
© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186748 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1833

Programming Language Learning with Gamification: A

Framework for Enhanced Engagement and Quantifiable

Learning Outcomes

Aswar Akashy Hanumant1, Sahil Ramesh Singh2, Altamash Yasin Sayyed3, Prof. Saba Chaugule4
1,2,3,4Department of Computer Engineering, P. K. Technical Campus, Pune

Abstract—While programming is now a key part of

modern education, many students still drop out of

computer science courses early on. A growing disconnect

exists between teaching approaches and student

motivation. This paper explores how gamification, which

involves adapting game design ideas for learning, can

boost engagement and improve student performance in

programming. Using current research and practical

tests, it identifies effective game elements like points,

badges, leaderboards, quests, and quick, automated

feedback. The paper looks at motivation theories that

explain how these elements impact learners differently

and compares their across programming courses.

Evidence indicates that gamification tends to increase

participation and practice, but learning results can differ

based on the situation. Important design considerations

are explored, like preventing loss of interest over time,

balancing competition with teamwork, and using

automation thoughtfully. Success depends on how well

the game features align with learning targets and how

immediate and helpful the feedback is. The paper ends

with suggestions for adaptive learning systems using AI

to customize challenges and support long-term skill

retention.

Index Terms—Gamification, Programming Education,

Automated Feedback, Learning Engagement, Adaptive

Systems

I. INTRODUCTION

Learning to program can be a mix of excitement and

struggle. Many students find syntax errors and abstract

logic to be major obstacles that traditional teaching

can't overcome, leading to high dropout rates in

computer science. Declining motivation exacerbates

failure rates, with cognitive overload and slow

feedback making things worse. Students face

difficulties, lose interest, and give up. Educators have

been looking for ways to maintain student interest.

One idea that has gained traction is gamification –

adding game aspects to make learning more

interactive. Instead of traditional assignments,

students earn points, gather badges, climb

leaderboards, and do quests. This approach aims to

create frequent feelings of achievement that encourage

them to keep learning. The basic idea is that games

spark curiosity, persistence, and a desire for progress.

When students have these feelings, they practice more,

directly improving their coding skills. Technology has

made this idea more doable. Modern learning systems

can track progress, automate grading, and give rapid

feedback. This feedback system mirrors the way

games offer instant rewards for actions. Researchers

have started to assess how these systems perform in

classrooms. Results vary but are upbeat - students stay

involved longer and interact more with the material.

The main question is whether this increased

engagement translates into better understanding. Some

studies show enhanced motivation but no clear gain in

test scores, while others indicate the reverse. Highly

competitive environments can discourage less skilled

students. Reward systems, if poorly designed, risk

substituting genuine interest with a focus on points.

Because of these issues, it's key to understand how and

why gamification is useful before just applying it. This

paper gathers evidence from major studies to

determine what actually improves both engagement

and learning in programming courses.

II. LITERATURE REVIEW

The of gamification on programming education has

been assessed in different settings, from high schools

to university labs. The evidence mainly shows that it

gets attention and keeps students involved. Ibáñez and

his co-workers studied C programming courses using

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186748 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1834

different methods. They tracked student involvement

using system logs and surveys. They found improved

practice and slightly better performance, which

suggests that proper gamification design can improve

activity and understanding. Grey and Gordon ran a

bigger study with 200 students across two groups

using a gamified tutor. Their results were similar:

students spent more time on tasks, interacted more,

and felt these actions helped their grades. Still,

engagement alone doesn't ensure mastery. Ortiz Rojas

tested a system that gave badges and meta-badges over

six weeks. Students logged in more often, but their test

scores and confidence stayed the same, meaning

gamification might encourage more practice but not

necessarily better-quality practice. If design goals are

not clearly related to learning goals, the benefits

quickly disappear. Cuervo-Cely’s research with

CodeGym, a Java platform using gamification,

showed that motivation and confidence can increase

when students are rewarded for progress. This is

important for beginners, who often quit early. Another

study by Alsuhaymi examined HTML programming

for tenth graders. The class using gamification did

better than the traditional class in both coding skills

and motivation. This indicates that they may depend

strongly on the student's level, with beginners

responding better to external rewards.Automated

feedback is a dependable way to drive engagement.

Hellin and his team tested a web platform that

combined gamification with automatic grading for

over 200 undergraduates. Immediate responses made

students more confident and willing to experiment.

Király and Balla added serious games to a gamified

Java and C# environment. Students improved in

coding showing that a good story or theme can help

lessons stick. A study by Rodrigues followed

motivation patterns over a 14-week semester.

Engagement rose sharply at first, then dropped mid-

term, and then rose again as students got used to the

systema U-shaped pattern. The initial excitement fades

quickly, but interest can be renewed with new

challenges or changes in game features. Reviews by

Sprint and Cook noted that points, badges, levels, and

leaderboards are common. still, differences in design

and reporting make it hard to compare studies. Few

studies use a solid theoretical basis. Most mention

motivation theory briefly, omitting deeper links to

well-established psychology such as self-

determination theory. Without that basis, predicting

what will work across different situations becomes

difficult. Research needs to strengthen that

connection, basing design choices on motivation

theory that has been proven.

III. PROPOSED SYSTEM AND METHODOLOGY

This paper puts forward a combined gamified learning

system made for programming education. It combines

key game features with automated feedback and

progress tracking to keep students motivated without

taking focus away from the subject matter. A. System

Architecture

The system is structured with four layers: a web

interface, a backend engine, a database, and a tool for

automatic code evaluation. The interface allows

students to see their progress, badges, and quests on

one dashboard. It is adaptive, performing well on

different devices, because many students now study

while moving. Behind this, the server calculates

scores, gives badges, updates leaderboards, and tracks

quests. The architecture uses a microservices design,

dividing functions like content delivery, user

management, and analytics into separate parts. This

allows the system to be expanded and maintained over

time. Data is kept in relational and NoSQL databases.

One handles user and assignment data securely, and

the other stores large logs for analytics. The code

evaluation engine is key. It runs submitted code in safe

environments, tests it using multiple cases, and

provides instant feedback. Feedback includes

correctness, and coding style, urging students to think

like real developers rather than just trying to pass tests.

B. Gamification Elements

The design uses different layers of motivation. Points

are basic rewards earned by solving problems, making

code more efficient, or being consistent. The scaling

system offers higher rewards for harder problems,

promoting skill over just getting things done. Badges

note milestones some are required, others optional.

Students can pursue optional badges to explore further

topics. Meta-badges combine smaller badges, setting

long-term goals in areas like debugging or.

Leaderboards show rankings, but visibility can be

controlled, which helps those who dislike competition

focus on their own progress.

Quests link lessons to story arcs. Each quest combines

problems that get progressively harder, forming a

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186748 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1835

story that adds meaning to abstract code. Finishing one

unlocks the next, encouraging a sense of progress and

excitement.

C. Integration of Automated Feedback

The feedback engine keeps students involved by

giving immediate responses after each code

submission. Correctness messages show the test cases

that passed. Performance metrics the efficiency of

algorithms. Style checks remind students to write code

that is clean and easy to read. Feedback is layered, with

short summaries first, then detailed for those who want

to know more. Instead of giving answers, the system

gives hints about problem areas, encouraging

problem-solving without giving everything away. This

guided feedback trains persistence and self-correction

skills, which are essential for programmers.

D. Analytics and Adaptation

The paper tracks engagement data: logins, submission

times, hint requests, and more. Machine learning

models study this data to predict when students might

lose interest, allowing teachers to intervene early.

difficulties, rewards, and the of hints are adjusted

based on student progress. Talented students unlock

advanced challenges sooner, while those who struggle

get more help. This keeps motivation steady across

different skill levels.

IV. IMPLEMENTATION AND RESULTS

The framework was tested in a first-year Python

programming course at a mid-sized university. Around

120–150 students took part over two semesters. The

first semester was a trial run, and the second included

from the trial.

A. Implementation Process

Developers first built the platform and set up the auto-

grader. Teachers created quests and badges that

matched course goals. Students were told from the

start that it was not just for fun but was meant to help

them become better programmers.

Orientation sessions explained how the system works.

Students could choose not to participate in public

leaderboards and instead track their own progress.

Through the semester, the system gathered data, while

surveys and focus groups captured student views.

B. Engagement Metrics

The on engagement was clear. Average weekly logins

increased by 43%, from 3.6 to 5.2 per week. Time

spent on programming tasks rose 38%. The amount of

activity stayed steady even toward the end of the

semester, which is rare in educational settings where

interest usually fades quickly.

 Assignment habits improved too. Early submissions

increased from 23% to 41%, indicating better time

management. Students made roughly twice as many

attempted submissions of code per task 4.7 versus 2.3

suggesting they used the feedback to improve their

work instead of stopping when it was “good enough.”

Optional badges became popular, with 67% of

students earning at least one, often in debugging or

areas. A third sought meta-badges, that they wanted to

improve their skills.

C. Learning Outcomes

Learning supported the engagement data. Final exam

averages rose by over seven points, from 71.1% to

78.4% (p < 0.01). A programming test showed similar

gains, from 76.8% to 82.1%. The biggest

improvements were in debugging and algorithmic

thinking, which were specifically addressed by quests

and badges. Completion rates increased as well.

Course pass rates rose from 81% to 88%. Fewer

students withdrew, dropping from 8% to 4%. Many

mentioned that the sense of progress and visual

tracking encouraged them to finish even when the

material became difficult.

D. Comparative Analysis

Compared to standard learning systems, the gamified

system had more communication and faster feedback.

Traditional systems generally only show grades and

static resources, while this one had daily through

rewards and challenges.

The teaching staff also. Automated grading cut their

workload by about 40%, leaving more time for

mentoring and instruction in more detail. Feedback

slowed from days to seconds. Student satisfaction

averaged 4.3 out of 5, compared to 3.7 for courses

without gamification. Automated feedback and

progress tracking scored highest, while leaderboards

scored lowest (3.4), that competition should be

optional.

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186748 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1836

V. CONCLUSION AND FUTURE SCOPE

This paper shows that careful gamification can

transform programming education. When built around

clear learning goals and supported by feedback, game

promote persistence and improve results. Students

practiced and repeated tasks more, and they felt proud

of their progress. Still, design is critical. A poorly

planned setup can turn learning into simply

accumulating points. The key is balance, where

rewards match real skill development, not just activity.

Automated assessment is crucial, making engagement

translate into learning by showing students their

current and how to improve.

The paper has limitations. It was from a single school

that hosts a somewhat similar student body. Two

semesters is also insufficient to gauge long-term

retention or transfer to advanced programming.

Additionally, without randomized controls, causality

cannot be fully proven. Future work should across

schools that track students over several years. AI-

based could adjust to change and adapt triggers in real-

time. Natural language may create conversations and

gaps in understanding. Collaborative gamification

could be beneficial. Programming is collaborative, so

implementing rewards for peer help, teamwork, and

code review could mirror a real development setting.

Scaling is entirely feasible. Technologies can manage

across campuses. Integration pipelines can update

quests. To summarize, gamification is an idea that

reshapes how students learn coding. When, its

engagement and promotes a stronger generation for

technology.

REFERENCES

[1] M. B. Ibáñez, A. Di-Serio, and C. Delgado-

Kloos, 'Gamification for engaging computer

science students in learning activities: A case

study,' IEEE Transactions on Learning

Technologies, vol. 7, no. 3, pp. 291-301, July-

Sept. 2014, doi: 10.1109/TLT.2014.2329293.

[2] S. Grey and N. Gordon, 'Motivating students to

learn how to write code using a gamified

programming tutor,' Education Sciences, vol.

13, no. 3, art. 230, Feb. 2023, doi:

10.3390/educsci13030230.

[3] M. E. Ortiz Rojas, K. Chiluiza, and M. Valcke,

'Gamification in computer programming:

Effects on learning, engagement, self-efficacy

and intrinsic motivation,' Ph.D. dissertation,

Dept. Educational Studies, Ghent Univ., Ghent,

Belgium, 2017.

[4] K. D. Cuervo-Cely, F. Restrepo-Calle, and J. J.

Ramírez Echeverry, 'Effect of gamification on

the motivation of computer programming

students,' Journal of Information Technology

Education: Research, vol. 21, pp. 125-149,

2022, doi: 10.28945/4917.

[5] D. S. Alsuhaymi, 'Gamification's efficacy in

enhancing students' HTML programming skills

and academic achievement motivation,' Journal

of Education and e-Learning Research, vol. 10,

no. 3, pp. 318-326, June 2023, doi:

10.20448/jeelr. v10i3.4738.

[6] C. Hellin, F. Calles-Esteban, A. Valledor, and

M. Martín-Fernández, 'Enhancing student

motivation and engagement through a gamified

learning environment,' Sustainability, vol. 15,

no. 19, art. 14119, Sept. 2023, doi:

10.3390/su151914119.

[7] S. Király and T. Balla, 'The effectiveness of a

fully gamified programming course after

combining with serious games,' Acta Didactica

Napocensia, vol. 13, no. 1, pp. 97-110, July

2020, doi: 10.24193/ADN.13.1.7.

[8] L. Rodrigues, F. Oliveira, and A. J. Rodrigues,

'Main gamification concepts: A systematic

mapping study,' Heliyon, vol. 5, no. 7, art.

e01993, July 2019, doi: 10.1016/j.heliyon.

2019.e01993.

[9] G. Sprint and D. J. Cook, 'Enhancing the CS1

student experience with gamification,' in Proc.

2015 Conf. Information Systems Education,

2015, pp. 1-7, doi:

10.1109/ISECON.2015.7119953.

