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Abstract—A Battery Management System (BMS) is 

essential for maintaining the safety, reliability, and 

performance of rechargeable batteries by tracking key 

operational factors like the State of Charge (SOC) and 

State of Health (SOH). Traditional estimation techniques 

often struggle with nonlinear battery behaviour, sensor 

noise, and environmental variations. Machine learning 

(ML) techniques have recently enhanced SOC and SOH 

prediction by identifying patterns in both historical and 

real-time battery data, leading to more precise and 

adaptable estimation models. This enhancement is 

particularly impactful in solar battery storage systems, 

where precise energy management is essential for 

optimizing charge/discharge cycles, extending battery 

lifespan, and ensuring operational safety. Integrating ML 

into BMS platforms enhances reliability and enables 

predictive maintenance, while also supporting 

monitoring across systems of various sizes and 

capacities. Applications span from residential solar 

systems and electric vehicles to grid-scale energy storage 

and second- life battery integration. By leveraging data-

driven models, ML-enhanced BMS technologies 

represent a transformative step toward more intelligent, 

sustainable, and efficient energy storage solutions. 

 

Index Terms—Safe, Efficient, Rechargeable Batteries, 

Machine Learning, Sensor Noise, Solar Battery Storage, 

Battery Management System (BMS), State of Charge 

(SOC), Charge/Discharge Cycles, Battery Lifespan, 

State of Health (SOH). 

 

I. INTRODUCTION 

 

As the demand for renewable energy grows, solar 

photovoltaic (PV) systems paired with battery storage 

are becoming increasingly common in both residential 

and industrial applications. At the core of these energy 

storage systems lies the Battery Management System 

(BMS), a critical component responsible for 

maintaining battery safety, performance, and 

longevity. A BMS tracks vital parameters such as the 

battery’s charge status (SOC) and overall health 

condition (SOH), which together indicate performance 

and aging trends. Accurate estimation of these 

parameters is vital for efficient energy utilization, 

system reliability, and user safety. 

 

Conventional BMS methods struggle to accurately 

capture the nonlinear and dynamic characteristics of 

batteries, particularly under fluctuating 

environmental and load conditions, inconsistent usage 

patterns, and aging effects. These limitations are 

particularly concerning in solar battery storage 

applications, where batteries are exposed to 

fluctuating charge/discharge cycles and elevated 

thermal conditions. Overheating remains a significant 

safety hazard, potentially leading to thermal runaway, 

fires, or even explosions if not detected early. 

 

Machine learning introduces an innovative approach 

that allows the development of data-driven, adaptive 

models for monitoring and managing battery systems 

with improved accuracy. ML-based approaches can 

learn intricate relationships from historical and real-

time sensor data, enabling more precise SOC/SOH 

estimation and early detection of abnormal 

behaviours.  Incorporating predictive analytics 

enables a BMS to anticipate overheating, recognize 

early signs of malfunction, and initiate preventive 

actions before severe failures happen. 

 

This paper presents an ML-based Battery 

Management System specifically designed for solar 

battery applications, with a focus on predictive 

overheating and blast prevention. By leveraging 

advanced learning algorithms and real-time 

monitoring, the proposed system aims to enhance 
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safety, extend battery life, and improve overall system 

resilience. Such innovations are essential for ensuring 

the long-term viability and safety of solar- powered 

energy storage, especially in residential, commercial, 

and utility-scale deployments. 

 

II. LITERATURE SURVEY 

 

Sr. No. Paper Title Author Name Year 

1 Hybrid Machine Learning 

Model for EV Battery SoC 

and SoH Prediction 

Amrutha 

Varshini, C. R., 

A. Jha, 

A.Tiwari, and 

K. Deepa 

2024 

2 State of Health Estimation 

for Lithium-Ion Batteries with 

an Attention-Integrated 

BiLSTM-MLP Hybrid 

Model 

Yang, M., Y. 

Liu, B. Li, and 

C. Yang 

2025 

3 Data-driven Thermal 

Anomaly Detection for 

Batteries using Unsupervised 

Shape Clustering 

Xiaojun Li, 

Jianwei Li, Ali 

Abdollahi,Trev

or Jones 

2021 

4 Data-Driven Thermal 

Anomaly Detection in Large 

Battery Packs 

Kiran Bhaskar 2022 

5 Case Study of an Electric 

Vehicle 

Wei 

Gao,Xiaoyu Li, 

2021 

 

III. METHODOLOGY 

 

This research introduces a Machine Learning (ML)- 

driven Battery Management System (BMS) tailored 

for solar battery setups. Its primary goal is to improve 

safety and efficiency by offering accurate estimations 

of State of Charge (SOC) and State of Health (SOH), 

as well as forecasting potential overheating or failure 

events. The proposed framework is structured into six 

sequential phases: collecting raw data, pre-processing 

and feature engineering, building SOC/SOH 

estimation models, detecting temperature anomalies, 

validating performance, and final deployment. 

 

• System Architecture Overview 

The proposed ML-based BMS follows a multi- layered 

system architecture designed for real-time monitoring 

and predictive control of solar battery units. 

Sensor Interface Layer: acquires live data, including 

voltage, current, and temperature from both battery 

modules and ambient sensors. 

Pre-processing Layer: cleans and normalizes data, 

removing noise and filling missing values using 

interpolation. 

Estimation Module: utilizes hybrid models such as 

BiLSTM and MLP for SOC/SOH prediction, trained on 

time-series battery data. 

Anomaly Detection Module: applies unsupervised 

techniques (autoencoders, clustering, isolation forests) 

to identify abnormal thermal patterns. 

Decision Layer: issues alerts and safety actions such as 

cooling or controlled shutdown when anomalies 

exceed threshold limits. 
 

• Data Acquisition 

Data was obtained from solar battery systems 

operating under various charge/discharge cycles and 

environmental conditions. Key parameters collected 

include: 

Voltage and current, Internal and ambient 

temperature, Battery cycle count, State transitions and 

operational status. 

To enhance model reliability, historical data with 

documented overheating and thermal runaway 

incidents were used during training and validation 

phases. 
 

• Preprocessing and Feature Engineering 

Preprocessing steps include noise filtering, data 

normalization (e.g., z-score), and interpolation for 

missing values. Feature extraction focused on 

identifying meaningful behavioural indicators like 

voltage fluctuation rates, current response signals, heat 

rise patterns, discharge curve shapes, and long- term 

degradation metrics. 

These features enable the ML models to learn 

temporal dependencies and degradation behaviour. 
 

• SOC and SOH Estimation Models 

For estimating SOC and SOH, a hybrid deep learning 

model was developed using a combination of 

Bidirectional LSTM (BiLSTM) and Multilayer 

Perceptron (MLP) layers. The BiLSTM captures 

temporal dependencies in charge–discharge cycles, 

while the MLP performs final regression output for 

precise numerical estimation. Model training 

minimized Mean Absolute Error (MAE) and Root 

Mean Square Error (RMS), ensuring accurate 

convergence. Attention mechanisms were 

incorporated to emphasize critical time steps during 

learning. 
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• Predictive Overheating and Blast Prevention 

Thermal anomaly detection was achieved through 

unsupervised learning models trained exclusively on 

normal operational data. Any deviation in temperature 

or voltage patterns triggered anomaly alerts. Shape-

based clustering helped detect temperature curve 

irregularities, while autoencoders and isolation forests 

enhanced recognition of unseen fault patterns. To 

prevent hazardous events like thermal runaway, a 

multi-layer classification system assessed risk levels 

low, medium, and high using input from multiple 

sensors (temperature, voltage, and gas). Based on 

classification outcomes, the system could 

automatically initiate preventive measures such as 

cooling, current derating, or isolation of battery 

modules 

 

• Model Validation and Deployment: 

Model evaluation employed both real-world and 

simulated datasets. SOC/SOH accuracy was validated 

against lab-measured ground-truth data using MAE 

and RMSE metrics. For anomaly detection, metrics 

such as precision, recall, and F1- score were recorded, 

with particular focus on early detectionlead time. The 

deployment phase integrated the trained models into 

embedded edge devices, enabling low-latency, real-

time decision-making. Cloud dashboards supported 

long-term trend visualization, model updates, and 

remote diagnostics. 

 

IV. OBJECTIVE 

 

• Develop an ML-based Battery Management 

System (ML-BMS) specifically optimized for 

solar battery storage applications to improve 

monitoring, safety, and performance. 

• Enhance accuracy of State of Charge (SOC) and 

State of Health (SOH) estimation using advanced 

machine learning models such as BiLSTM, 

MLP, and attention-based deep learning 

architectures. 

• Analyze real-time and historical battery data 

(temperature, voltage, current, and 

charge/discharge cycles) to support precise 

battery condition assessment in dynamic solar 

environments. 

• Implement predictive safety mechanisms by 

detecting early thermal anomalies, overheating, 

and potential thermal runaway using 

unsupervised learning, clustering, and real-time 

classification techniques. 

• Enable proactive battery control and protection 

by integrating predictive analytics into a real-

time decision-making framework to prevent 

failures and extend battery lifespan. 

• Improve energy management efficiency in solar 

systems for residential, commercial, and utility-

scale installations through intelligent battery 

monitoring and predictive maintenance. 

• Advance sustainable energy technology by 

enhancing battery safety, reliability, and 

performance in renewable energy storage 

systems. 

 

V. PROBLEM DEFINATIONS 

 

As renewable energy adoption accelerates, solar PV 

systems combined with energy-storage batteries have 

become a key component across household, industrial, 

and grid-level applications. Such installations depend 

largely on lithium-ion batteries because of their 

superior energy density and conversion efficiency 

compared with other chemistries. However, their 

performance, safety, and longevity are deeply 

influenced by several dynamic factors, including 

fluctuating solar input, variable loads, ambient 

temperature, and usage cycles. A core component in 

managing these batteries is the Battery Management 

System (BMS), which is responsible for monitoring 

and controlling key parameters such as State of Charge 

(SOC) and State of Health (SOH). Accurate estimation 

of these parameters is essential for ensuring optimal 

energy usage, charging control, and safe operation. 

 

Despite their importance, traditional BMS frameworks 

face significant limitations. Traditional estimation 

techniques such as Coulomb counting or Kalman-

filter-based models generally assume stable conditions 

and thus fail to represent the nonlinear, time-

dependent behavior of real batteries. These methods 

are prone to cumulative errors, especially under the 

irregular charge/discharge patterns typical of solar 

storage systems. As a result, SOC and SOH 

estimations become increasingly unreliable over time, 

leading to poor energy management decisions, 

premature battery degradation, and system 

inefficiencies. 
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More critically, battery safety is at risk due to 

inadequate predictive capabilities in existing BMS 

designs. Thermal anomalies, such as overheating, 

internal short circuits, and overcharging, are often 

detected too late only after critical thresholds are 

exceeded. This reactive approach fails to prevent 

dangerous events such as thermal runaway, which can 

result in fires or explosions, causing damage to 

property and posing significant safety hazards. In 

high-temperature environments or poorly ventilated 

installations (common in solar applications), this risk 

is further magnified. Additionally, conventional 

systems do not analyse complex sensor interactions or 

environmental data to identify subtle patterns that 

could indicate early signs of failure. 

 

Given these challenges, there is a pressing need for a 

more intelligent and proactive BMS that can adapt to 

real-time operating conditions, learn from historical 

performance data, and detect faults or dangerous 

thermal behaviour before they escalate. Machine 

Learning (ML) presents a powerful solution by 

enabling models that can learn complex, nonlinear 

relationships from multidimensional sensor data. ML-

based approaches can enhance the accuracy of SOC 

and SOH predictions, enable anomaly detection, and 

support early warning systems for overheating or 

battery abuse. Furthermore, such systems offer the 

flexibility to scale across various battery types and 

installation sizes, from household solar setups to large 

grid- connected battery arrays. 

 

In summary, conventional BMS methods produce 

inaccurate SOC and SOH estimates under irregular 

charging patterns and environmental variation. 

Moreover, limited predictive capability means many 

systems detect overheating only after thresholds are 

crossed, increasing the likelihood of thermal runaway. 

These shortcomings emphasize the need for an 

adaptive, intelligent BMS that can learn from data to 

anticipate and mitigate risk in real time. 

 

 

 

 

 

 

 

 

VI. ARCHITECTURE DIAGRAM 

 

 
Figure 1: Architecture for ML-based BMS for Solar 

Batteries. 
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VII. DFD DIAGRAM 

 

DFD Level 0 

 
Figure 2: DFD Level 0 for ML-based BMS for Solar 

Batteries. 

 

DFD Level 1 

 
Figure 3: DFD Level 1 for ML-based BMS for Solar 

Batteries. 

 

VIII. UML DIAGRAM 

 

 
Figure 4: UML Diagram for ML-based BMS for 

Solar Batteries. 

IX. FLOW CHART 

 

 
Figure 5: Flowchart for ML-based BMS for Solar 

Batteries. 

 

X. FUCTIONAL REQUIREMENTS 

 

The functional requirements define the core 

capabilities of the proposed Machine Learning- based 

Battery Management System (ML-BMS) for solar 

battery storage with predictive overheating and blast 

prevention features. These requirements are derived 

from the system methodology and aim to ensure 

accurate monitoring, real-time anomaly detection, and 

predictive safety control. 

• Feature Extraction: Derived indicators such as 

voltage gradients, thermal rise rates, and 

degradation markers will be computed to support 

model learning. 

• Real-Time SOC Estimation: A hybrid BiLSTM- 

MLP model will estimate SOC with sub-second 

latency using live sensor streams. 

• SOH Prediction: Deep-learning models with 
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attention layers will assess long-term battery 

health and remaining useful life. 

• Thermal-Anomaly Detection: Unsupervised 

models (autoencoders, isolation forests) will flag 

temperature or voltage deviations and classify 

them as normal, warning, or critical. 

• Predictive Safety Response: When a high-risk 

condition is detected, the system will 

automatically initiate alerts, reduce 

charge/discharge rate, or disconnect the affected 

module. 

• Performance Evaluation: Accuracy metrics such 

as MAE, RMSE, and F1-score will be logged for 

ongoing validation and retraining. 

• Edge Implementation: All inference tasks will 

run locally on embedded hardware to guarantee 

real- time response even without cloud access. 

• Cloud Interface – Periodic uploads to a secure 

dashboard will enable visualization, analytics, 

and remote updates. 

 

XI. NON FUCTIONAL REQUIREMENTS 

 

The non-functional requirements ensure that the 

proposed ML-enhanced Battery Management System 

operates reliably, securely, efficiently, and is 

maintainable and scalable for long-term solar energy 

storage applications. 

• Performance: SOC/SOH estimation error shall 

remain within 2–3 %; anomaly detection must 

issue alerts at least 10 minutes before critical 

temperature is reached. 

• Reliability: The system should achieve ≥99.5 % 

uptime and default to safe-shutdown mode upon 

any model or sensor failure. 

• Scalability: Architecture must support multiple 

battery packs and allow new sensors to be added 

with minimal configuration. 

• Security: All communications must be encrypted 

(TLS 1.2 or higher); only authenticated users may 

access configuration or logs. 

• Maintainability: Remote diagnostics, firmware, 

and model updates shall be supported through 

modular design. 

• Usability: Dashboards should clearly display 

SOC/SOH, temperature trends, and alerts with 

multi-channel notifications. 

• Portability: Software must run on various 

embedded platforms (e.g., Raspberry Pi, Jetson, 

STM32). 

• Data Logging: Sensor and model data must be 

stored for at least six months locally and 

optionally mirrored to the cloud. 

• Accuracy: Predictive models should achieve 

≥95% accuracy and F1 ≥ 0.9 on benchmark 

datasets. 

• Compliance: The design shall adhere to IEC 

62619, IEEE 1725/1625, and relevant data- 

protection standards. 

 

XII. CONCLUSION 

 

Growing dependence on solar energy has highlighted 

the necessity for advanced, reliable, and secure energy-

storage management. Traditional BMS technologies 

face challenges in accurately assessing parameters like 

SOC and SOH and in identifying safety-critical 

conditions such as overheating or runaway reactions. 

These limitations pose significant risks to both battery 

performance and operational safety, especially in solar 

applications where environmental and load conditions 

vary unpredictably. 

This work tackles these limitations by developing a 

Machine-Learning-based BMS aimed at enhancing 

safety and predictive control for solar battery 

installations. The system leverages real-time sensor 

data, deep learning models (e.g., BiLSTM and MLP), 

and unsupervised anomaly detection techniques to 

deliver precise SOC/SOH estimation, predictive 

thermal monitoring, and early fault prevention. 

Through careful integration of edge deployment and 

cloud-based dashboards, the system ensures low-

latency response, scalability, and user accessibility. 

By meeting both functional and non-functional 

requirements—such as performance accuracy, 

reliability, maintainability, and security,the proposed 

ML-BMS represents a significant step forward in 

energy storage technology. It not only enhances the 

lifespan and efficiency of batteries but also introduces 

proactive safety mechanisms that are essential for 

preventing hazardous incidents such as thermal 

runaway and battery explosions. 

In conclusion, the implementation of this ML- 

enhanced BMS paves the way for a new generation of 

intelligent, self-learning, and safety-aware energy 

storage systems. This innovation supports the broader 
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goal of achieving sustainable and resilient renewable 

energy infrastructure, where data-driven decision-

making ensures both performance and protection in 

real-time. 
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