfit in unique manners,
and the overall impact of dropout is to mitigate
overfitting. This technique to prevent overfitting has
proven to reduce overfitting to a variety of problem
statements that include,

* Image classification,
* Image segmentation,
* Word embedding,

* Semantic matching etcetera, etc.

5. Early Stopping.

Early stopping is a regularization approach employed
in the training of models that utilize iterative methods
such as Gradient Descent. Given that all neural
networks rely on optimization algorithms such as
gradient descent for learning, early stopping is relevant
across various problems. This method aids in reducing
overfitting by adjusting the model to more accurately
correspond with the training data during each iteration.
It is widely recognized that prolonged training can
result in overfitting within neural networks. Initially,
the model's performance on the test set improves, but
beyond a certain threshold, further adjustments to
enhance the model's fit to the training data can actually
increase generalization error. Early stopping serves as
a guideline for determining the optimal number of
iterations to execute before the model starts to overfit.
This concept is illustrated in the diagram below.

Error

Best Testing Error
Complexity

Training Error
1
1 Model Complexity

Fig. 6 The model on the left is too simple, It overfits
to the right.
It is clear that after multiple iterations, the test error
starts to increase while the training error keeps
decreasing. This suggests that the model is undergoing
overfitting. To mitigate this problem, we stop the
training process as soon as overfitting is identified. The

© January 2025 | Volume 11 Issue 8 | JIRT | www.ijirt.org 309

CONFAB 2025

CONFAB 2025

network parameters at this point of early termination
are considered the best configuration for the model. To
further decrease the test error beyond this early
stopping stage, the following strategies may be
implemented. Decreasing the learning rate. Use a
learning rate scheduler algorithm would be
recommended.

* Use a different Optimization Algorithm.

* Use weight regularization techniques like L1 or L2

regularization.
III. CONCLUSION

To summarize, in our detailed discussion, we delved
into the critical concept of overfitting and its common
occurrence within the realm of neural networks,
emphasizing the need for effective strategies to counter
this phenomenon during the training process. We
discussed five essential strategies that have been shown
to be effective in mitigating overfitting in neural
networks: reducing model complexity to improve
generalization, utilizing early stopping to avoid
excessive training, harnessing data augmentation to
expand the training dataset, applying regularization
techniques to impose limits and prevent overly large
parameter values, and strategically using dropouts to
bolster the model's resilience. By comprehensively
understanding and implementing these methods,
practitioners of neural networks can significantly
enhance the model's capacity to generalize to new,
unseen data, thereby improving overall performance
and dependability. Recognizing the importance of these
techniques is vital, as they provide the groundwork for
developing more robust and precise neural network
models, ensuring that the issue of overfitting is
effectively managed during the training process.
Ultimately, adhering to these recommendations and
continuously refining training methodologies will
enable practitioners to navigate the intricacies of neural
network training with greater assurance and skill,
facilitating the advancement of more effective and
influential Al applications across various fields.

REFERENCE
[1] Srivastava Nitish, Hinton Geoffrey, Krizhevsky

Alex, Sutskever Ilya, & Salakhutdinov Ruslan.
(2014). Dropout: a simple way to prevent neural

186509

(2]

[4]

[3]

ISSN: 2349-6002

networks from overfitting. Journal of Machine
Learning Research, 15(1), 1929—-1958.

Seitz, P., & Schmitt, J. (2023). Alternating
Transfer Functions to Prevent Overfitting in Non-
Linear Regression with Neural Networks. Journal
of Experimental and Theoretical Artificial
Intelligence.

Iscen, A., Tolias, G., Avrithis, Y., & Chum, O.
(2018). A Simple Way to Prevent Neural Networks
from Overfitting. Proceedings of the IEEE
Computer Society Conference on Computer
Vision and Pattern Recognition, 15, 7642-7651
Piotrowski, A. P., & Napiorkowski, J. J. (2013). A
comparison of methods to avoid overfitting in
neural networks training in the case of catchment
runoff modelling. Journal of Hydrology, 476, 97—
111.

Wang, M., He, L., Lin, J., & Wang, Z. (2022).
Rethinking Adaptive Computing: Building a
Unified Model Complexity-Reduction Framework
With Adversarial Robustness. IEEE Transactions
on Neural Networks and Learning Systems, 33(4),
1803-1

© January 2025 | Volume 11 Issue 8 | JIRT | www.ijirt.org 310

CONFAB 2025

