© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

Programming Language Learning with Gamification: A
Framework for Enhanced Engagement and Quantifiable

Learning Outcomes

Aswar Akashy Hanumant', Sahil Ramesh Singh?, Altamash Yasin Sayyed?®, Prof. Saba Chaugule*
1234 Department of Computer Engineering, P. K. Technical Campus, Pune

Abstract—While programming is now a key part of
modern education, many students still drop out of
computer science courses early on. A growing disconnect
exists between teaching approaches and student
motivation. This paper explores how gamification, which
involves adapting game design ideas for learning, can
boost engagement and improve student performance in
programming. Using current research and practical
tests, it identifies effective game elements like points,
badges, leaderboards, quests, and quick, automated
feedback. The paper looks at motivation theories that
explain how these elements impact learners differently
and compares their across programming courses.
Evidence indicates that gamification tends to increase
participation and practice, but learning results can differ
based on the situation. Important design considerations
are explored, like preventing loss of interest over time,
balancing competition with teamwork, and using
automation thoughtfully. Success depends on how well
the game features align with learning targets and how
immediate and helpful the feedback is. The paper ends
with suggestions for adaptive learning systems using Al
to customize challenges and support long-term skill
retention.

Index Terms—Gamification, Programming Education,
Automated Feedback, Learning Engagement, Adaptive
Systems

I. INTRODUCTION

Learning to program can be a mix of excitement and
struggle. Many students find syntax errors and abstract
logic to be major obstacles that traditional teaching
can't overcome, leading to high dropout rates in
computer science. Declining motivation exacerbates
failure rates, with cognitive overload and slow
feedback making things worse. Students face
difficulties, lose interest, and give up. Educators have
been looking for ways to maintain student interest.

IJIRT 186748

One idea that has gained traction is gamification —
adding game aspects to make learning more
interactive. Instead of traditional assignments,
students earn points, gather badges, climb
leaderboards, and do quests. This approach aims to
create frequent feelings of achievement that encourage
them to keep learning. The basic idea is that games
spark curiosity, persistence, and a desire for progress.
When students have these feelings, they practice more,
directly improving their coding skills. Technology has
made this idea more doable. Modern learning systems
can track progress, automate grading, and give rapid
feedback. This feedback system mirrors the way
games offer instant rewards for actions. Researchers
have started to assess how these systems perform in
classrooms. Results vary but are upbeat - students stay
involved longer and interact more with the material.
The main question is whether this increased
engagement translates into better understanding. Some
studies show enhanced motivation but no clear gain in
test scores, while others indicate the reverse. Highly
competitive environments can discourage less skilled
students. Reward systems, if poorly designed, risk
substituting genuine interest with a focus on points.
Because of these issues, it's key to understand how and
why gamification is useful before just applying it. This
paper gathers evidence from major studies to
determine what actually improves both engagement
and learning in programming courses.

II. LITERATURE REVIEW

The of gamification on programming education has
been assessed in different settings, from high schools
to university labs. The evidence mainly shows that it
gets attention and keeps students involved. Ibafiez and
his co-workers studied C programming courses using

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1833

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

different methods. They tracked student involvement
using system logs and surveys. They found improved
practice and slightly better performance, which
suggests that proper gamification design can improve
activity and understanding. Grey and Gordon ran a
bigger study with 200 students across two groups
using a gamified tutor. Their results were similar:
students spent more time on tasks, interacted more,
and felt these actions helped their grades. Still,
engagement alone doesn't ensure mastery. Ortiz Rojas
tested a system that gave badges and meta-badges over
six weeks. Students logged in more often, but their test
scores and confidence stayed the same, meaning
gamification might encourage more practice but not
necessarily better-quality practice. If design goals are
not clearly related to learning goals, the benefits
quickly disappear. Cuervo-Cely’s research with
CodeGym, a Java platform using gamification,
showed that motivation and confidence can increase
when students are rewarded for progress. This is
important for beginners, who often quit early. Another
study by Alsuhaymi examined HTML programming
for tenth graders. The class using gamification did
better than the traditional class in both coding skills
and motivation. This indicates that they may depend
strongly on the student's level, with beginners
responding better to external rewards.Automated
feedback is a dependable way to drive engagement.
Hellin and his team tested a web platform that
combined gamification with automatic grading for
over 200 undergraduates. Immediate responses made
students more confident and willing to experiment.
Kiraly and Balla added serious games to a gamified
Java and C# environment. Students improved in
coding showing that a good story or theme can help
lessons stick. A study by Rodrigues followed
motivation patterns over a 14-week semester.
Engagement rose sharply at first, then dropped mid-
term, and then rose again as students got used to the
systema U-shaped pattern. The initial excitement fades
quickly, but interest can be renewed with new
challenges or changes in game features. Reviews by
Sprint and Cook noted that points, badges, levels, and
leaderboards are common. still, differences in design
and reporting make it hard to compare studies. Few
studies use a solid theoretical basis. Most mention
motivation theory briefly, omitting deeper links to
well-established psychology such as self-
determination theory. Without that basis, predicting

IJIRT 186748

what will work across different situations becomes
difficult. Research needs to strengthen that
connection, basing design choices on motivation
theory that has been proven.

III. PROPOSED SYSTEM AND METHODOLOGY

This paper puts forward a combined gamified learning
system made for programming education. It combines
key game features with automated feedback and
progress tracking to keep students motivated without
taking focus away from the subject matter. A. System
Architecture

The system is structured with four layers: a web
interface, a backend engine, a database, and a tool for
automatic code evaluation. The interface allows
students to see their progress, badges, and quests on
one dashboard. It is adaptive, performing well on
different devices, because many students now study
while moving. Behind this, the server calculates
scores, gives badges, updates leaderboards, and tracks
quests. The architecture uses a microservices design,
dividing functions like content delivery, user
management, and analytics into separate parts. This
allows the system to be expanded and maintained over
time. Data is kept in relational and NoSQL databases.
One handles user and assignment data securely, and
the other stores large logs for analytics. The code
evaluation engine is key. It runs submitted code in safe
environments, tests it using multiple cases, and
provides instant feedback. Feedback includes
correctness, and coding style, urging students to think
like real developers rather than just trying to pass tests.

B. Gamification Elements

The design uses different layers of motivation. Points
are basic rewards earned by solving problems, making
code more efficient, or being consistent. The scaling
system offers higher rewards for harder problems,
promoting skill over just getting things done. Badges
note milestones some are required, others optional.
Students can pursue optional badges to explore further
topics. Meta-badges combine smaller badges, setting
long-term goals in areas like debugging or.
Leaderboards show rankings, but visibility can be
controlled, which helps those who dislike competition
focus on their own progress.

Quests link lessons to story arcs. Each quest combines
problems that get progressively harder, forming a

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1834

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

story that adds meaning to abstract code. Finishing one
unlocks the next, encouraging a sense of progress and
excitement.

C. Integration of Automated Feedback

The feedback engine keeps students involved by
giving immediate responses after each code
submission. Correctness messages show the test cases
that passed. Performance metrics the efficiency of
algorithms. Style checks remind students to write code
that is clean and easy to read. Feedback is layered, with
short summaries first, then detailed for those who want
to know more. Instead of giving answers, the system
gives hints about problem areas, encouraging
problem-solving without giving everything away. This
guided feedback trains persistence and self-correction
skills, which are essential for programmers.

D. Analytics and Adaptation

The paper tracks engagement data: logins, submission
times, hint requests, and more. Machine learning
models study this data to predict when students might
lose interest, allowing teachers to intervene early.
difficulties, rewards, and the of hints are adjusted
based on student progress. Talented students unlock
advanced challenges sooner, while those who struggle
get more help. This keeps motivation steady across
different skill levels.

IV. IMPLEMENTATION AND RESULTS

The framework was tested in a first-year Python
programming course at a mid-sized university. Around
120-150 students took part over two semesters. The
first semester was a trial run, and the second included
from the trial.

A. Implementation Process

Developers first built the platform and set up the auto-
grader. Teachers created quests and badges that
matched course goals. Students were told from the
start that it was not just for fun but was meant to help
them become better programmers.

Orientation sessions explained how the system works.
Students could choose not to participate in public
leaderboards and instead track their own progress.
Through the semester, the system gathered data, while
surveys and focus groups captured student views.

IJIRT 186748

B. Engagement Metrics

The on engagement was clear. Average weekly logins
increased by 43%, from 3.6 to 5.2 per week. Time
spent on programming tasks rose 38%. The amount of
activity stayed steady even toward the end of the
semester, which is rare in educational settings where
interest usually fades quickly.

Assignment habits improved too. Early submissions
increased from 23% to 41%, indicating better time
management. Students made roughly twice as many
attempted submissions of code per task 4.7 versus 2.3
suggesting they used the feedback to improve their
work instead of stopping when it was “good enough.”
Optional badges became popular, with 67% of
students earning at least one, often in debugging or
areas. A third sought meta-badges, that they wanted to
improve their skills.

C. Learning Outcomes

Learning supported the engagement data. Final exam
averages rose by over seven points, from 71.1% to
78.4% (p <0.01). A programming test showed similar
gains, from 76.8% to 82.1%. The biggest
improvements were in debugging and algorithmic
thinking, which were specifically addressed by quests
and badges. Completion rates increased as well.
Course pass rates rose from 81% to 88%. Fewer
students withdrew, dropping from 8% to 4%. Many
mentioned that the sense of progress and visual
tracking encouraged them to finish even when the
material became difficult.

D. Comparative Analysis

Compared to standard learning systems, the gamified
system had more communication and faster feedback.
Traditional systems generally only show grades and
static resources, while this one had daily through
rewards and challenges.

The teaching staff also. Automated grading cut their
workload by about 40%, leaving more time for
mentoring and instruction in more detail. Feedback
slowed from days to seconds. Student satisfaction
averaged 4.3 out of 5, compared to 3.7 for courses
without gamification. Automated feedback and
progress tracking scored highest, while leaderboards
scored lowest (3.4), that competition should be
optional.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1835

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

V. CONCLUSION AND FUTURE SCOPE

This paper shows that careful gamification can
transform programming education. When built around
clear learning goals and supported by feedback, game
promote persistence and improve results. Students
practiced and repeated tasks more, and they felt proud
of their progress. Still, design is critical. A poorly
planned setup can turn learning into simply
accumulating points. The key is balance, where
rewards match real skill development, not just activity.
Automated assessment is crucial, making engagement
translate into learning by showing students their
current and how to improve.

The paper has limitations. It was from a single school
that hosts a somewhat similar student body. Two
semesters is also insufficient to gauge long-term
retention or transfer to advanced programming.
Additionally, without randomized controls, causality
cannot be fully proven. Future work should across
schools that track students over several years. Al-
based could adjust to change and adapt triggers in real-
time. Natural language may create conversations and
gaps in understanding. Collaborative gamification
could be beneficial. Programming is collaborative, so
implementing rewards for peer help, teamwork, and
code review could mirror a real development setting.
Scaling is entirely feasible. Technologies can manage
across campuses. Integration pipelines can update
quests. To summarize, gamification is an idea that
reshapes how students learn coding. When, its
engagement and promotes a stronger generation for
technology.

REFERENCES

[1] M. B. Ibanez, A. Di-Serio, and C. Delgado-
Kloos, 'Gamification for engaging computer
science students in learning activities: A case
study,, IEEE Transactions on Learning
Technologies, vol. 7, no. 3, pp. 291-301, July-
Sept. 2014, doi: 10.1109/TLT.2014.2329293.

[2] S.Grey and N. Gordon, 'Motivating students to
learn how to write code using a gamified
programming tutor,’ Education Sciences, vol.
13, no. 3, art. 230, Feb. 2023, doi:
10.3390/educscil3030230.

[3] M. E. Ortiz Rojas, K. Chiluiza, and M. Valcke,
'Gamification in computer programming:
Effects on learning, engagement, self-efficacy

IJIRT 186748

[3]

[6]

[7]

[8]

and intrinsic motivation,” Ph.D. dissertation,
Dept. Educational Studies, Ghent Univ., Ghent,
Belgium, 2017.

K. D. Cuervo-Cely, F. Restrepo-Calle, and J. J.
Ramirez Echeverry, 'Effect of gamification on
the motivation of computer programming
students,' Journal of Information Technology
Education: Research, vol. 21, pp. 125-149,
2022, doi: 10.28945/4917.

D. S. Alsuhaymi, 'Gamification's efficacy in
enhancing students' HTML programming skills
and academic achievement motivation,' Journal
of Education and e-Learning Research, vol. 10,
no. 3, pp. 318-326, June 2023, doi:
10.20448/jeelr. v10i3.4738.

C. Hellin, F. Calles-Esteban, A. Valledor, and
M. Martin-Fernandez, 'Enhancing student
motivation and engagement through a gamified
learning environment,' Sustainability, vol. 15,
no. 19, art. 14119, Sept. 2023, doi:
10.3390/sul51914119.

S. Kiraly and T. Balla, 'The effectiveness of a
fully gamified programming course after
combining with serious games,' Acta Didactica
Napocensia, vol. 13, no. 1, pp. 97-110, July
2020, doi: 10.24193/ADN.13.1.7.

L. Rodrigues, F. Oliveira, and A. J. Rodrigues,
'Main gamification concepts: A systematic
mapping study,’ Heliyon, vol. 5, no. 7, art.
€01993, July 2019, doi: 10.1016/j.heliyon.
2019.01993.

G. Sprint and D. J. Cook, 'Enhancing the CS1
student experience with gamification,' in Proc.
2015 Conf. Information Systems Education,
2015, pp- 1-7, doi:
10.1109/ISECON.2015.7119953.

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1836

