Current Advances and Emerging Frontiers in Periodontal Regeneration: From Biology to Biomaterials

Syeda Suwaiba Fathima¹, Dr. Prashanthi P², Dr. Sathish Rajendran³, Dr. Lakshmi Priya⁴, Dr. Annie Arockia Mary⁵, Dr. Jaideep Mahendra⁶

¹CRRI, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India ²Assistant Professor, Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India

³Associate Professor, Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India

^{4,5}Assistant Professor, Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India

⁶Professor and Head of the Department of Periodontics at Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India

Abstract—To restore the structural and functional integrity of the tooth-supporting tissues—such as the gingiva, periodontal ligament, cementum, and alveolar bone—that are weakened by periodontitis, periodontal regeneration is a crucial component of contemporary periodontics. With a focus on the functions of stem cellbased therapy, growth factor-mediated signaling, bioactive scaffolds, nanostructured biomaterials, and new gene and cell-free techniques, this study offers a thorough summary of current developments in periodontal regenerative techniques. nanotechnology has improved the targeted delivery and regulated release of bioactive chemicals, the development of novel biomaterials and three-dimensional (3D) printed scaffolds has improved the capacity to reproduce the intricate architecture of the periodontium. Furthermore, potential cell-free substitutes that encourage tissue regeneration and control the host inflammatory response are exosome-based and bio-engineered constructions. Despite these significant advancements, there are still scalability, cost, immunological compatibility, and the clinical application of lab results. In order to develop individualized and clinically dependable regenerative therapies that can produce predictable, functional periodontal restoration, future research should concentrate on combining molecular biology, materials science, and tissue engineering.

Index Terms—Periodontal regeneration, Stem cell therapy, Nanotechnology, Scaffolds, Growth factors, Exosomes

I. INTRODUCTION

The gingiva, cementum, periodontal ligament (PDL), and alveolar bone are pieces of the periodontium that support teeth. These periodontal tissues gradually deteriorate due to periodontitis, a inflammatory disease that eventually causes tooth movement and, if untreated, tooth loss [1]. In periodontics, full regeneration of the tooth-supporting structures lost as a result of the advancement of periodontal disease has long been seen as an elusive aim [2]. Unlike repair, which involves mending using tissue that does not fully reestablish normal structure or function, regeneration is the biological process of recreating or returning missing or damaged tissues to their original architecture and function [3]. The clinical effectiveness of traditional periodontal disease treatment methods, including as scaling and root planing, antibiotic therapy, and surgical procedures like flap surgery and guided tissue regeneration, in slowing the disease's progression has varied. these methods frequently have Nevertheless, drawbacks, including uneven regeneration results, surgical problems, and an inability to fully restore the natural shape and function of periodontal tissues [4]. The goals of recent developments in periodontal regeneration have been to achieve complete structural and functional restoration of the periodontium, speed

up tissue recovery, and increase therapy predictability [5]. In order to overcome current treatment limitations, this study seeks to highlight the significance of approaches, including interdisciplinary combination of tissue engineering, stem cell and gene therapies, and the creation of novel scaffold systems. In addition to summarizing recent developments, it promote ongoing research aims interdisciplinary cooperation in order to improve periodontal therapy's clinical results. In order to successfully restore tooth-supporting tissues, modern regenerative techniques have increasingly included the use of cutting-edge biomaterials like hydrogels and nanofibrous scaffolds, bioactive signaling agents, and stem cell-based therapies.

II. PERIODONTITIS PATHOGENESIS AND IMPACT

A chronic, multifaceted inflammatory disease, periodontitis results from intricate interactions between the host immune system and harmful microbes. It is typified by the gradual deterioration of the cementum, periodontal ligament (PDL), and alveolar bone, which eventually results in clinical attachment loss, tooth movement, and, if treatment is not received, tooth loss [6]. The World Health Organization estimates that between 35 and 50 percent of people worldwide suffer with periodontitis in one form or another [7]. According to the Global Burden of Disease research (2015), up to 50% of people may have milder forms of periodontitis, whereas 7.4% of people worldwide are projected to have severe forms [8]. Periodontitis causes major health and financial costs as well as a major reduction in quality of life on a global scale. Crucially, systemic health is intimately associated with periodontal inflammation, which is not limited to the oral cavity. Through the hematogenous spread of periodontal pathogens or through chronic inflammation the periodontal pocket microenvironment, which acts as a reservoir for proinflammatory mediators, the dysbiotic subgingival microbiota can either directly or indirectly raise cytokine levels [9]. Additionally. overexpression of matrix metalloproteinases (MMPs) and receptor activator of nuclear factor kappa-B ligand (RANKL) cause excessive tissue degradation and alveolar bone resorption, respectively. Increased vascular permeability and the ensuing exposure of connective tissues make it easier for bacteria and inflammatory cytokines to get into the systemic circulation, which supports the reciprocal association between systemic illnesses and periodontitis.

III. REPAIR VS. REGENERATION

Understanding the difference between regeneration and repair is essential to comprehending periodontal healing. Repair refers to the restoration of tissue continuity, such as the development of a long junctional epithelium, without completely regaining the original structure or function. The biological production of new cementum, alveolar bone, and a functionally orientated periodontal ligament (PDL) on a previously damaged root surface is referred to as regeneration [10]. Hemostasis and coagulation, inflammation, cellular proliferation, and tissue remodeling and maturation are the four main but overlapping stages that often make up the wound healing process (Figure 1). These phases correspond to the healing of periodontal wounds [11]. Numerous cell types, extracellular matrix elements, cytokines, and growth factors interact intricately during the process. In contrast to fibrotic repair, tissue regeneration that is architecturally and functionally identical to the original requires a thorough understanding of wound healing at the cellular, molecular, physiological, and biochemical levels. [12]. During healing, cytokines and growth factors released primarily by macrophages stimulate the migration and proliferation of fibroblasts and endothelial cells into the wound site. This results in the formation of granulation tissue, which marks the onset of matrix formation and maturation. Fibroblasts synthesize a new collagen-rich extracellular matrix, while endothelial cells promote angiogenesis to ensure adequate vascularization. Subsequently, epithelial cells originating from the basal layer initiate reepithelialization, leading to surface coverage of the wound. The maturation of granulation tissue ultimately determines whether the outcome is true regeneration or merely repair, depending on two critical factors: the availability of responsive cells and the presence of appropriate cell-recruiting signals. Because of their anatomical and functional uniformity, tissues that act as exterior protective barriers, including the skin and gingiva, show comparable healing responses. Both are made up of a layer of keratinized epithelial tissue that is held up by connective tissue and serves as protection from environmental stressors and microbial invasion [13]. True periodontal regeneration is still one of the most difficult objectives in periodontal therapy, despite tremendous advancements in regenerative procedures. This is mainly because of the periodontium's intricate structure and cellular variety.

IV. CLASSICAL REGENERATIVE METHODS

Scaling and root planing, open flap debridement, bone grafting, guided tissue regeneration (GTR), and the use of biologically active substances like platelet concentrates and enamel matrix derivatives (EMD) are all examples of traditional methods for periodontal regeneration. Conventional GTR is based on the idea that gingival fibroblasts and periodontal ligament (PDL) mesenchymal cells grow at separate rates. By facilitating epithelial exclusion through the application of a barrier membrane, this approach allows periodontal tissues to recover without creating a lengthy junctional epithelium, restoring their natural architecture and function [14]. The primary goal of the first-generation membranes was to minimize harmful effects on nearby tissues while also offering mechanical stability. The primary goal in this early stage was to achieve an occlusive characteristic. Expanded polytetrafluoroethylene (e-PTFE) was created in 1969 and later became the industry standard for GTR in the 1990s. The dual-layer structure of this membrane has pore diameters that range from 5 to 20 microns. On one side, there is an open microstructure that is 1 mm thick and 90% porosity, which effectively prevents epithelial migration. On the other side, there is a layer that is 0.15 mm thick and 30% porosity, which creates an area that is favourable for the production of new bone [15]. As growth factor research gained traction, focus turned to growth factors generated from autologous platelets, which showed improved regeneration potential. Numerous growth factors that are essential for soft tissue healing and regeneration are among the many bioactive compounds found in platelet granules [16]. Patient-topatient variability, procedural sensitivity, and incomplete regeneration continue to limit the effectiveness of these traditional therapies, despite the fact that they have produced quantifiable clinical benefits [17]. Crucially, none of these techniques

reliably result in full functional healing and repair of the entire periodontium, including the cementum, alveolar bone, and PDL. The main drawbacks of conventional regenerative techniques are their incapacity to precisely replicate the intricate hierarchical structure of periodontal tissues and to synchronize the regeneration of several tissue types at once. Furthermore, the regenerative process and healing results are often compromised by inadequate vascularization, postoperative infection, uncontrolled inflammation [18]. In order to achieve predictable and functional periodontal regeneration, these obstacles highlight the urgent need for nextgeneration, biologically inspired techniques that combine the concepts of tissue engineering, molecular biology, and biomaterial science.

V. EMERGENCE OF ADVANCED REGENERATIVE STRATEGIES

The development of multidisciplinary techniques that integrate the concepts of tissue engineering, nanotechnology, stem cell therapy, and molecular biology has advanced significantly in recent years. Three key elements are combined in tissue engineering: (1) cells with the ability to differentiate and regenerate; (2) scaffolds that offer an appropriate three-dimensional (3D) environment for tissue ingrowth; and (3) bioactive substances such growth factors that alter cellular activity [19]. Because of their capacity to replicate the natural extracellular matrix and facilitate the regulated release of signaling molecules, nanostructured and 3D-printed scaffolds have become more popular.

5.1 Advancements in Stem Cell Therapy for Periodontal Regeneration

Recent studies have highlighted the remarkable adaptability of postnatal stem cells, especially those isolated from tooth pulp and human bone marrow. These cells demonstrate their potential in tissue engineering and regenerative medicine by being able to differentiate into a wide variety of cell types, including adipocytes, osteoblasts, odontoblasts, and neuron-analogous cells. One of the mainstays of contemporary periodontal regenerative research is stem cell-mediated methodologies. Numerous mesenchymal stem cell (MSC) populations, including bone marrow-derived MSCs, dental pulp stem cells

(DPSCs), and periodontal ligament stem cells (PDLSCs), have been thoroughly investigated for their capacity to stimulate osteogenesis, cementogenesis, and PDL regeneration when administered either alone or in conjunction with biomimetic scaffolds and signaling molecules. Cell-seeded scaffolds or cell sheet engineering significantly improve the creation of new bone and ligaments in periodontal lesions, according to preclinical research [20,21]. Clinical translation is still hampered by variations in stem cell sources, delivery methods, and outcome assessment standards.

5.2 Cell-Free Methods: Extracellular Vesicles (EVs) and Exosomes

As safer and more useful substitutes for stem cell transplantation, cell-free therapies have grown in popularity. Exosomes are tiny extracellular vesicles made from dental stem cells or MSCs that contain bioactive substances such lipids, proteins, and microRNAs that control osteogenic differentiation, angiogenesis, and inflammation. In animal models of exosome-loaded periodontitis, hydrogels composite scaffolds have shown increased neovascularization, attenuated inflammatory responses, and accelerated tissue repair [22, 23]. Although consistency in separation techniques, dose, and delivery kinetics is still a major obstacle for clinical use, these results demonstrate exosomes as viable biologic tools.

5.3 Three-D Bioprinting and Advanced Scaffolds

Passive fillers have given way to multipurpose biomimetic scaffolds that may direct the production of organized tissue. Multi-compartment 3D-printed scaffolds, stimuli-responsive hydrogels that replicate the natural hierarchical structure of the periodontium, and nanofibrous electrospun matrices are examples of emerging advances [24]. Cone-beam computed tomography (CBCT) data can be used to create patient-specific scaffolds using three-dimensional (3D) bioprinting, which enables the precise spatial deposition of discrete compartments for cementum, PDL, and bone regeneration [25]. When compared to homogeneous scaffold systems, such techniques greatly improve the quality of bone fill and the organization of freshly produced PDL fibers.

5.4 Nanotechnology and Targeted Delivery Systems

The use of nanotechnology in periodontal regeneration has improved the development of scaffolds and delivery methods with enhanced controlled-release, antibacterial, and osteoconductive qualities. Materials with nanostructures, including metallic nanoparticles, nanofibers, silica nanoparticles, and nanohydroxyapatite, have been used to control local microenvironments, enhance cellular adhesion, and replicate the extracellular matrix [26,27]. Functionalized nanoparticles reduce systemic exposure while facilitating the long-term, site-specific release of growth factors (such as PDGF and BMPs) and anti-inflammatory drugs. Additionally, efforts are being made to reduce harmful inflammation and encourage regenerative cellular morphologies by nanoscale immunomodulatory techniques [28].

5.5 Growth Factor Delivery and Biomolecular Engineering

A key component of coordinating the series of biological processes that underlie periodontal regeneration is the controlled, localized release of growth factors. Long-term delivery of signaling molecules like platelet-derived growth factor (PDGF), bone morphogenetic protein-2 (BMP-2), fibroblast growth factor (FGF), and vascular endothelial growth factor (VEGF) is made possible by bioengineered carriers that use microspheres, multilayered scaffolds, and affinity-based release systems [26]. Angiogenesis, osteogenesis, and connective tissue organization have all been demonstrated to be improved by combined therapies that combine growth factors with stem cell or exosome-based constructions [25, 26]. To optimize safety and efficacy in clinical settings, dose and release kinetics must still be optimized.

5.6 Gene and Immunomodulatory Therapies

Gene-based and immunomodulatory approaches that alter the host response to promote regeneration have received more attention recently. In situ upregulation of osteogenic or angiogenic pathways has been achieved by methods that use RNA interference and viral or non-viral gene delivery systems. Macrophage polarization has been the subject of parallel research, in which biomaterials or small compounds are intended to change the phenotype of macrophages from pro-inflammatory (M1) to pro-regenerative (M2), so establishing a favorable microenvironment for healing [27, 28]. These approaches show great promise, but before being routinely used in clinical

settings, they must undergo thorough validation for biosafety, repeatability, and ethical acceptability.

5.7 Translational and Clinical Considerations

Clinical translation of these regenerative methods is still restricted, despite notable preclinical breakthroughs. Results from early-stage clinical trials examining growth factor-incorporated scaffolds, autologous cell sheets, and customized 3D-printed constructions have been mixed but encouraging [24-26]. Manufacturing scalability, regulatory approval, pricing limitations, and long-term biocompatibility are some of the main translational hurdles. In order to evaluate therapeutic success, it is essential to establish standardized outcome measures that evaluate both structural regeneration and functional restoration [29]. 5.8 Future Perspectives

multidisciplinary Personalized, strategies molecular biology, combine nanotechnology, bioengineering, and computer modeling should be the main emphasis of future developments in periodontal regeneration. For predictable and useful tissue regeneration, the focus should be on improving vascularization, immunological regulation, patient-specific scaffold design. Translating these laboratory discoveries into dependable, affordable, and easily accessible clinical treatments will require cooperation between doctors, material scientists, and molecular biologists [29].

VI. CHALLENGES AND FUTURE DIRECTIONS IN PERIODONTAL REGENERATION

6.1 Biological and Cellular Challenges

Replicating the intricate hierarchical structure of the periodontium is one of the main obstacles to obtaining consistent periodontal regeneration. The cementum, alveolar bone, and periodontal ligament (PDL), each of which has unique cellular compositions, biochemical environments, and mechanical properties, must grow in unison for regeneration to be successful [30]. Incomplete structural and functional repair is the result of current techniques, which frequently prioritize the regeneration of one component above others. Furthermore, uneven clinical outcomes are a result of variations in the osteogenic and cementogenic capacity of mesenchymal stem cells (MSCs) generated from various sources, including bone marrow, tooth pulp, and PDL [31]. Equally important is the regenerative milieu, which is made up of cytokine gradients, extracellular matrix cues, and vascularization. Its careful coordination continues to be a significant biological obstacle [32].

6.2 Vascularization and Integration Limitations

For regenerated tissues to receive oxygen and nutrients, effective vascularization is necessary. A lot of scaffolds and biomaterials show insufficient angiogenic potential, especially in deep or extensive periodontal lesions [33]. Inadequate neovascularization hinders the integration of new tissue and the survival of transplanted cells. Achieving a functional and spatially structured microvasculature within the periodontal compartment is still difficult, despite recent advancements in VEGF-loaded scaffolds and co-culture systems containing endothelial cells showing promise. [34].

6.3 Host Immune Response and Inflammation Control Regenerative results after periodontal surgery may be hampered by uncontrolled inflammation. Matrix metalloproteinases (MMPs) and receptor activator of nuclear factor kappa-B ligand (RANKL) are overexpressed in chronic inflammatory settings, which promotes bone resorption and connective tissue deterioration [35]. Although preclinical studies have shown improved healing potential with newer approaches that target macrophage polarization (from pro-inflammatory M1 to pro-regenerative M2 phenotypes), deeper mechanistic insights and standardized protocols are needed to translate immune modulation into predictable clinical therapies. [36].

6.4 Material and Design Constraints

The ideal scaffold for periodontal regeneration must be biocompatible, biodegradable, and mechanically stable, while also supporting spatial orientation for PDL fiber alignment and alveolar bone formation. Despite advances in 3D printing and nanomaterial engineering, mimicking the gradient structure and dynamic loading environment of the natural periodontium remains unresolved [37]. Challenges persist in balancing porosity, degradation rate, and mechanical integrity, as well as ensuring consistent material performance across variable clinical conditions. Additionally, sterilization and large-scale production of complex scaffolds without loss of bioactivity continue to offer translational hurdles [38]. 6.5 Clinical Translation and Regulatory Barriers

Relatively few recent findings in periodontal regeneration have advanced to extensive human clinical trials; the majority are still restricted to in vitro or animal models [39]. The lack of established clinical evaluation criteria, manufacturing costs, and regulatory complexity all hinder the transition from bench to bedside. Additionally, regeneration outcomes are strongly influenced by individual heterogeneity in patient characteristics such genetic background, smoking status, and systemic health [40]. Global agreement on treatment success is hampered by the absence of consistent biomarker-based evaluation instruments for distinguishing between real tissue regeneration and repair, which makes clinical data interpretation more difficult [41].

6.6 Ethical, Economic, and Long-Term Safety Concerns

Before being used in clinical settings, the ethical and biosafety issues raised by the use of stem cells, gene therapy, and nanomaterials must be resolved. Limited long-term safety data on viral vectors, genetic alterations, and nanoparticle accumulation highlight the necessity of ongoing post-treatment monitoring [42]. Furthermore, accessibility and scalability are restricted by the high production and storage costs of cell-based constructs and physiologically active scaffolds, especially in low-resource environments [43].

6.7 Prospects for the Future and Research Priorities

Personalized, multidisciplinary, and precision-based methods are becoming more and more prevalent in the field of periodontal regeneration. By integrating omics technologies (genomics, proteomics, metabolomics), tailored therapy design may be guided and a deeper understanding of each patient's unique regenerative capacity may be possible [44]. Computational modeling and artificial intelligence (AI) developments can help with treatment planning optimization, biological response prediction, and patient-specific scaffold design [45]. In addition, hybrid regenerative systems that incorporate immunomodulatory drugs, bioactive scaffolds, exosomes, and stem cells have a lot of potential for both functional and histologically full regeneration. To close the gap between laboratory innovation and clinical reality, biomedical engineers, materials scientists, molecular biologists, and physicians must work together [46].

CONCLUSION

From conventional surgical and biomaterial-based techniques to contemporary, biology-driven, and technology-assisted treatments, periodontal regeneration has come a long way. However, because of the tissue's biological variability and structural complexity, restoring the entire periodontiumincluding the cementum, alveolar bone, periodontal ligament—completely and functionally remains extremely difficult. With increased precision, biocompatibility, and therapeutic potential, recent advancements in stem cell therapy, growth factor administration, nanotechnology, and 3D-printed scaffolds have completely changed the regenerative landscape. Furthermore, novel approaches to improving tissue integration and regeneration are being presented by developing disciplines like gene therapy, exosome-based signaling, and bioengineered Notwithstanding these encouraging scaffolds. issues including advancements. expense, immunocompatibility, moral limitations, and restricted clinical translation still exist. Future studies should concentrate on creating patient-specific, reproducible, and standardized protocols that combine clinical sciences, bioengineering, and molecular biology. In order to ensure long-term periodontal health and stability, the ultimate goal is to accomplish real biological regeneration, which involves restoring both structure and function rather than just repair.

REFERENCES

- [1] Liang, Y., Luan, X., & Liu, X. (2020). Recent advances in periodontal regeneration: A biomaterial perspective. Bioactive Materials, 5(2), 297. https://doi.org/10.1016/j.bioactmat.2020.02.012.
- [2] Shuang Qiu, Xuanwen Xu, Zehua Feng, Lu Li, Xiaoqian Wang, Kai Zheng, Yan Xu, Bioactive glass-laden ionically crosslinked pectin microspheres with pro-osteogenic and antibacterial activities periodontal regeneration, Ceramics International, 10.1016/j.ceramint.2025.05.253, 51, 22, (35323-35336), (2025).
- [3] American Academy of Periodontology. Glossary of Perio-dontal Terms. Chicago: American Academy of Perio-dontology; 2001
- [4] Bharuka T, Reche A (February 13, 2024) Advancements in Periodontal Regeneration: A

- Comprehensive Review of Stem Cell Therapy. Cureus 16(2): e54115. DOI 10.7759/cureus.54115.
- [5] Dayakar, Mundoor & Hemanth, Pooja & Shivananda, Hiranya & Pai, Gurpur. (2024). Current Concepts in Periodontal Regeneration. 9. 425.
- [6] Liu J, Ruan J, Weir MD, Ren K, Schneider A, Wang P, Oates TW, Chang X, Xu HHK. Periodontal Bone–Ligament–Cementum Regeneration via Scaffolds and Stem Cells. Cells. 2019;8(6):537. doi:10.3390/cells8060537.
- [7] P.E. Petersen, H. Ogawa The global burden of periodontal disease: towards integration with chronic disease prevention and control Periodontol 2000, 60 (2012), pp. 15-39
- [8] M. Billings, B. Holtfreter, P.N. Papapanou, G.L. Mitnik, T. Kocher, B.A. Dye Age-dependent distribution of periodontitis in two countries: Findings from NHANES 2009 to 2014 and SHIP-TREND 2008 to 2012 J Clin Periodo, 45 (Suppl 20) (2018), pp. S130-s48.
- [9] Saliem, S. S., Bede, S. Y., Cooper, P. R., Abdulkareem, A. A., Milward, M. R., & Abdullah, B. H. (2022). Pathogenesis of periodontitis – A potential role for epithelialmesenchymal transition. Japanese Dental Science Review, 58, 268-278. https://doi.org/10.1016/j.jdsr.2022.09.001
- [10] Huang, T.-H.; Chen, J.-Y.; Suo, W.-H.; Shao, W.-R.; Huang, C.-Y.; Li, M.-T.; Li, Y.-Y.; Li, Y.-H.; Liang, E.-L.; Chen, Y.-H.; et al. Unlocking the Future of Periodontal Regeneration: An Interdisciplinary Approach to Tissue Engineering and Advanced Therapeutics. Biomedicines 2024, 12, 1090. https://doi.org/10.3390/biomedicines12051090.
- [11] 9. Weissman, I.L. Stem cells: Units of development, units of regeneration, and units in evolution. Cell 2000, 100, 157–168. [Google Scholar] [CrossRef]
- [12] Li M, Lv J, Yang Y, Cheng G, Guo S, Liu C, Ding Y. Advances of Hydrogel Therapy in Periodontal Regeneration — A Materials Perspective Review. Gels. 2022;8(10):624. doi:10.3390/gels8100624.
- [13] Polimeni G., Xiropaidis A.V., Wikesjo U.M. Biology and principles of periodontal wound healing/regeneration. Periodontol 2000. 2006;41:30–47. doi: 10.1111/j.1600-

- 0757.2006.00157.x. [DOI] [PubMed] [Google Scholar
- [14] Cho, D., Kim, H., Lee, M., Ku, Y., & Seol, J. (2021). Periodontal Wound Healing and Tissue Regeneration: A Narrative Review. Pharmaceuticals, 14(5), 456. https://doi.org/10.3390/ph14050456
- [15] Nikoloudaki G., Creber K., Hamilton D.W. Wound healing and fibrosis: A contrasting role for periostin in skin and the oral mucosa. Am. J. Physiol. Cell Physiol. 2020;318:C1065–C1077. doi: 10.1152/ajpcell.00035.2020. [DOI] [PMC free article] [PubMed] [Google Scholar
- [16] Nyman, S.; Gottlow, J.; Karring, T.; Lindhe, J. The regenerative potential pf the periodontal ligament. An Experiomental study in monkey. J. Clin. Periodontol. 1982, 9, 257–265. [Google Scholar] [CrossRef]
- [17] Madhuri, S.V. Membranes for Periodontal Regeneration. Int. J. Pharm. Sci. Invent. 2016, 5, 19–24. [Google Scholar]
- [18] Choukroun, J.; Diss, A.; Simonpieri, A.; Girard, M.O.; Schoeffler, C.; Dohan, S.L.; Dohan, A.J.; Mouhyi, J.; Dohan, D.M. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part IV: Clinical effects on tissue healing. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2006, 101, e56–e60. [Google Scholar] [CrossRef]
- [19] Alqahtani A M, Moorehead R, Asencio I O. Guided Tissue and Bone Regeneration Membranes: A Review of Biomaterials and Techniques for Periodontal Treatments. Polymers. 2023;15(16):3355. doi:10.3390/polym15163355.
- [20] Xu T, Xie K, Wang C, Ivanovski S, Zhou Y. Immunomodulatory Nanotherapeutic Approaches for Periodontal Tissue Regeneration. Nanoscale. 2023;15(10):5992-6008. doi:10.1039/D2NR06149J
- [21] Strategies of Cell and Cell-Free Therapies for Periodontal Regeneration: The State of the Art. Stem Cell Research & Therapy. 2022;13:565. doi:10.1186/s13287-022-03225-z.
- [22] Mohammad Mirzapour S, Jalali F. Stem cell therapy for regenerating periodontal bony defects: A narrative review. J Adv Periodontol Implant Dent. 2025 Mar 3;17(1):1-14. doi:

- 10.34172/japid.025.3749. PMID: 40265031; PMCID: PMC12010474.
- [23] Wen, S., Zheng, X., Yin, W. et al. Dental stem cell dynamics in periodontal ligament regeneration: from mechanism to application. Stem Cell Res Ther 15, 389 (2024). https://doi.org/10.1186/s13287-024-04003-9
- [24] Wang T, Zhou Y, Zhang W, Xue Y, Xiao Z, Zhou Y, Peng X. Exosomes and exosome composite scaffolds in periodontal tissue engineering. Front Bioeng Biotechnol. 2024 Jan 18; 11:1287714. doi: 10.3389/fbioe.2023.1287714. PMID: 38304105; PMCID: PMC10831513.
- [25] Zhou, L., Cai, W., Zhang, Y. et al. Therapeutic effect of mesenchymal stem cell-derived exosome therapy for periodontal regeneration: a systematic review and meta-analysis of preclinical trials. J Orthop Surg Res 20, 27 (2025). https://doi.org/10.1186/s13018-024-05403-6
- [26] Figueiredo TM, Do Amaral GCLS, Bezerra GN, Nakao LYS, Villar CC. Three-dimensionalprinted scaffolds for periodontal regeneration: A systematic review. J Indian Soc Periodontol. 2023 Sep-Oct;27(5):451-460. doi: 10.4103/jisp.jisp_350_22. Epub 2023 Sep 1. PMID: 37781321; PMCID: PMC10538520.
- [27] Davidopoulou S, Karakostas P, Batas L, Barmpalexis P, Assimopoulou A, Angelopoulos C, Tsalikis L. Multidimensional 3D-Printed Scaffolds and Regeneration of Intrabony Periodontal Defects: A Systematic Review. J Funct Biomater. 2024 Feb 15;15(2):44. doi: 10.3390/jfb15020044. PMID: 38391897; PMCID: PMC10889986.
- [28] Pranathi V, Koduganti RR, Muthyala S, Kanchanapally SP, Muthyala N, Shingade V. Evaluation of Biomaterials in Periodontal Regeneration: A Literature Review. Cureus. 2024 Dec 12;16(12):e75618. doi: 10.7759/cureus.75618. PMID: 39803136; PMCID: PMCI1724908.
- [29] Ruijianghan Shi, Yujie Zhu, Weitong Lu, Ruohan Zhai, Mi Zhou, Sirong Shi and Yang Chen State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China. Email: sirongshi@scu.edu.cn;

- srjh15088429156@126.com; zvj13668024814@163.com
- [30] Zou, Y., Xie, Q., Lin, J., Dong, H., Zhuang, X., Xian, R., ... Li, S. (2025). Immunomodulatory Effects and Mechanisms of Two-Dimensional Black Phosphorus on Macrophage Polarization and Bone Regeneration. International Journal of Nanomedicine, 20, 4337–4355. https://doi.org/10.2147/IJN.S508309
- [31] Chen, H., Wang, Y., Lai, Y., Meng, C., Ning, X., Xu, T., Song, G., Zhang, Y., Lin, Y., & Han, B. (2025). Advances of 3D bioprinting technology for periodontal tissue regeneration. IScience, 28(6), 112532. https://doi.org/10.1016/j.isci.2025.112532
- [32] Liu Y, Guo L, Li X, Liu S, Du J, Xu J, Hu J, Liu Y. Challenges and Tissue Engineering Strategies of Periodontal-Guided Tissue Regeneration. Tissue Eng Part C Methods. 2022 Aug;28(8):405-419. doi: 10.1089/ten.TEC.2022.0106. PMID: 35838120.
- [33] Ishikawa I, Iwata T, Washio K, Okano T, Nagasawa T, Iwasaki K, Ando T. Cell sheet engineering and other novel cell-based approaches periodontal regeneration. to 2009;51:220-38. Periodontol 2000. doi: 10.1111/j.1600-0757.2009.00312.x. PMID: 19878477.
- [34] Bharuka T, Reche A. Advancements in Periodontal Regeneration: A Comprehensive Review of Stem Cell Therapy. Cureus. 2024 Feb 13;16(2):e54115. doi: 10.7759/cureus.54115. PMID: 38487109; PMCID: PMC10938178.
- [35] Kang MK, Heo SH, Yoon JK. In-Stent Re-Endothelialization Strategies: Cells, Extracellular Matrix, and Extracellular Vesicles. Tissue Eng Part B Rev. 2025 Aug;31(4):317-330. doi: 10.1089/ten.TEB.2024.0178. Epub 2024 Sep 12. PMID: 39166272.
- [36] Wang L, et al. Endothelial cell-based co-culture systems for enhanced periodontal angiogenesis. Biomaterials. 2023. Front. Cell Dev. Biol., 06 May 2024 Sec. Cell Growth and Division Volume 12 2024 | https://doi.org/10.3389/fcell.2024.1378035
- [37] Silva TA, Garlet GP, Fukada SY, Silva JS, Cunha FQ. Chemokines in Oral Inflammatory Diseases: Apical Periodontitis and Periodontal Disease.

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

- Journal of Dental Research. 2007;86(4):306-319. doi:10.1177/154405910708600403
- [38] Advances in the research of immunomodulatory mechanism of mesenchymal stromal/stem cells on periodontal tissue regeneration. Frontiers in Immunology. 2025. DOI: 10.3389/fimmu.2024.1449411.
- [39] Chen H, Song G, Xu T, Meng C, Zhang Y, Xin T, Yu T, Lin Y, Han B. Biomaterial Scaffolds for Periodontal Tissue Engineering. J Funct Biomater. 2024 Aug 20;15(8):233. doi: 10.3390/jfb15080233. PMID: 39194671; PMCID: PMC11355167.
- [40] Santos MS, Silva JC, Carvalho MS. Hierarchical biomaterial scaffolds for periodontal tissue engineering: recent progress and current challenges. International Journal of Molecular Sciences. 2024;25(16):8562. doi:10.3390/ijms25168562.
- [41] Li M, Lv J, Yang Y, Cheng G, Guo S, Liu C, Ding Y. Advances of hydrogel therapy in periodontal regeneration a materials perspective review. Gels. 2022;8(10):624. doi:10.3390/gels8100624.
- [42] Figueiredo TDM, Do Amaral GCLS, Bezerra GN, Nakao LYS, Villar CC. Three-dimensionalprinted scaffolds for periodontal regeneration: a systematic review. Journal of Indian Society of Periodontology. 2023;27(5):451–460. doi:10.4103/jisp.jisp 350 22.
- [43] Zong C, Bronckaers A, Willems G, He H. Nanomaterials for periodontal tissue regeneration: progress, challenges and future perspectives. Journal of Functional Biomaterials. 2023;14:290. doi:10.3390/jfb14060290.
- [44] Chen S, Huang X. Nanomaterials in scaffolds for periodontal tissue engineering: frontiers and prospects. Bioengineering. 2022;9(9):431. doi:10.3390/bioengineering9090431.
- [45] Sun H, Luan J, Dong S. Hydrogels promote periodontal regeneration. Frontiers in Bioengineering and Biotechnology. 2024; (Article) 1411494. doi:10.3389/fbioe.2024.1411494.
- [46] Wang D, Li Q, Xiao C, Wang H, Dong S. Nanoparticles in periodontitis therapy: a review of the current situation. International Journal of Nanomedicine. 2024;2024:6857–6893. doi:10.2147/IJN.S465089.

- [47] Chen S, Huang X. Nanomaterials in scaffolds for periodontal tissue engineering: Bioengineering. 2022; 9:431. doi:10.3390/bioengineering9090431. (note: included as a second scaffold-focused reference because it comprehensively reviews nanomaterials in scaffold design replace/omit as you prefer)
- [48] Santos MS, Carvalho MS, Silva JC. Recent advances on electrospun nanofibers for periodontal regeneration. Nanomaterials (Basel). 2023;13(8):1307. doi:10.3390/nano13081307.