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Abstract—A Battery Management System (BMS) is
essential for maintaining the safety, reliability, and
performance of rechargeable batteries by tracking key
operational factors like the State of Charge (SOC) and
State of Health (SOH). Traditional estimation techniques
often struggle with nonlinear battery behaviour, sensor
noise, and environmental variations. Machine learning
(ML) techniques have recently enhanced SOC and SOH
prediction by identifying patterns in both historical and
real-time battery data, leading to more precise and
adaptable estimation models. This enhancement is
particularly impactful in solar battery storage systems,
where precise energy management is essential for
optimizing charge/discharge cycles, extending battery
lifespan, and ensuring operational safety. Integrating ML
into BMS platforms enhances reliability and enables
predictive maintenance, while also supporting
monitoring across systems of various sizes and
capacities. Applications span from residential solar
systems and electric vehicles to grid-scale energy storage
and second- life battery integration. By leveraging data-
driven models, ML-enhanced BMS technologies
represent a transformative step toward more intelligent,
sustainable, and efficient energy storage solutions.

Index Terms—Safe, Efficient, Rechargeable Batteries,
Machine Learning, Sensor Noise, Solar Battery Storage,
Battery Management System (BMS), State of Charge
(SOC), Charge/Discharge Cycles, Battery Lifespan,
State of Health (SOH).

I. INTRODUCTION

As the demand for renewable energy grows, solar
photovoltaic (PV) systems paired with battery storage
are becoming increasingly common in both residential
and industrial applications. At the core of these energy
storage systems lies the Battery Management System
(BMS), a critical component responsible for
maintaining battery safety, performance, and
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longevity. A BMS tracks vital parameters such as the
battery’s charge status (SOC) and overall health
condition (SOH), which together indicate performance
and aging trends. Accurate estimation of these
parameters is vital for efficient energy utilization,
system reliability, and user safety.

Conventional BMS methods struggle to accurately
capture the nonlinear and dynamic characteristics of
batteries, particularly under fluctuating
environmental and load conditions, inconsistent usage
patterns, and aging effects. These limitations are
particularly concerning in solar battery storage
applications, where batteries are exposed to
fluctuating charge/discharge cycles and elevated
thermal conditions. Overheating remains a significant
safety hazard, potentially leading to thermal runaway,
fires, or even explosions if not detected early.

Machine learning introduces an innovative approach
that allows the development of data-driven, adaptive
models for monitoring and managing battery systems
with improved accuracy. ML-based approaches can
learn intricate relationships from historical and real-
time sensor data, enabling more precise SOC/SOH
estimation and early detection of abnormal
behaviours. Incorporating predictive analytics
enables a BMS to anticipate overheating, recognize
early signs of malfunction, and initiate preventive
actions before severe failures happen.

This paper presents an ML-based Battery
Management System specifically designed for solar
battery applications, with a focus on predictive
overheating and blast prevention. By leveraging
advanced learning algorithms and real-time
monitoring, the proposed system aims to enhance

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1992



© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

safety, extend battery life, and improve overall system
resilience. Such innovations are essential for ensuring
the long-term viability and safety of solar- powered
energy storage, especially in residential, commercial,
and utility-scale deployments.

II. LITERATURE SURVEY

Sr. No. Paper Title Author Name | Year
1 Hybrid Machine Learning Amrutha 2024

Model for EV Battery SoC |Varshini, C.R.,

and SoH Prediction A. Jha,

A.Tiwari, and
K. Deepa

2 State of Health Estimation |Yang, M., Y.[2025

for Lithium-Ion Batteries with{ Liu, B. Li, and

an Attention-Integrated C.Yang
BiLSTM-MLP Hybrid
Model
3 Data-driven Thermal Xiaojun Li, [2021

Anomaly Detection for | Jianwei Li, Ali
Batteries using Unsupervised|Abdollahi, Trev

Shape Clustering or Jones
4 Data-Driven Thermal Kiran Bhaskar [ 2022
Anomaly Detection in Large
Battery Packs
5 |Case Study of an Electric Wei 2021
Vehicle Gao,Xiaoyu Li,

1. METHODOLOGY

This research introduces a Machine Learning (ML)-
driven Battery Management System (BMS) tailored
for solar battery setups. Its primary goal is to improve
safety and efficiency by offering accurate estimations
of State of Charge (SOC) and State of Health (SOH),
as well as forecasting potential overheating or failure
events. The proposed framework is structured into six
sequential phases: collecting raw data, pre-processing
and feature engineering, building SOC/SOH
estimation models, detecting temperature anomalies,
validating performance, and final deployment.

. System Architecture Overview

The proposed ML-based BMS follows a multi- layered
system architecture designed for real-time monitoring
and predictive control of solar battery units.

Sensor Interface Layer: acquires live data, including
voltage, current, and temperature from both battery
modules and ambient sensors.
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Pre-processing Layer: cleans and normalizes data,
removing noise and filling missing values using
interpolation.

Estimation Module: utilizes hybrid models such as
BiLSTM and MLP for SOC/SOH prediction, trained on
time-series battery data.

Anomaly Detection Module: applies unsupervised
techniques (autoencoders, clustering, isolation forests)
to identify abnormal thermal patterns.

Decision Layer: issues alerts and safety actions such as
cooling or controlled shutdown when anomalies
exceed threshold limits.

e Data Acquisition

Data was obtained from solar battery systems
operating under various charge/discharge cycles and
environmental conditions. Key parameters collected
include:

Voltage and current, Internal and ambient
temperature, Battery cycle count, State transitions and
operational status.

To enhance model reliability, historical data with
documented overheating and thermal runaway
incidents were used during training and validation
phases.

e Preprocessing and Feature Engineering
Preprocessing steps include noise filtering, data
normalization (e.g., z-score), and interpolation for
missing values. Feature extraction focused on
identifying meaningful behavioural indicators like
voltage fluctuation rates, current response signals, heat
rise patterns, discharge curve shapes, and long- term
degradation metrics.

These features enable the ML models to learn
temporal dependencies and degradation behaviour.

e  SOC and SOH Estimation Models

For estimating SOC and SOH, a hybrid deep learning
model was developed using a combination of
Bidirectional LSTM (BiLSTM) and Multilayer
Perceptron (MLP) layers. The BiLSTM captures
temporal dependencies in charge—discharge cycles,
while the MLP performs final regression output for
precise numerical estimation. Model training
minimized Mean Absolute Error (MAE) and Root
Mean Square Error (RMS), ensuring accurate
convergence. Attention mechanisms were
incorporated to emphasize critical time steps during
learning.
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e  Predictive Overheating and Blast Prevention
Thermal anomaly detection was achieved through
unsupervised learning models trained exclusively on
normal operational data. Any deviation in temperature
or voltage patterns triggered anomaly alerts. Shape-
based clustering helped detect temperature curve
irregularities, while autoencoders and isolation forests
enhanced recognition of unseen fault patterns. To
prevent hazardous events like thermal runaway, a
multi-layer classification system assessed risk levels
low, medium, and high using input from multiple
sensors (temperature, voltage, and gas). Based on
classification  outcomes, the system could
automatically initiate preventive measures such as
cooling, current derating, or isolation of battery
modules

e  Model Validation and Deployment:

Model evaluation employed both real-world and
simulated datasets. SOC/SOH accuracy was validated
against lab-measured ground-truth data using MAE
and RMSE metrics. For anomaly detection, metrics
such as precision, recall, and F1- score were recorded,
with particular focus on early detectionlead time. The
deployment phase integrated the trained models into
embedded edge devices, enabling low-latency, real-
time decision-making. Cloud dashboards supported
long-term trend visualization, model updates, and
remote diagnostics.

IV. OBJECTIVE

e Develop an ML-based Battery Management
System (ML-BMS) specifically optimized for
solar battery storage applications to improve
monitoring, safety, and performance.

e  Enhance accuracy of State of Charge (SOC) and
State of Health (SOH) estimation using advanced
machine learning models such as BiLSTM,
MLP, and attention-based deep learning
architectures.

e  Analyze real-time and historical battery data
(temperature, voltage, current, and
charge/discharge cycles) to support precise
battery condition assessment in dynamic solar
environments.

e Implement predictive safety mechanisms by
detecting early thermal anomalies, overheating,
and potential thermal runaway using
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unsupervised learning, clustering, and real-time
classification techniques.

e  Enable proactive battery control and protection
by integrating predictive analytics into a real-
time decision-making framework to prevent
failures and extend battery lifespan.

e Improve energy management efficiency in solar
systems for residential, commercial, and utility-
scale installations through intelligent battery
monitoring and predictive maintenance.

e  Advance sustainable energy technology by
enhancing battery safety, reliability, and
performance in renewable energy storage
systems.

V. PROBLEM DEFINATIONS

As renewable energy adoption accelerates, solar PV
systems combined with energy-storage batteries have
become a key component across household, industrial,
and grid-level applications. Such installations depend
largely on lithium-ion batteries because of their
superior energy density and conversion efficiency
compared with other chemistries. However, their
performance, safety, and longevity are deeply
influenced by several dynamic factors, including
fluctuating solar input, variable loads, ambient
temperature, and usage cycles. A core component in
managing these batteries is the Battery Management
System (BMS), which is responsible for monitoring
and controlling key parameters such as State of Charge
(SOC) and State of Health (SOH). Accurate estimation
of these parameters is essential for ensuring optimal
energy usage, charging control, and safe operation.

Despite their importance, traditional BMS frameworks
face significant limitations. Traditional estimation
techniques such as Coulomb counting or Kalman-
filter-based models generally assume stable conditions
and thus fail to represent the nonlinear, time-
dependent behavior of real batteries. These methods
are prone to cumulative errors, especially under the
irregular charge/discharge patterns typical of solar
storage systems. As a result, SOC and SOH
estimations become increasingly unreliable over time,
leading to poor energy management decisions,
premature  battery  degradation, and system
inefficiencies.
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More critically, battery safety is at risk due to
inadequate predictive capabilities in existing BMS
designs. Thermal anomalies, such as overheating,
internal short circuits, and overcharging, are often
detected too late only after critical thresholds are
exceeded. This reactive approach fails to prevent
dangerous events such as thermal runaway, which can
result in fires or explosions, causing damage to
property and posing significant safety hazards. In
high-temperature environments or poorly ventilated
installations (common in solar applications), this risk
is further magnified. Additionally, conventional
systems do not analyse complex sensor interactions or
environmental data to identify subtle patterns that
could indicate early signs of failure.

Given these challenges, there is a pressing need for a
more intelligent and proactive BMS that can adapt to
real-time operating conditions, learn from historical
performance data, and detect faults or dangerous
thermal behaviour before they escalate. Machine
Learning (ML) presents a powerful solution by
enabling models that can learn complex, nonlinear
relationships from multidimensional sensor data. ML-
based approaches can enhance the accuracy of SOC
and SOH predictions, enable anomaly detection, and
support early warning systems for overheating or
battery abuse. Furthermore, such systems offer the
flexibility to scale across various battery types and
installation sizes, from household solar setups to large
grid- connected battery arrays.

In summary, conventional BMS methods produce
inaccurate SOC and SOH estimates under irregular
charging patterns and environmental variation.
Moreover, limited predictive capability means many
systems detect overheating only after thresholds are
crossed, increasing the likelihood of thermal runaway.
These shortcomings emphasize the need for an
adaptive, intelligent BMS that can learn from data to
anticipate and mitigate risk in real time.

VI. ARCHITECTURE DIAGRAM
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Figure 1: Architecture for ML-based BMS for Solar
Batteries.
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VII. DFD DIAGRAM
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Figure 2: DFD Level 0 for ML-based BMS for Solar
Batteries.
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Figure 3: DFD Level 1 for ML-based BMS for Solar
Batteries.

VIII. UML DIAGRAM
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Figure 4: UML Diagram for ML-based BMS for
Solar Batteries.
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IX. FLOW CHART
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Figure 5: Flowchart for ML-based BMS for Solar
Batteries.

X. FUCTIONAL REQUIREMENTS

The functional requirements define the core
capabilities of the proposed Machine Learning- based
Battery Management System (ML-BMS) for solar
battery storage with predictive overheating and blast
prevention features. These requirements are derived
from the system methodology and aim to ensure
accurate monitoring, real-time anomaly detection, and
predictive safety control.

e  Feature Extraction: Derived indicators such as
voltage gradients, thermal rise rates, and
degradation markers will be computed to support
model learning.

e  Real-Time SOC Estimation: A hybrid BiLSTM-
MLP model will estimate SOC with sub-second
latency using live sensor streams.

e SOH Prediction: Deep-learning models with
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attention layers will assess long-term battery
health and remaining useful life.

e  Thermal-Anomaly Detection: Unsupervised
models (autoencoders, isolation forests) will flag
temperature or voltage deviations and classify
them as normal, warning, or critical.

e  Predictive Safety Response: When a high-risk
condition is detected, the system will

automatically initiate alerts, reduce
charge/discharge rate, or disconnect the affected
module.

e  Performance Evaluation: Accuracy metrics such
as MAE, RMSE, and F1-score will be logged for
ongoing validation and retraining.

e  Edge Implementation: All inference tasks will
run locally on embedded hardware to guarantee
real- time response even without cloud access.

e  Cloud Interface — Periodic uploads to a secure
dashboard will enable visualization, analytics,
and remote updates.

XI. NON FUCTIONAL REQUIREMENTS

The non-functional requirements ensure that the

proposed ML-enhanced Battery Management System

operates reliably, securely, efficiently, and is
maintainable and scalable for long-term solar energy
storage applications.

e  Performance: SOC/SOH estimation error shall
remain within 2-3 %; anomaly detection must
issue alerts at least 10 minutes before critical
temperature is reached.

e  Reliability: The system should achieve >99.5 %
uptime and default to safe-shutdown mode upon
any model or sensor failure.

e  Scalability: Architecture must support multiple
battery packs and allow new sensors to be added
with minimal configuration.

e Security: All communications must be encrypted
(TLS 1.2 or higher); only authenticated users may
access configuration or logs.

. Maintainability: Remote diagnostics, firmware,
and model updates shall be supported through
modular design.

e  Usability: Dashboards should clearly display
SOC/SOH, temperature trends, and alerts with
multi-channel notifications.

e  Portability: Software must run on various
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embedded platforms (e.g., Raspberry Pi, Jetson,
STM32).

e  Data Logging: Sensor and model data must be
stored for at least six months locally and
optionally mirrored to the cloud.

e  Accuracy: Predictive models should achieve
>05% accuracy and F1 > 0.9 on benchmark
datasets.

e  Compliance: The design shall adhere to IEC
62619, IEEE 1725/1625, and relevant data-
protection standards.

XII. CONCLUSION

Growing dependence on solar energy has highlighted
the necessity for advanced, reliable, and secure energy-
storage management. Traditional BMS technologies
face challenges in accurately assessing parameters like
SOC and SOH and in identifying safety-critical
conditions such as overheating or runaway reactions.
These limitations pose significant risks to both battery
performance and operational safety, especially in solar
applications where environmental and load conditions
vary unpredictably.

This work tackles these limitations by developing a
Machine-Learning-based BMS aimed at enhancing
safety and predictive control for solar battery
installations. The system leverages real-time sensor
data, deep learning models (e.g., BILSTM and MLP),
and unsupervised anomaly detection techniques to
deliver precise SOC/SOH estimation, predictive
thermal monitoring, and early fault prevention.
Through careful integration of edge deployment and
cloud-based dashboards, the system ensures low-
latency response, scalability, and user accessibility.
By meeting both functional and non-functional
requirements—such as performance accuracy,
reliability, maintainability, and security,the proposed
ML-BMS represents a significant step forward in
energy storage technology. It not only enhances the
lifespan and efficiency of batteries but also introduces
proactive safety mechanisms that are essential for
preventing hazardous incidents such as thermal
runaway and battery explosions.

In conclusion, the implementation of this ML-
enhanced BMS paves the way for a new generation of
intelligent, self-learning, and safety-aware energy
storage systems. This innovation supports the broader
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goal of achieving sustainable and resilient renewable
energy infrastructure, where data-driven decision-
making ensures both performance and protection in
real-time.
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