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Abstract—Ensuring high product quality in modern 

automotive manufacturing requires rapid and accurate 

detection of defects across multiple production stages. 

Traditional manual inspection methods are time-

consuming, inconsistent, and ineffective in meeting real-

time production demands.This study presents a machine 

learning–based approach for real-time defect detection 

in multistage automotive manufacturing environments. 

The proposed system integrates computer vision and 

deep learning models with sensor-based data acquisition 

to identify, classify, and localize defects at various stages 

of production. A multi-stage data fusion strategy is 

employed to enhance accuracy, combining visual and 

process parameters for robust defect prediction. The 

implementation leverages edge computing for on-site 

inference, ensuring minimal latency and seamless 

integration into existing production lines. Experimental 

results demonstrate that the proposed approach achieves 

significant improvements in defect detection accuracy, 

response time, and process efficiency compared to 

conventional methods. This framework enables 

predictive quality control, reduces production downtime, 

and supports the realization of Industry 4.0–driven 

smart manufacturing systems. 

 

I. INTRODUCTION 

 

In the modern era of industrial automation, the 

automotive manufacturing sector has become one of 

the most complex and precision-driven industries in 

the world. With increasing global competition, 

stringent safety standards, and rising customer 

expectations, maintaining product quality while 

ensuring high production efficiency has become a 

major challenge for manufacturers. Even a minor 

defect in a vehicle component can lead to serious 

consequences, including large-scale recalls, customer 

dissatisfaction, and financial loss. Therefore, real-time 

defect detection and prevention have become crucial 

elements in achieving sustainable and smart 

manufacturing goals. 

Traditionally, quality inspection in automotive 

production has been performed either manually or 

through basic rule-based automation systems. Manual 

inspection, though flexible, is time-consuming, 

subjective, and prone to human error, especially in 

large-scale production environments where thousands 

of parts are produced daily. Rule-based inspection 

systems, on the other hand, rely on predefined 

thresholds and patterns, making them rigid and often 

incapable of handling the complex and evolving nature 

of manufacturing processes. As a result, these 

conventional methods fail to achieve the speed, 

precision, and adaptability demanded by today’s 

automotive industry. 

The advent of Industry 4.0 has revolutionized 

manufacturing systems through the integration of 

cyber-physical systems (CPS), the Internet of Things 

(IoT), artificial intelligence (AI), and machine 

learning (ML). Among these, machine learning has 

emerged as a key enabler of intelligent manufacturing. 

ML algorithms can analyze massive amounts of sensor 

and visual data, identify patterns, and make 

predictions or decisions without explicit human 

intervention. When applied to defect detection, 

machine learning enables continuous learning and 

adaptation, allowing inspection systems to improve 

accuracy over time as more data is collected from 

production lines. 

Automotive manufacturing typically involves 

multistage production processes, including casting, 

machining, assembly, painting, and finishing. Each 

stage produces distinct data types such as surface 

images, temperature, vibration, pressure, or torque 

readings. Defects can arise at any of these stages and 

may propagate undetected to subsequent ones, leading 

to cumulative damage and higher costs. A robust 

defect detection system must therefore be capable of 

analyzing data across multiple stages, correlating 

diverse parameters, and identifying both visible and 
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hidden anomalies. This makes multistage defect 

detection a complex but essential research problem. 

 

II. LITERATURE SURVEY 

 

Sr. 

No. 

Paper Title Author 

Name 

Year 

1 A Cyber-Physical 

Systems Architecture 

for Industry 4.0-Based 

Manufacturing Systems 

J. Lee, B. 

Bagheri & 

H.-A. Kao 

2015 

2 Vision-Based Surface 

Inspection Using 

Support Vector 

Machines 

Y. Zhang 

& L. 

Zhao, 

2010 

3 Automated Quality 

Inspection Using 

Convolutional Neural 

Networks 

S. Li, Q. 

Wang & 

D. Chen 

2015 

4 Multimodal Deep 

Learning for Industrial 

Defect Detection Using 

Sensor Fusion 

Park, H. 

& Kim, S. 

2019 

5 Edge-Based Real-Time 

Defect Detection Using 

Lightweight CNNs 

K. Singh, 

A. Kumar 

& 

R.Gupta, 

2020 

6 Transfer Learning for 

Automotive Surface 

Defect Detection 

G. Chen, 

L. Wang 

& P. 

Zhang 

2021 

7 Explainable AI 

Techniques for Defect 

Diagnosis in 

Manufacturing 

T. 

Nguyen, J. 

Luo & D. 

Lee 

2022 

8 Predictive Quality 

Management in 

Multistage Automotive 

Production 

R. Patil & 

S. 

Deshmuk

h 

2022 

9 Integration of IoT and 

AI for Smart 

Manufacturing Quality 

Control 

M. Gupta 

& P. 

Sharma 

2024 

10 Automated Surface 

Defect Detection Using 

Machine Vision 

Y. Zhang 

& L. Zhao 

2008 

 

III. METHODOLOGY 

 

The proposed research aims to design a real-time 

defect detection system for multistage automotive 

manufacturing using machine learning and computer 

vision techniques. The primary objective is to create 

an automated inspection framework that can detect 

surface and structural defects across various 

production stages, thereby enhancing the quality, 

speed, and reliability of manufacturing processes. The 

methodology adopted for this system involves six 

major phases: data acquisition, data preprocessing, 

feature extraction, model training and validation, real-

time defect detection, and deployment with feedback 

integration. 

The first phase involves data acquisition from multiple 

sources within the manufacturing environment. Visual 

data is captured using high-resolution industrial 

cameras placed at critical production points such as 

stamping, welding, and assembly lines. These cameras 

continuously record images and videos of the 

components as they pass through the production 

stages. In addition to visual data, sensor-based data—

such as vibration, torque, pressure, and temperature 

readings is collected to monitor mechanical and 

environmental conditions. Each recorded sample is 

labeled as defective or non-defective under expert 

supervision, ensuring a high-quality annotated dataset 

for training the machine learning models. This data is 

securely stored in a centralized database or cloud 

environment to facilitate further processing. 

The next phase focuses on data preprocessing, an 

essential step to ensure data consistency and quality. 

Raw industrial data often contain noise, distortions, 

and incomplete records, which can significantly 

impact model performance. Image preprocessing is 

carried out using Gaussian and median filters to 

remove visual noise, followed by contrast 

enhancement and normalization to standardize the 

input data. Similarly, sensor data undergoes cleaning, 

resampling, and smoothing processes to eliminate 

outliers and align different data streams based on 

timestamps. Missing data points are imputed using 

interpolation, and data augmentation techniques such 

as rotation, flipping, and scaling are applied to the 

image dataset to improve model generalization and 

prevent overfitting. 

Following preprocessing, the feature extraction phase 

aims to identify critical attributes that distinguish 

defective products from non-defective ones. In this 

study, deep learning-based Convolutional Neural 

Networks (CNNs) are used to automatically extract 

complex visual patterns such as surface textures, 

cracks, and geometric inconsistencies from the image 
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data. Simultaneously, time-domain and frequency-

domain features are extracted from sensor signals to 

identify anomalies in machine behavior. A feature 

fusion approach is then adopted to integrate both 

visual and sensor-based features, enabling the model 

to achieve a more comprehensive understanding of 

product quality across multiple manufacturing stages. 

Once meaningful features are extracted, the model 

training and validation phase begins. Various 

supervised machine learning and deep learning 

algorithms are trained using the prepared dataset. 

CNN architectures such as ResNet and YOLOv8 are 

employed for image-based defect classification and 

localization, while algorithms like Random Forest and 

XGBoost are used for sensor-based anomaly 

detection. The dataset is divided into training (70%), 

validation (15%), and testing (15%) sets to ensure fair 

performance evaluation. Model optimization 

techniques, including learning rate scheduling, 

dropout regularization, and grid search, are applied to 

improve accuracy and prevent overfitting. 

Performance metrics such as accuracy, precision, 

recall, F1-score, and inference time are used to assess 

model efficiency and robustness. 

After model training, the system moves to the real-

time defect detection phase. The trained model is 

deployed on an edge computing device such as an 

NVIDIA Jetson Nano or an industrial-grade processor 

located directly on the factory floor. The device 

continuously receives image and sensor inputs, 

performs real-time inference, and classifies each 

component as defective or non-defective within 

milliseconds. Detected defects are highlighted with 

bounding boxes and confidence scores on a 

monitoring dashboard. The system also triggers alerts 

and logs detailed inspection results into a centralized 

monitoring portal. In addition, real-time dashboards 

display analytics such as defect rates, process 

efficiency, and machine performance trends to assist 

quality engineers in decision-making. 

The final phase involves system deployment and 

feedback integration. The developed model and 

dashboard are integrated into the Manufacturing 

Execution System (MES) or Supervisory Control and 

Data Acquisition (SCADA) platform for continuous 

operation. A feedback mechanism is implemented to 

ensure continuous improvement of the detection 

system. False positives and false negatives identified 

by quality inspectors are fed back into the dataset, and 

the model is periodically retrained with the updated 

data. This self-learning capability allows the system to 

adapt to new defect patterns and maintain consistent 

accuracy over time. 

The system architecture of the proposed framework 

includes five layers: an input layer for data capture via 

cameras and sensors; a processing layer for data 

cleaning and synchronization; an intelligence layer 

where the CNN 

and ML models perform feature extraction and 

classification; a decision layer that handles inference 

and alert generation; and a visualization layer 

comprising real-time dashboards for monitoring and 

analytics. The complete workflow can be summarized 

as: data acquisition → preprocessing → feature 

extraction → model training → real-time detection → 

feedback integration. 

To implement this framework, several tools and 

technologies are employed. The models are developed 

using Python, with machine learning libraries such as 

TensorFlow, PyTorch, and Scikit-learn, and image 

processing tools like OpenCV. Data storage and 

management utilize MySQL or MongoDB, while 

visualization dashboards are created using Grafana or 

Power BI. The deployment is performed on edge 

computing devices to minimize latency and ensure on-

site decision-making. 

 

IV. OBJECTIVE 

 

• Develop an ML-based Battery Management 

System (ML-BMS) specifically optimized for 

solar battery storage applications to improve 

monitoring, safety, and performance. 

• Enhance accuracy of State of Charge (SOC) and 

State of Health (SOH) estimation using advanced 

machine learning models such as BiLSTM, MLP, 

and attention-based deep learning architectures. 

• Analyze real-time and historical battery data 

(temperature, voltage, current, and 

charge/discharge cycles) to support precise 

battery condition assessment in dynamic solar 

environments. 

• Implement predictive safety mechanisms by 

detecting early thermal anomalies, overheating, 

and potential thermal runaway using 

unsupervised learning, clustering, and real-time 

classification techniques. 
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• Enable proactive battery control and protection by 

integrating predictive analytics into a real-time 

decision-making framework to prevent failures 

and extend battery lifespan. 

• Improve energy management efficiency in solar 

systems for residential, commercial, and utility-

scale installations through intelligent battery 

monitoring and predictive maintenance. 

• Advance sustainable energy technology by 

enhancing battery safety, reliability, and 

performance in renewable energy storage 

systems. 

 

V. PROBLEM DEFINATIONS 

 

In the modern automotive industry, maintaining 

consistent product quality across multiple stages of 

production is a critical challenge. Every vehicle 

component passes through several manufacturing 

processes such as casting, machining, welding, 

painting, and assembly. Each of these stages 

introduces potential sources of defects — including 

surface cracks, dents, dimensional inaccuracies, 

misalignments, and incomplete welds. Currently, most 

automotive manufacturing plants rely heavily on 

manual inspection methods or rule-based automation 

systems that are limited in scalability, accuracy, and 

speed. As a result, many defects go undetected during 

production, leading to product rejections, recalls, 

increased production costs, and customer 

dissatisfaction. 

The major problem lies in the inability to detect 

defects in real-time during the manufacturing process. 

Manual inspection is not only labor-intensive but also 

prone to human fatigue and subjectivity, resulting in 

inconsistent evaluations. Traditional automated 

systems, on the other hand, are often designed for 

specific defect types and fail to adapt to variations in 

product design, lighting conditions, or production 

environments. In large-scale manufacturing lines, 

where thousands of components are produced daily, 

even a small delay or misclassification in defect 

detection can cause significant financial and 

operational losses. 

Another critical issue is the lack of data integration 

across different production stages. Each 

manufacturing stage operates as an isolated unit, 

making it difficult to correlate process parameters (like 

temperature, pressure, or vibration) with final product 

quality. Consequently, identifying the root cause of 

defects becomes complex and time-consuming. In 

many cases, inspection data is not recorded 

systematically, resulting in loss of traceability and 

making process optimization extremely difficult. 

Moreover, the increasing complexity of automotive 

designs and the adoption of advanced materials and 

components further complicate the defect detection 

process. Conventional visual inspection systems often 

fail to detect micro-level or hidden defects that are 

visible only under certain lighting or angle conditions. 

The limitations of existing quality control systems thus 

pose a significant obstacle to achieving the desired 

levels of accuracy, efficiency, and reliability in 

manufacturing operations. 

From a technological standpoint, industries face 

challenges in real-time data processing and decision-

making. The massive amount of image and sensor data 

generated during production requires high-speed 

computing and efficient algorithms to analyze patterns 

instantly. Current systems that rely on centralized 

cloud computing often suffer from latency issues and 

cannot provide immediate feedback to the production 

line. This delay prevents real-time correction, leading 

to higher rejection rates and material wastage. 

Therefore, there is an urgent need for a smart, 

automated, and adaptive defect detection system that 

can perform real-time inspection across multiple 

manufacturing stages. Such a system should be 

capable of learning from large volumes of multi-modal 

data (images, sensors, and process logs), accurately 

identifying defects under varying conditions, and 

providing instant alerts for corrective actions. By 

leveraging machine learning and deep learning 

techniques, it is possible to design a robust framework 

that not only detects defects but also predicts potential 

failures before they occur 

This research addresses the following key problems: 

1. Inconsistent and inefficient manual inspection 

causing production delays and quality variation. 

2. Lack of real-time, automated defect detection 

across multiple production stages. 

3. Inability to integrate sensor and visual data, 

leading to poor defect traceability. 

4. High latency and limited scalability in existing 

centralized inspection systems. 

5. Absence of predictive capability to anticipate and 

prevent defects before occurrence. 
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To overcome these limitations, this study proposes a 

machine learning–based real-time defect detection 

framework that integrates visual inspection and sensor 

data analysis using advanced algorithms. The system 

will enable continuous monitoring, adaptive learning, 

and real-time feedback, thereby ensuring defect-free 

production and improving overall manufacturing 

efficiency. 
 

VI. ARCHITECTURE DIAGRAM 

 

 
Figure 1: System Architecture Diagram. 

 

Flow Chart 

 
 

VII. FUCTIONAL REQUIREMENTS 

 

1. Data Acquisition Functionality 

• The system shall capture high-resolution images 

of automotive components at multiple production 

stages (e.g., casting, welding, assembly). 

• It shall collect sensor-based data (vibration, 

torque, pressure, and temperature) from IoT-

enabled equipment. 

• The system shall automatically tag each dataset 

with timestamps, process stage, and machine ID. 

• It shall support real-time data transfer from the 

production line to the preprocessing module 

through IoT gateways or local edge networks. 
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2. Data Preprocessing Functionality 

• The system shall perform noise reduction, 

background removal, and data normalization on 

raw input data. 

• It shall synchronize image and sensor data using 

time-based alignment. 

• The preprocessing module shall handle data 

augmentation (rotation, flipping, scaling) to 

improve model performance. 

• It shall filter and correct missing or corrupted data 

automatically before training. 
 

3. Feature Extraction Functionality 

• The system shall extract key features from image 

data using Convolutional Neural Networks 

(CNNs) for detecting visual patterns such as 

cracks, dents, or deformities. 

• It shall extract statistical and frequency-based 

features from sensor data using signal processing 

techniques (FFT, PCA). 

• The system shall perform multi-modal feature 

fusion to combine image and sensor data, 

ensuring more accurate defect classification. 
 

4. Machine Learning Model Functionality 

• The system shall use supervised machine learning 

and deep learning algorithms (CNN, ResNet, 

YOLOv8, Random Forest, XGBoost) to train on 

historical defect data. 

• It shall classify products as defective or non-

defective, and further identify the type and 

location of the defect. 

• The system shall support model evaluation 

metrics such as accuracy, precision, recall, F1-

score, and latency. 

• It shall enable automatic model retraining based 

on new labeled data or user feedback. 
 

5. Real-Time Detection & Inference 

• The system shall process live data streams using 

edge computing to detect defects instantly without 

halting production. 

• It shall display the detected defect’s bounding 

box, classification label, and confidence score in 

real time. 

• The system shall generate instant alerts (visual 

and audible) to inform operators about defective 

components. 

• It shall log all inspection outcomes in a 

centralized database for traceability. 
 

6. Dashboard and Reporting Functionality 

• The system shall provide an interactive dashboard 

showing real-time production analytics, defect 

trends, and inspection summaries. 

• It shall allow authorized users (e.g., quality 

managers, engineers) to filter results by date, 

defect type, or production stage. 

• The dashboard shall display performance 

statistics such as total inspected parts, defect rate, 

and production efficiency. 

• The system shall support report generation in 

PDF/Excel formats for decision-making and 

auditing. 
 

7. Feedback and Continuous Learning 

• The system shall enable operators and supervisors 

to provide feedback on false detections or missed 

defects. 

• It shall store this feedback and automatically 

incorporate it into the model retraining cycle. 

• The system shall ensure incremental learning, 

improving accuracy with each production cycle. 
 

8. Security and Access Control 

• The system shall include user authentication for 

different roles such as admin, engineer, and 

operator. 

• It shall ensure data encryption during 

transmission and storage. 

• Access privileges shall be controlled based on 

user roles to maintain system integrity and 

confidentiality. 
 

9. Integration and Scalability 

• The system shall integrate with existing 

Manufacturing Execution Systems (MES) and 

Supervisory Control and Data Acquisition 

(SCADA) systems. 

• It shall be scalable to handle multiple production 

lines or factories simultaneously. 

• The system shall support cloud synchronization 

for long-term storage and analytics. 
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VIII. NON-FUNCTIONAL REQUIREMENTS 

 

The non-functional requirements define the system’s 

overall operational characteristics rather than specific 

behaviors. They describe how well the system 

performs, ensuring it is reliable, secure, maintainable, 

and user-friendly in a real manufacturing environment. 

1. Performance Requirements 

• The system shall detect and classify defects in real 

time (within 1–3 seconds) of data capture. 

• It shall process a minimum of 100 components per 

minute, depending on hardware capabilities. 

• The model inference latency should not exceed 

500 milliseconds on edge devices. 

• The system shall ensure at least 95% accuracy in 

defect classification and 98% uptime during 

production hours. 

• It shall optimize resource utilization to maintain 

smooth production without delays. 
 

2. Reliability Requirements 

• The system shall operate continuously for 24×7 

with minimal downtime. 

• It shall maintain redundant backups of critical 

data to prevent data loss during hardware or 

network failure. 

• Automatic recovery mechanisms shall restart 

modules in case of unexpected crashes. 

• The model shall undergo periodic validation and 

recalibration to sustain accuracy across 

production batches. 

• It shall ensure fault tolerance by allowing the 

system to skip failed nodes or devices without 

stopping operations. 
 

3. Scalability Requirements 

• The system architecture shall support horizontal 

and vertical scaling to handle increased 

production volume. 

• It shall allow addition of new sensors, cameras, or 

machines without major reconfiguration. 

• The machine learning pipeline shall be modular, 

allowing easy integration of new models or 

algorithms. 

• Cloud integration shall support large-scale data 

analytics and multi-factory deployment. 
 

4. Security Requirements 

• All communication between devices, servers, and 

dashboards shall be encrypted using SSL/TLS 

protocols. 

• The system shall implement role-based access 

control (RBAC) to restrict unauthorized access. 

• It shall protect sensitive production data using 

AES or RSA encryption during storage. 

• Audit trails shall record every user action for 

accountability. 

• The system shall comply with industry security 

standards (e.g., ISO/IEC 27001) to ensure data 

integrity and confidentiality. 
 

5. Usability Requirements 

• The dashboard shall have an intuitive and 

responsive interface suitable for operators with 

minimal technical knowledge. 

• Real-time alerts shall be visually clear and easy to 

interpret (color-coded signals, icons, and pop-up 

notifications). 

• The system shall support multi-language options 

based on regional requirements. 

• Mobile accessibility shall be available for 

supervisors to monitor operations remotely. 

• Training and user manuals shall be provided to 

ensure smooth adoption across departments. 
 

6. Maintainability Requirements 

• The system codebase shall follow modular 

programming practices for easy debugging and 

upgrades. 

• Configuration files and machine learning 

parameters shall be editable without altering 

source code. 

• Maintenance logs shall track updates, bug fixes, 

and model retraining events. 

• The system shall allow remote updates and patch 

management through a secure admin interface. 
 

7. Availability Requirements 

• The system shall maintain 99% uptime under 

normal operating conditions. 

• Scheduled maintenance windows shall be 

predefined and minimized. 

• Backup servers and redundant hardware shall 

ensure continuous operation during primary 

system failure. 
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• In case of network interruption, local edge devices 

shall continue functioning offline and sync data 

once connectivity is restored. 
 

8. Portability Requirements 

• The system shall be compatible with Windows, 

Linux, and cloud-based platforms. 

• It shall run seamlessly on edge devices, on-

premise servers, or cloud environments. 

• The machine learning models shall be exportable 

to different frameworks (e.g., TensorFlow, 

PyTorch, ONNX) for flexibility. 

• The user interface shall be accessible through web 

browsers and mobile applications. 
 

9. Compliance Requirements 

• The system shall comply with ISO 9001:2015 

(Quality Management Systems) and IATF 16949 

(Automotive Quality Standard). 

• Environmental and safety protocols shall align 

with Industry 4.0 and Smart Manufacturing 

guidelines. 

• Data management shall follow GDPR and data 

protection laws for international deployment. 

 

IX. CONCLUSION 

 

The proposed machine learning–based system for real-

time defect detection in multistage automotive 

manufacturing demonstrates a significant step toward 

achieving intelligent, data-driven, and fully automated 

quality control. Traditional manual inspection 

methods and rule-based systems have long struggled 

with inconsistency, latency, and limited adaptability to 

the dynamic nature of modern automotive production 

lines. By leveraging the power of machine learning, 

image processing, and sensor data integration, the 

proposed framework ensures faster, more accurate, 

and reliable identification of defects during various 

stages of manufacturing. 

This study emphasizes the importance of real-time 

monitoring and decision-making to minimize 

production downtime, reduce material wastage, and 

improve overall product quality. The integration of 

advanced algorithms and predictive analytics not only 

detects visible defects but also forecasts potential 

process failures before they occur. This proactive 

approach helps manufacturers take preventive actions, 

thereby increasing operational efficiency and cost 

savings. Furthermore, the system’s modular and 

scalable architecture allows seamless deployment 

across different production units, ensuring flexibility 

and adaptability to evolving industrial requirements. 

The implementation of this model aligns with the 

broader vision of Industry 4.0, enabling smart 

manufacturing environments where machines, data, 

and human intelligence work collaboratively. With 

continued research and optimization, this system can 

be extended to support automated root cause analysis, 

adaptive learning models, and edge computing 

integration for even faster performance. Ultimately, 

this approach contributes to a sustainable and 

innovative future for the automotive industry by 

ensuring that every product meets the highest 

standards of precision and reliability. 

In conclusion, the proposed framework offers a robust, 

intelligent, and scalable solution that transforms 

traditional manufacturing inspection into a smart, real-

time, and predictive quality assurance system, paving 

the way for a more efficient, cost-effective, and defect-

free automotive manufacturing process. 

 

REFERENCES 

 

[1] S. B. Singh, A. Yadav, and P. Jain, “Automated 

defect detection in automotive components 

using machine learning and image processing,” 

International Journal of Advanced 

Manufacturing Technology, vol. 121, no. 3, pp. 

1451–1463, 2022. 

[2] T. Ahmed, M. S. Khan, and R. S. Islam, “A 

real-time vision-based defect detection system 

for multistage manufacturing,” Procedia 

Computer Science, vol. 218, pp. 210–219, 

2023. 

[3] X. Li, Y. Zhang, and C. Zhao, “Deep learning-

based surface defect detection for industrial 

manufacturing,” IEEE Access, vol. 9, pp. 

35642–35653, 2021. 

[4] R. Kumar, S. Patel, and M. Joshi, “Real-time 

quality inspection using convolutional neural 

networks in automotive assembly lines,” 

Journal of Intelligent Manufacturing, vol. 34, 

no. 2, pp. 615–628, 2023. 

[5] K. Wang, D. Chen, and J. Xu, “A review of 

deep learning applications in manufacturing 

defect detection,” IEEE Transactions on 



© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002 

IJIRT 186769 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2036 

Industrial Informatics, vol. 18, no. 10, pp. 

6750–6761, 2022. 

[6] L. Sun, F. Yu, and Z. Wang, “Edge-AI enabled 

real-time defect recognition for Industry 4.0,” 

Robotics and Computer-Integrated 

Manufacturing, vol. 77, 102334, 2021. 

[7] P. Sharma and A. Verma, “An IoT-based 

framework for predictive maintenance and 

defect detection in smart factories,” 

International Journal of Computer 

Applications, vol. 183, no. 48, pp. 25–31, 2022. 

[8] M. Hussain, S. Rehman, and T. Malik, 

“Machine learning-based surface anomaly 

detection using image segmentation,” 

Measurement, vol. 200, 111421, 2022. 

[9] N. Gupta, A. Banerjee, and K. Das, “Intelligent 

defect detection and classification in casting 

using deep convolutional networks,” Materials 

Today: Proceedings, vol. 62, pp. 1156–1163, 

2023. 

[10] Y. Liu, H. Chen, and Z. Yang, “Real-time 

product quality prediction in automotive 

manufacturing using machine learning,” IEEE 

Transactions on Automation Science and 

Engineering, vol. 20, no. 4, pp. 1784–1795, 

2023. 


