© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

Enhancing Academic Grade Prediction Through Bat

Algorithm- Driven Ensemble Learning Technique

Anil Purushothaman', Varsha Jotwani?

2 Department of Computer Science & Information Technology, Rabindra Nath Tagore University, Bhopal

Abstract—In this paper, we present an ensemble
framework utilizing the Bat Algorithm for predicting
the student academic performance in two parts of the
course, that is at 40% and 80% course completion. The
model achieves an optimal feature selection using the
Bat Algorithm and the bagging ensemble integrates
four distinct classification algorithms: K-Nearest
Neighbors, Support Vector Machine, XGBoost, and
Long Short-Term Memory LSTM. We evaluate the
addition of PCA to this ensemble, considering the trade-
off between dimensionality reduction and classification
performance.

Index Terms—Academic performance prediction, Bat
Algorithm, ensemble learning, multi-class classification,
feature selection, higher education.

I. INTRODUCTION

Growing digitization of academic records and
students’ learning footprints have entirely redefined
the way institutions consider academic planning,
optimization, and support. Predictive analytics in
education, including the ones aimed at predicting the
academic outcome of students, has great potential in
supporting proactive data-driven decisions. Education
predictive models are actively utilized by academic
institutions for identifying early alarms signs of
academic underperformance, addressing them timely,
and thus, increasing the number of students who
graduate. Although binary classification models to
predict the risk of dropping out have been thoroughly
investigated, multiclass prediction models that
produce accurate final academic performance grades
are a challenging and underperforming problem. It is
tough because various academic and demographic
issues play a significant role in student performance
dynamics at different stages of their academic
processes [1].

A. Background and motivation
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With the increasing amount of educational data and
recent advances in machine learning techniques and
data analytics, predicting students’ final performance
has become a trend among educators, researchers,
and academic institutions. Building intelligent
systems that can identify students at risk of failing a
course can provide timely measures such as
counselling, additional instruction, or policy changes,
leading to improved student success and institutional
effectiveness. However, the problem is much more
complex. Students’ final success is not based on the
scores of a single exam or evaluation but rather on
various assessments throughout the course [2].
Importantly, long before the final grade is known,
the interim exam’s scores expressed as
percentages of the course grade, which quantizes a
student’s academic trajectory, which will likely
influence the final out of the course based on the
student’s past performance. Thus, not only is
predicting the final course label based on the early-
stage exam data a technical obstacle, but it is also an
educational ~ necessity.  Nonetheless,  several
challenges persist:

- the multidimensional nature of student data —
demographic, academic, behavioural, and
engagement features.

- the unique temporal structures of assessment data
and non- linear relationships with the final grade.

- the severe class imbalance in the grade label — some
grades (eg. Fail and Third Division) are
underrepresented in the dataset, yielding biased
predictions [3].

- Some features are not relevant to the grading labels
or even weakly correlated — which worsens the
generalization of the machine learning models, and

- the lack of clarity of the predictive algorithms —
black-box nature of deep learning models.

In this context, ensemble models along with heuristic
meta- learning feature selection methods have shown
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promise [4]. This paper continues this direction by
utilizing the Bat Algorithm [5] for customized
optimization of feature selection, focused solely on
preserving the assessment features of the test scores
from major checkpoints in the course. By integrating
this with a bagging ensemble of SVM, KNN, and
LSTM models, this paper aims to increase the
accuracy and reliability of predicting academic
grades.

B. Research gaps and challenges

Despite the extensive research in educational data
mining and decent achievement in student
performance prediction, current models are
overwhelmed by a strong assumption of binary
outcomes and hence do not scale to more
comprehensive multicategory grading systems as
common in higher education scenarios [6]. Prior
works typically target predicting a binary outcome
such as whether a student passes the final exam or
eventually drops out. This turns the problem of
tracking a student’s lifetime educational progresses
into an overly simplistic binary classification task.
Furthermore, the existing prediction models either
ignore early-life assessments or do not correctly
harness

these fanciful measurements to estimate the final
student performance.

Besides, the feature selection process is another
critical bottleneck to building a more potent
performance model: current approaches based on
tradition require fine-grained tuning and lacks focus
on the relationship between features. Even modern
methods such as Metaheuristic, including Genetic
Algorithms, or Grey Wolf Optimization for feature
selection, comes with limitations when having local
optimum trap or premature convergence [7].
Moreover, few models provide effective predictive
insights at multiple stages of a student’s academic
journey [8]. Assessment metrics at 40% and 80%
course completion stages, while valuable for real-
time intervention, are seldom retained and
emphasized during feature optimization. This leads to
models that either underperform or lack
interpretability when applied for proactive academic
planning.

In addition, very few models possess the capability to
generate effective prediction throughout a student’s
academic adventure [9]. Assessment metrics created
at 40% and 80% completion stages of a course may

IJIRT 186551

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY

be drastically pointful in real-time invasion but are
seldom held for by feature optimization; the models
thus suffer from both inefficiency and lack of
interpretability at the adoption stage for ahead-of-
time academic planning. A complete predictive
structure should hence have the capability to
accurately predict multi-channel grade distributions,
retain course- specific assessment-based features,
build strong and adaptive feature optimization, and
generalize across batches of learners and subject
categories in higher education.

C. Objectives and Contributions

This study advances an ensemble-based predictive
model that combines a Bat Algorithm-based feature
selector with a bagged ensemble of the SVM, K-NN,
and LSTM classifiers. The model
prediction mechanism developed for the Multiclass

is a novel

prediction of final academic grades based on early
assessment data when combining with other student
attributes. The contributions of this research are:
Developing a Bat Algorithm-based feature selector,
this algorithm has been significantly altered by giving
priority to asgl and intl features and optimizing the
remaining feature space to minimize redundancy and
maximize predictive impact [10].

Creating a Hybrid Ensemble Model that merges
SVM, which utilizes decision boundaries, K-NN,
which uses local similarity, and LSTM, which uses
temporal learning, is wrapped in a bagging structure
for strong generalization.

Comprehensive Assessment of two academic stages
is provided: this study examines students at 40% and
80% completion of their course, allowing the
relative strength of assessment data at various
periods of the learning method to be analyzed.
Applying the model on a true, multi-batch higher-
education dataset: By using real-world data, the
model confirms both applicability and scalability
while also justifying correctness in the presence of
true academic information.

II. RELATED WORK

In recent years, there has been an array of studies that
have focused on the prediction of academic
performance. The trend has been fuelled by the
increased accessibility of educational data and the
development of machine learning techniques. Two of
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the most popular ones, ensemble learning models,
and bio-inspired feature optimization algorithms aim
at enhancing the accuracy of predictions, decreasing
the variance of the model, and addressing complex
and non-linear relationships.

A. Ensemble Learning in Academic Prediction
Further, ensemble models are group models, bagging,
boosting or stacking that combine many base
classifiers to improve upon robustness and
generalization. Numerous academia have confirmed
the competitiveness of ensemble models with a
simple classifier in predicting the grade’s future
value, dropout risk possibility or children’s success
possibility or failure.

For example, a study proposed a model that includes
GBoost, AdaBoost, and SVM for the education grant
outcomes prediction [10]. They built the model using
high accuracy in multiclass prediction. Another
example is a multi-split bagging ensemble model
presented specially optimized for education data
mining [11]. Currently, the stacking strategy has also
been actively used concerning the previous model,
and the positive outcomes are among academia have
been received [12][13]. The same variant of a hybrid
model was used in one study [14]. These authors
applied stacking based on the well-known methods
Random Forest and XGBoost for at-risk students’
detection.

The same voting-based ensembles and classifier
fusion have been mentioned. The dissimilar fusion
approach combining MultiBoost and Multilayer
Perceptron has shown high precision results
according to another study [15]. Some of the
identifiable studies have demonstrated the possibility
of using simpler ensembles for large dataset and,
inversely, more complex ensembles for a small
dataset [16][17].

B. Feature Selection in Academic Data Mining
Feature selection is a key aspect of predictive
modeling that reduces dimensionality by filtering
irrelevant or redundant inputs. Filter methods such as
Chi-square and information gain are commonly used
[18][19], but they fail to capture the interaction
between different features.

Wrapper and embedded methods like RFE and
LASSO regression provide a more accurate output,
but they are computationally time-consuming in the
case of large educational datasets [20][21]. Several
scholars have applied RFI and Boruta to academic

IJIRT 186551

forecasting tasks [22].

However, given the constraints of conventional
methods, there is a growing body of research that
employs metaheuristic systems for high-dimensional
educational datasets.

C. Bio-Inspired Metaheuristic Optimization
Techniques Feature subset optimization using
metaheuristic  algorithms based on  natural
processes has shown considerable potential. The
former feature, Grey Wolf Optimization [23][24],
has also been utilized in assessing student
performance datasets, with appropriate efficacy. A
study

[25] compared various approaches available for
selection of attribute acquisition, which revealed that
evolutionary ones outperformed customary methods.
However, algorithms like GWO and Particle Swarm
Optimization are susceptible to either premature
convergence or failure to optimize features of local
minima. To treat for the phenomenon, [26] suggested
a chaotic- diffusion-enhanced GWO for feature
selection, while [27] implemented a greedier variant
that inevitably led to failure to abide by a strict
hierarchy rule.

Nevertheless, research demonstrate that the regular
limitation of these studies concerns the neglect of
manual constrictions, such as the preservation of
formative evaluation metrics.

D. Bat Algorithm in Optimization and Education
Arguably one of the most promising metaheuristics
algorithms to leverage this dynamism is the Bat
Algorithm. Although the algorithm was later inspired
the echolocation behavior of the microbats, the
dynamic  balance between exploration and
exploitation has shown robust results in various areas
such as engineering optimization [5], medical
diagnostics [28], and power system tuning [29].
Nonetheless, there have not been many studies that
have explored the applicability of BA in the
educational field.

The limited number of educational works primarily
used BA for developing examination timetables or
optimizing outer adjusts in e-learning areas [30][31].
There have not been attempts to use the BA for
academic performance prediction, likely due to the
lack of study regarding the feature optimization
capability and tendency to ignore the domain-specific
features such as mid-course assessments in
conventional BA implementation.
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This paper attempts to bridge this gap by proposing a
modified Bat Algorithm in a feature-level for
prediction. It is then coupled with an ensemble
model, enabling significantly better predictive power
than existing multiclass grading prediction using
GWO-based approach [24].

[II. METHODOLOGY

The framework proposed for the prediction of
academic performance is depicted as a maximum
fusion model that embraces the power of machine
learning in all spheres of data science techniques
combined with a meta-heuristics- based feature
selection approach. The proposed model is a multi-
stage pipeline, starting from preprocessing of data,
employing the novel Bat Algorithm customized for
feature selection, and includes the ensemble of
classifiers using the bagging algorithm, specifically
Support Vector Machines, k- Nearest Neighbours,
and Long Short-Term Memory networks. Each stage
of the proposed academic pipeline is in coherence
with the considerations of multiclassification
difficulties, the nature of the high-dimensional
student data, and the requirement of phase-aware
prediction due to metric readings availability at 40%
and 80% course completion. The process guarantees
that important academic feature indicators are
preserved while the irrelevant or the repeated ones
are removed to improve the model’s precision,
generalization, and interpretation. This chapter
presents the details of each step of the proposed
framework, including the procedure of encoding and
normalization of the data, and the feature selection
and the assessment of the training and testing
approaches.

A. Data Collection and Preprocessing

The dataset for this study was obtained from the
Institute of Professional Education and Research in
India. The database covers the academic entries for
2017 to 2021 batches and was conserved from an
earlier preliminary phase of this research [24].

Table 1: Summary of Raw and Processed Dataset

Description Value

Total rows in raw dataset 10,162

subject-wise entries removed (Spcl not 1,636
taken)
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subject-wise entries removed (dropouts) 760
Missing/NA entries removed 23
Valid subject-level rows retained 7,723
Approx. unique students 351
Total features (before selection) 26
Target classes A,B,C,D

This dataset includes details of 462 students of an
Undergraduate college in India. Summary of the data
is shown in Table 1. As much as any student read
around 18 of the 22 subjects possible during a 3-year
college degree, the raw data was structured at the
subject level, resulting in 10162 lines overall where
each row serves as the entry of a student’s review of
the subject.

Table 2: Features in Dataset

Feature Name Type Description

Gender Categorical |Student gender (encoded

as 0/1)
Board Categorical | Board of secondary
education
Subject Code | Categorical Encoded subject
identifier

City Categorical City of residence

asgl Numeric Assessment at 40%
course progress
intl Numeric Assessment at 80%

course progress

Attendance | Categorical | Used for filtering (valid,
dropout, etc.)

Final Grade |Categorical |Target label (A, B, C, D);
A — First Division,
B — Second Division,
C — Third Division,
D - Fail

For this purpose, many preprocessing steps were
requisite to design the data for modeling. First,
irregular records were detected: all records denoted
as “dropout” and “Spcl not taken” in the Attendance
column were filtered out. The previous records were
dismissed, recording 760 dropouts, 17 with various
patterns not identified for scholars, 1636 were
discarded, and the records labeled “NA” in some
critical lines. The result of these filtering
requirements was a dataset of 7723 valid entries,
equivalent to approximately 351 students. Table 2
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summarizes the key features in the dataset used in
this study.

B. Feature Construction and Encoding

Notably, demographic and academic features,
including gender and board of education and subject
codes and city of residence, were also encoded via
labels to numeric form. Accordingly, mid-semester
evaluations, including first assignment asgl and
internal test intl, which corresponds to 40% and 80%
of the course, respectively, were retained as key stage
indicators. Crucially, the final grade, the target, was
then label-converted from letter grades — {A, B, C,
D} — to numeric class labels, enabling multi-class
classification. Table 3 presents the grade-wise
summary of records in the data. Stages-wise Dataset
Creation: As previously mentioned, two separate
training sets were established to evaluate
performance at the following academic progress
stages:

Table 3: Class Distribution by Grade

Grade Encoding | Number of Records
A - First Div 1 5997
B - Second Div 2 982
C - Third Div 3 298
D - Fail 4 445

The training set at 40% stage: consisted of the
features available post the first internal assessment —
asgl — thus implying early-stage predictors.

The 80% stage training set, including asgl and intl,
serve to reflect mid-to-late academic progress before
the final exam. Table 4 presents the summary of the

Following their creation, each training set was
independently normalized via min-max scaling,
converting the feature values to the (0, 1) array. This
technique guarantees a consistent contribution factor
to the model during the training phase.

As evident from Table 3, the file is seriously
minority- imbalanced, with the proportion of First
Division labels representing a tremendous majority.
This imbalance may skew learning algorithms
towards predicting the majority class, limiting the
model’s ability to generalize across different target
labels. Therefore to address this, an appropriate
training phase balancing was executed. For each split
within the ensembles structure incarnation, the
identical number of records was randomly sampled
for each class based on the smallest class. This
strategy ensured that the model trained uniformly on
all target categories, providing a comprehensive
multi-class performance evaluation.

C. Feature Selection Using Bat Algorithm

Although the total feature set contained 26 academic
and demographic features, these features were not
equally important for the prediction accuracy.
Consequently, to filter out irrelevant features and
features that would not contribute to the model’s
accuracy, the Bat Algorithm was employed as an
intelligent feature selection step within the pipeline.
This enabled dimensionality reduction and left only
relevant or non-redundant features required for
critical assessment.

Feature selection is a vital component that
significantly contributes to the quality of the
classifier, its complexity, and computational

two-stage assessment and the features available. efficiency.
Table 4: Dataset Versions for Model Training
Dataset Version Assessment Stage Features Included Target Variable Records Used
Dataset-40 40% Completion Demographics + asgl Final Grade ~7,723
Dataset-80 80% Completion Demographics + asgl + intl Final Grade ~7,723

As a result, the input datasets for 40% and 80%
models were preprocessed rigorously enough and
resulted in well-

structured, valid datasets for high-performance
training and evaluation.

More specifically, the number of features for high-
dimensional educational data must be reduced, and
feasible characteristics should be selected to develop
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and evaluate the Prediction model. The Bat
Algorithm was used as a metaheuristic aiming to
choose suitable data attributes both for 40% stage and
at 80% course completion stage.

The Bat Algorithm was based on microbats’
echolocation system to optimize successful foraging,
enabling estimation of prey distance and direction
through echolocations. In optimization terms, each
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individual bat is a potential feature subset and the
main goal is to find a subset that maximizes the
classification performance while minimizing the
feature count.

Each bat is represented as a binary string in the
population, 1 if the feature is selected and 0
otherwise. First, generate a random population to
have diversity in the initial solution. Parameters
involved in the algorithm are determined according to
preliminary tests are population size, frequency
range, loudness, and pulse rate of emission that
parametrize the trade-off the relationship between
exploration and exploitation.

The fitness is calculated according to a weighted sum
of the classification accuracy and the number of
selected features. The fitness function is maximized,
and the selection number of features is negatively
handled to avoid an increased number of features,
which likely cause overfitting. Formally:

Fitness = « x Accuracy — f x

(No. of Selected features)/(Total Features) (1)

where a and P are empirically determined weighting
factors to maintain a trade-off between predictive
performance and feature subset size.

In each iteration, the bats update their velocities and
positions using frequency-tuned motion equations:

fi = fmin + (fmax - fmin) X Tand() (2)
vt =yt + (xF] = Xpest) X fi 3)
xt = xt !+t 4

i i i
where Xpes; is the position of the current best
solution. Loudness and pulse emission rate are
updated dynamically to fine-tune local exploitation
as the algorithm progresses [5].

Finally, a local search is employed in the
surroundings of the best solutions through random
walks if the random number that has been produced
is less than the bat’s pulse emission rate. If the
solutions improve the fitness function, the solutions
are accepted with a small probability close to 0 or
high when selecting a solution, resulting in rarely
getting out of the local optima.

Stopping consists of the number of iterations and
output. The algorithm is terminated if the maximum
number of iterations is surpassed, or the convergence
of the fitness values is seen. The output of the method
is the optimal feature subset in each stage, i.e., 40%
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and 80% of the datasets, respectively, which is
transferred to the ensemble classification phase.

D. Rationale for Using Bat Algorithm

Bat Algorithm is more flexible than the Grey Wolf
Optimizer that we used in our previous work [24] for
it offers a combination of global and local search and
a flexible exploration of the search space determined
by the parameters of loudness and pulse rates which
can be adaptively changed. The latter guarantees that
BA can be tuned to datasets with highly diverse
patterns of relevance for the features, such as multi-
stage student performance. Additionally, the
movement controlled by frequency allows for more
adjustment in the feature subset refinement process.

Dataset
(40% or 80% stage)

Initialize Bat Population
(Random Feature Subsets)

Fitness Evaluation
(Accuracy & Feature Count penalty)

Update Frequency, Velocity,
Position of Bats

Local Search around Best Solution
(Random Walk)

Update Loudness & Pulse Rate
(Adaptive Exploration/Exploitation)

Check Stopping Criteria

(Max Iterations or Convergence)

Output Optimal Feature Subset
Figure 1: Application of Bat Algorithm on dataset

E. Ensemble Classification Framework

After the process of feature selection using the Bat
Algorithm, the reduced feature subsets for both
stages of 40% and 80% academic progress are
utilized as an input to an ensemble classification
framework to combine the merits of multiple base
learners and eliminate their shortcomings using
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majority voting aggregation.

This ensemble, by design, is a bag-of-learners built
upon the concept of meta-learning; namely, multiple
classifiers are trained on bootstrapped samples of the
feature subset. Specifically, the proposed model
consists of the following base learners: Support
Vector Machine, given its effectiveness in high-
dimensional feature spaces, and strong generalization
ability; K-Nearest Neighbors, owing to its simplicity
and ability to identify local patterns; Long Short-
Term Memory Network, if there are sequential or
dependent patterns in a student’s performances with
each assessment; simple Decision Tree model for
interpretability and the possibility to family with non-
linear relationships; Extreme Gradient Boosting, a
high-performing model on tabular data that can
anticipate intricate patterns. Each of these multi-
class classifiers is implemented as it was during a
preliminary evaluation, receiving balanced bias-
variance trade-offs.

As shown in figure 2, the ensemble training process
involves the following steps:

Bootstrapping: The BA-chosen feature dataset is
sample drawn multiple times at random with
replacement.

Classifier training: The base learners are
independently trained on these bootstrapped datasets.
Probability estimation: Each trained classifier outputs
predicted class probabilities for the test instances.
Majority voting: The final predicted class is obtained
through simple majority voting across all the base
learners.

F. PCA-Based Variant

Apart from the BA-selected feature ensemble, an
alternative PCA-based ensemble was defined as the
comparison branch. The PCA transformation is
applied to the BA-selected features where new
uncorrelated learning features are produced. This
may ultimately reduce redundancy and noise in the
data, which might increase classifier performance on
data with an elevated noise level or lower the number
of samples. The PCA wvariant utilizes the same
training and voting methodology as the standard
ensemble.

Firstly, the evaluation protocol followed before
assessing the baseline and PCA-based ensemble’s
respective variant involved 10-fold based cross-
validation on the training phase for further
independent testing on the test phase, and
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factors like accuracy, precision, and recall F-1
score were
considered for both variant’s comparison.

G. Advantages of the Proposed Ensemble

The proposed ensemble version has several
advantages. The primary one is the increased
likelihood of accolade varied decision boundaries due
to the use of heterogeneous classifiers. Bagging also
trades many biases for reducing the variance.
Furthermore, by performing feature selection with
Bat Algorithm, each base learner works with a
feature set tailored primarily for predictive relevance
for the learner, thus increasing the accuracy and
efficiency.

Optimal Feature Subset
(from BA Feature Selection)

Bootstrapped Sampling

PCA Variant Path
(Optional Dimensionality
Reduction)

Base Classifiers
(SVM, KNN, LSTM, DT, XGBoost)

Class Probability Outputs

Majority Voting
(Aggregation of Predictions)

Final Predicted Class

Figure 2: Ensemble Training Process for Grade
class prediction

IV. RESULTS AND DISCUSSION

This section presents the experimental results of the
one proposed in the study, namely Bat Algorithm -
based ensemble classification model, used to predict
the final grades of students at two stages of academic
progress - 40% and 80% course completion. The
experimental outputs are analyzed considering
multiple classification performance indicators,
including the comparisons with the PCA- enhanced
alternative of the BA-based ensemble.

The experiments were executed via MATLAB
R2016a on the system operating on the Intel Core i7-
12700H processor

2.3Ghz base, 4.7 GHz turbo, 14 cores, 16 GB DDRS5
RAM,
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512 GB PCle NVMe SSD, and Windows 11 OS. The
hardware was equipped with a NVIDIA GeForce
RTX 3050 GPU.

A. Performance Metrics

The multiple standard classification metrics
leveraged in evaluation for a comprehensive
performance measure are: Accuracy (ACC) —
Proportion of accurately classified instances;
Precision (P) — Proportion of accurately predicted
positive instances out of all predicted positives;
Recall (R) —

Proportion of accurately predicted positive instances
out of actual positives; Fl-score (F1) — Harmonic
mean of precision and recall; balance between the
two above; Execution Time (T) — Aggregate time for
continuous model training and testing.

Accuracy by Grade and Test Size for Grade A
1.5000 at 40% Stage

1.0000
0.0000
20 40 60 80

M BA_Accuracy
W PCA_Accuracy

Accuracy

Test Size (%)

Accuracy by Grade and Test Size for Grade B

500D at 40% Stage
g 1.0000
3
2 0.5000
0.0000
20 40 60 80
Test Size (%) W BA_Accuracy

m PCA_Accuracy

Accuracy by Grade and Test Size for Grade C
at 40% Stage
1.0000

0.9800
& 0.9600
5 0.9400
& 0.9200 l l I
0.9000
0.8800
20 40 60 80

Test Size (%) W BA_Accuracy

M PCA_Accuracy

Accuracy by Grade and Test Size for Grade D
10600 at 40% Stage

0.9500
> Am An Al I
0.8500

20 40 60 80

Test Size (%)

Accuracy

mBA_Accuracy
m PCA_Accuracy

Figure 3: Accuracy by Grade at 40% Completion
Stage
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The calculation included: Per grade category (A, B,
C, D); Across multiple test sizes (20%, 40%, 60%,
80% of dataset size); For both BA and BA+PCA
variants.

The analysis is supplemented with visual plots and
tabular summaries to accentuate the trends better and
in detail.

Precision by Grade and Test Size for Grade A
1 at 40% Stage

0.98
0.96

0.94
0.92
‘I s |I Il
0.88
20 40 60 80

W BA_Precision
B PCA_Precision

Predsion

Test Size (%)

Precision by Grade and Test Size for Grade B
1 at 40% Stage

0.95
> In I Il I
0.85

20 40 60 80

B BA_Precision
m PCA_Precision

w

Predsion

Test Size (%)

Precision by Grade and Test Size for Grade C
0.95 at 40% Stage

0.9
0.85 I I I
0.8
20 40 60 80

H BA_Precision
B PCA_Precision

Predsion

Test Size (%)

Precision by Grade and Test Size for Grade

1 D at 40% Stage
[
2 0.95
w
‘0
m Il i
o
0.85
20 40 60 80
Test Size (%) B BA_Precision

B PCA_Precision

Figure 4: Precision by Grade at 40% Completion
Stage
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B. Grade-wise Results at 40% Stage
At the 40% stage, the objective for the model is to

F1-Score by Grade and Test Size for Grade

make an early prediction about student grades. The 1 A at 40% Stage
results of the BA- based ensemble and its PCA v 0.5
variant are summarized in Table 5. 3) :
From the results, the BA-based ensemble was ¢ 09
consistently high for all grades. Specifically, Grade A .
and B. In the PCA variant, there were marginal F1- ' 2 40 60 %
score drops in Grade D had improved execution time. —
Radar plots of Figure 7 confirmed better balance in stSke 18 mBA F1mPCA F1
BA across metrics in minority classes. = =
Recall by Grade and Test Size for Grade A F1-Score by Grade and Test Size for Grade
- N 1 B at 40% Stage
5 922 £ 095
[ U
x 0.9 0
h I i
1 1B
20 40 60 80 0.85
Test Size (%) mBA_Recall 20 40 60 80
I i
i i TestSize (%) g F1mpca F1
Recall by Grade and Test Size for Grade B
at 40% Stage .
2 g F1-Score by Grade and Test Size for Grade
3 9:35 0.94 C at 40% Stage
& o9 .. I. II I 0.92
2 09
0.85 S
20 a0 60 80 5 322
SRR Eadl s
i 0.82
Recall by Grade and Test Size for Grade C 20 40 60 80
0.95 at 40% Stage Test Size (%)
= 09 WBA_F1
o I NI e
0.8
20 a0 60 80 .
S e F1-Score by Grade and Test Size for Grade
_Reca 0,
mPCA_Recall 0.98 D at 40% Stage
v 0.96
Recall by Grade and Test Size for Grade D ‘8' 0.94
1 at 40% Stage ; 0.92
= 095 0.9 I
o
‘o iln I In 1
o 20 40 60 80
20 40 60 80 Test Size (%)
Test Size (%) WBA_F1
m BA_Recall =
m PCA_Recall HPCA_F1

Figure 5: Recall by Grade at 40% Completion Stage
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Figure 6: F1-Score by Grade at 40% Completion
Stage
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Radar Plot - Performance by Grade (at 40%
Stage using 80% Test Size)

== Precision s Recall s F1-Score m— Accuracy

Grade A - BA

0.98

Grade D - PCA

Grade D - BA

Grade C - PCA
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Figure 7: Radar Plot - Performance by Grade at 40% Completion Stage

C. Grade-wise Results at 80% Stage

At the 80% stage, the obtainable data per student is
more and should potentially deliver better predictive
results. Table 6 presents the comparative results.
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Figure 8: (a) Accuracy of Grade A & B at 80%
Completion Stage
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Figure 9: (b) Accuracy of Grade C & D at 80%
Completion Stage
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Figure 12: (b) Recall of Grade C & D at 80%
Completion Stage
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Stage
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Figure 14: Comparison of Execution Time (Bat
Algorithm Vs Bat Algorithm with PCA)

D. Observations and Discussion

This section interprets in detail the experimental
results obtained from the Bat Algorithm based
ensemble model and its PCA enhanced variant. The
analysis covers the two stages of prediction, known
as 40% course completion and 80% course
completion, intended to mimic early and late
academic forecasting. Analysis is conducted using
classification metrics such as accuracy, precision,
recall, and F1 score in all grade categories from A to
D status, as well as execution time performance as an
indicator of computationally efficient execution.

The analysis is further presented in the subsequent
tables and visualized in Figure 3 to Figure 6. As
observed from any 40% course completions, the
BA-based ensemble model always demonstrates
better predictive accuracy compared to it PCA-based
adjustments. More succinctly, accuracies across all
grades are significantly better for the BA model at all
testing levels, especially in A and B grades. The
precision and recall results also favouring the BA
model suggest that PCA integration diminishes the
available features’ true impact on the classifier’s
ability in properly classifying grades. More
specifically, Fl-scores in the Fail category were
substantially higher in the BA model during early
course prediction, with the 80% testing resulting in
a

0.94 score compared to 0.47 in PCA. This result
indicates that the BA model is more equipped to
handle the class imbalance and accurately predict
low-performing  students in the early-stage
predictions.

PCA reduces execution time by approximately 9.6%
at the 40% stage — from 11.23 to 10.15 seconds — but
it also causes a reasonably sized drop in the
prediction performance, mostly for the lower grade
categories. This gap is depicted in the radar plot in
Figure 7, which shows that the BA model has better
balance across all the four-evaluation metrics.
These findings may imply that using this approach at
the early prediction stages discards subtle but
essential information regarding underrepresented
grades.

Both models perform significantly better at the 80%
stage, which implies that a more considerable amount
of student data makes it easier to build accurate
predictive models. All accuracy values for all grades
are above 97% in both models, especially in the
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BA+PCA variant, indicating smaller gaps from the
ideal performance. While the BA model still slightly
outperforms PCA in most metrics, with the gaps
between them becoming visibly smaller. This
correlation suggests that PCA might be a more
optimal choice when enough data is available with
minimum accuracy trade-offs. The execution time is
still better for the PCA enhanced model which
completes the run in 10.75 seconds compared to
11.85 for the standard BA model as per Figure 14.
Class-wise trend analysis reconfirms that.

Both models reach the maximum possible score for
grades A and B at the 80% stage but the BA+PCA
model also exhibiting higher performance results for
C and D grades compared to the 40% stage, which
demonstrates that the PCA transformation preserves
more discriminative power on richer dataset, making
it a better choice for later stage academic
performance prediction requirements.

To sum up, the BA-based ensemble model without
PCA is more suitable for early-stage prediction, as
the feature richness is essential to fully capture the
student performance subtleties. The PCA-enriched
variant, on the other hand, provides the opportunity
to achieve similar performance results in a later stage
while additionally being advantageous in terms of
execution time. The revealed tendencies clearly
indicate that the strategy should be adaptive, and the
necessity of the PCA usage can be decided based on
the amount of data available and the limitations of the
deployment environment in terms of computational
power. In addition, the results affirm the robustness
of the BA model indifferent to grade distributions
balanced or imbalanced, which solidifies it as a good
candidate for educational data mining tasks.

E. Discussion of Results

The results from the BA-based ensemble
classification model, both using and without PCA
processing bring several important conclusions about
the applicability of metaheuristic-driven FS in
achieving successful student grade prediction. By
assessing the CAs in two of the most critical stages
throughout any learner’s academic progress — 40%
and 80% of full completion, the current research
indicates the processes’ dependency on SL volume,
the sensitivity to CI, and the impact of DR techniques
on obtaining better-than-human performance for
several classes of grades. The presented discussion
aims to reflect on the achieved quantitative benefits

IJIRT 186551

obtained by the BA-based

model and further on the compensational
implications of using PCA with respect to the
signalling behaviour on the aforementioned academic
progress stages, and conclude with a discussion of
the pedagogical meaning in terms of applying the
model to real-time educational decision- making.

The ensemble model at the 40% course completion
stage performed excellently in all classification
metrics of the Bat Algorithm with a strength mostly
at the two ends of the performance continuum:
identifying ~ Well-Performing versus Poor-
Performing Class groups of students. The BA model
had reasonably high recall and fl score for students
in Grades C and D as evidenced by a fairly balanced
recall and fl-scores. This indicated that the model
had the ability to make the best use of the feature
space and potentially uncover early and complex
features that predict risk/promise. Given the BA
model used an intelligent adaptive search process to
guide feature selection, it was able to keep more vital
dimensions that would otherwise have been cut down
or become more diluted versions of the original data.
The BA model was consequently a viable academic
forecaster model early in the course as long as
feature-rich data was available. On the other hand,
BA+PCA was less effective at this stage, perhaps
because it reduced feature richness too early into the
semester. The total execution time for BA+PCA
reduced remarkably, nearly 10%, but the model’s
performance also dropped, a trade-off probably not
cost-effective at the important early forecasting stage.
By the 80% course completion stage, the gap in
performance between BA and BA+PCA models
significantly shrank. For the vast majority of grading
levels, all models exhibited high and consistent
accuracy, with certain metrics going above 97% due
to the denser dataset. Once again, BA retained better
results for the majority of categories with a special
emphasis put on balanced F1- scores of grading
levels, including low-academic ones. On the other
hand, while BA+PCA remained incapable of properly
classifying Grade C and D, it also demonstrated
significant improvement in this regard, meaning that
the reduced feature model may struggle to remain
distant from a full-feature version but still preserve
variation when trained on additional data.

In addition, BA+PCA maintained a shorter execution
time for all the test sizes. Thus, reduced feature
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models can be considered for real-time testing,
including end-of-term scenarios that are highly
dependent on fast predictive decisions and BA+PCA
maintained a shorter execution time across all test
sizes. The other metrics, such as accuracy and recall,
experienced margin tradeoffs, which were still largely
beneficial, considering the enhancements in
computing efficiency. Overall, it seems that PCA-
enhanced solutions

can prove more viable when more comprehensive
student profiles become available.

The performance decline following the integration of
PCA further exposes the difference in these two
models’ robustness. The BA-based model retained
better accuracy and performance consistency balance,
particularly on the 80% stage. Hence, BA is a
superior machine learning model in conjunction with
dimensionality reduction.

F. Pedagogical Implications

Accurate prediction of student outcomes at multiple
stages of academic progress have obvious
implications for early intervention and personalized
student support. Our findings suggest that the BA-
based ensemble model is indeed a useful tool to the
institutional ~ decision-makers, especially when
applied in its full-featured mode. As mentioned
before, the model can be applied at the 40% mark for
initiating remedial support programs and at the 80%
mark for reenforcing or reorienting the overall
academic strategy.

At the same time, the dual-model approach —
selecting between BA and BA+PCA depending on
the availability of PCA data and time constraints —
provides a flexible framework for institutions of
higher learning to base their performance monitoring
on. If there are constraints on how long it may take to
process the data or how many computational
resources may be expended, the PCA- enhanced
mode is a very good strategic move. On the other
hand, if classification performance is the primary
concern — especially if early intervention is a goal —
the full BA is preferable. Such considerations make
the model flexible enough to be applicable across all
the possible scales of academic performance
monitoring, from large-scale institutional
deployments to personalized classroom analysis.
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V. CONCLUSION AND FUTURE WORK

In summary, the BA-based ensemble classification
model is among the best-performing in predicting the
student academic grade. Although the PCA-enhanced
model performed as well as the full-feature BA
model in the 80% course completion stage, the full-
feature of the former model is always the most
appropriate for early-stage prediction models. This is
because the BA model is iterative and uses fewer
resources to classify, which is beneficial during the
40% stage with a small pool of data. On the other
hand, the PCA-enhanced BA model is faster, and
although lacking a considerable significance in
execution time, is preferred in the 80% prediction
stage.

Our findings provide evidence that the Bat Algorithm
is a strong metaheuristic for FSB extraction in EDM
and is adaptable for both phases of prediction and
manageable for imbalanced data distribution. Our
study also showed that stabilization of dimensions
through PCA is not always a

good practice but is efficient in terms of FSB
extraction at later stages of the education process
without a significant loss of accuracy. This two-
model method allows educational facilities to use
strong early and late-evaluation models.

Our future work includes a few other directions.
Firstly, it is possible to investigate other and more
advanced dimensionality reduction techniques, such
as t-SNE or autoencoder-based feature learning and
compare them to PCA to achieve better
computational efficiency as long as isometric
mapping performance. Secondly, in addition to the
Bat Algorithm, more metaheuristics, and not only
BCA- related, can be integrated — Particle Swarm
Optimization, Ant Colony Optimization, or other
methods, as well as hybrid approaches. By doing this,
we can explore the trade- offs between the
aforementioned convergence rates and the
classification robustness of the models. Finally, our
system can be linked with model explainability
methods, such as SHAP or LIME on a local level,
unwrapping the decisions and making them clearer
for the academic counselors and data administrators.
Overall, the effective expansion of this work to
broader and more varied institutional datasets,
incorporating more types of longitudinal student
behavior data (such as attendance trends, learning

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1047



© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

activity tracking, or course evaluations), may
enhance the applicability and generalizability of the
model, enabling it to make a real contribution to
institutional  higher education decision-support
systems.

The Bat Algorithm-based ensemble framework is
thus a solid, scalable, and interpretable predictive
model for student success that has the potential to
impact academic preparation and student support
services in the future.
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