
© November 2025| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002 

IJIRT 186820        INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1962 

Secure And Transparent DNS Resolution Using 

Blockchain Technology 
 

 

Priyadharshini M1, Sakthivelan M2, Selvakumar S3, Shakthi K4 

1B.E., M.E. (Ph.D.), Faculty, Dept of CSE, SRM Valliammai Engineering College, Chennai, India 
2,3,4 Student, Dept. of CSE, SRM Valliammai Engineering College, Chennai, India 

 

Abstract— The Domain Name System (DNS) remains 

vulnerable to attacks such as spoofing, cache poisoning, 

and unauthorized record manipulation due to its 

centralized and insecure design. This paper presents a 

blockchain-based framework for secure and transparent 

DNS resolution using Python and Flask technologies. 

Each domain-to-IP mapping is stored as an immutable 

block containing a hash, timestamp, and previous link, 

ensuring data integrity and tamper resistance. A 

lightweight blockchain ledger integrated with a custom 

DNS resolver and a web-based interface enables real-

time verification and record management. Experimental 

results demonstrate reliable query performance with 

minimal latency, enhanced security, and full 

transparency in DNS operations, thereby improving trust 

and resilience across networked systems [1], [2]. 

Keywords— Blockchain, DNS Security, Distributed 

Ledger, Cryptographic Hashing, Flask Framework, 

Python, Decentralized Network, Data Integrity. 

I. INTRODUCTION 

The Domain Name System (DNS) is a fundamental 

part of Internet infrastructure, enabling users to 

access websites using readable domain names 

instead of numerical IP addresses [1]. However, the 

traditional DNS architecture is largely centralized, 

making it vulnerable to security threats such as DNS 

spoofing, cache poisoning, and unauthorized record 

modification [2]. These attacks compromise the 

integrity and authenticity of Internet 

communication, allowing malicious actors to 

redirect users to fraudulent or harmful websites. 

The proposed system, Secure and Transparent DNS 

Resolution using Blockchain Technology, 

introduces a decentralized approach to DNS 

management that ensures immutability, 

transparency, and trust. By storing domain-to-IP 

mappings as blocks within a blockchain, each entry 

is cryptographically linked to the previous one using 

a hash function, preventing data tampering and 

unauthorized changes [3]. 

The system is developed using Python, with a 

lightweight blockchain implementation, a custom 

DNS resolver, and a Flask-based web interface for 

interactive record management. This setup allows 

users to add, query, and verify domain records while 

maintaining integrity across all transactions. The 

blockchain ensures that any unauthorized 

modification to DNS data breaks the hash chain, 

immediately signaling inconsistency [4]. 

By combining blockchain principles with modern 

web technologies, the proposed solution enhances 

DNS reliability and transparency, eliminates single 

points of failure, and provides verifiable trust 

without depending on centralized authorities [5]. 

Experimental testing shows minimal query latency 

and high consistency, establishing this model as a 

practical step toward decentralized Internet 

infrastructure [6], [7]. 

II. PREVALENT SYSTEMS 

The traditional Domain Name System (DNS) 

architecture operates in a centralized and 

hierarchical manner, where records are maintained 

and controlled by authoritative servers and registries 

[8]. While this structure supports scalability, it 

introduces several weaknesses, particularly in terms 

of security, transparency, and single-point 

dependency [9]. The conventional DNS does not 

possess inherent mechanisms to verify data 

authenticity or detect unauthorized modifications, 

making it highly susceptible to attacks such as DNS 

spoofing, cache poisoning, and man-in-the-middle 

intrusions [10]. 

Existing DNS management solutions rely heavily on 

trusted intermediaries like Internet Service 

Providers (ISPs) and Certificate Authorities (CAs), 

which centralize control and reduce transparency 

[11]. These entities can become vulnerable targets, 

and any compromise can lead to large-scale 

manipulation of domain records. Furthermore, 



© November 2025| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002 

IJIRT 186820        INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1963 

updates in traditional DNS systems may take hours 

to propagate globally, creating latency and 

synchronization delays that impact reliability [12]. 

Security extensions such as DNSSEC (Domain 

Name System Security Extensions) provide 

cryptographic authentication but still depend on 

centralized infrastructure and key management, 

which limits their ability to ensure full transparency 

or traceability [13]. Similarly, cloud-based DNS 

services, though faster, maintain centralized control 

over user data, offering limited visibility into record 

changes or ownership verification [14]. 

The proposed blockchain-based DNS resolution 

system addresses these gaps by replacing centralized 

trust with distributed consensus, ensuring that every 

domain-to-IP mapping is immutable, verifiable, and 

traceable across all participating nodes. This model 

enhances data security, transparency, and 

decentralization, creating a tamper-proof and 

trustworthy DNS environment. 

III. SYSTEM OVERVIEW 

 

The proposed Secure and Transparent DNS 

Resolution using Blockchain Technology is a 

decentralized framework designed to enhance the 

security, transparency, and reliability of DNS 

management. The system eliminates the dependence 

on centralized authorities by using blockchain to 

store domain-to-IP mappings as immutable blocks, 

ensuring traceability and tamper-proof data handling 

[15]. The overall system architecture consists of 

three primary layers: the Blockchain Layer, the DNS 

Server Layer, and the Web Interface Layer. 

The Blockchain Layer forms the core of the system, 

implemented using Python. Each DNS entry—

comprising the domain name, corresponding IP 

address, timestamp, and cryptographic hash—is 

stored as a block linked to its predecessor, thereby 

maintaining a verifiable chain of trust [16]. This 

layer ensures that any unauthorized modification to 

DNS data disrupts the hash integrity, making the 

system self-verifiable and tamper-evident. 

The DNS Server Layer, developed using dnslib and 

Python’s socketserver, functions as a real-time 

resolver that queries the blockchain for the requested 

domain [17]. When a user sends a DNS query, the 

server checks the blockchain ledger. If the domain 

exists, it responds with the verified IP address; if not, 

the query is either dropped or flagged as non-

existent. This design guarantees secure resolution 

without relying on traditional DNS infrastructure, 

reducing vulnerabilities to spoofing and cache 

poisoning. 

The Web Interface Layer, built using the Flask 

framework, provides a user-friendly platform to 

interact with the blockchain network [18]. Through 

this interface, administrators and users can add, 

update, or verify DNS records. The system 

integrates parallel security checks, real-time data 

validation, and visualization of blockchain 

transactions for transparency. 

Together, these layers create a distributed DNS 

ecosystem that ensures immutability, fast response, 

and enhanced security [19]. The modular structure 

allows future integration of smart contracts, multi-

node consensus mechanisms, and cloud-based 

scalability, paving the way for a global, 

decentralized DNS infrastructure [20]. 

IV. METHODOLOGY 

The The proposed Secure and Transparent DNS 

Resolution using Blockchain Technology is 

implemented using a layered approach that 

integrates blockchain, DNS query processing, and a 

web-based management interface. The methodology 

ensures decentralized DNS record management, 

tamper resistance, and fast real-time resolution. The 



© November 2025| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002 

IJIRT 186820        INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1964 

implementation combines Python-based blockchain 

logic, dnslib-powered DNS handling, and Flask for 

user interaction and data visualization [21]. 

A. SYSTEM ARCHITECTURE 

The overall system follows a three-tier architecture 

consisting of the Blockchain Layer, DNS Server 

Layer, and Web Interface Layer [22]. 

Blockchain Layer: 

This layer maintains a distributed ledger of domain-

to-IP mappings. Each record (block) contains the 

domain name, IP address, timestamp, previous block 

hash, and its own computed hash. The immutability 

of the blockchain ensures that any alteration in a 

record invalidates subsequent blocks, thereby 

maintaining data integrity [23]. 

DNS Server Layer: 

Implemented using dnslib and Python’s 

socketserver, this layer handles DNS requests in real 

time. When a query is received, the server searches 

the blockchain for the corresponding domain entry. 

If found, it returns the verified IP; otherwise, it sends 

an NXDOMAIN response. This decentralized 

approach eliminates the risks of spoofing and cache 

poisoning [24]. 

Web Interface Layer: 

Developed with the Flask framework, this layer 

offers a browser-based platform for administrators 

and users to add, view, and verify DNS records. 

Flask routes manage blockchain interactions and 

visualize data through HTML templates, enabling 

user-friendly control over the DNS environment 

[25]. 

B. BLOCKCHAIN IMPLEMENTATION 

The blockchain is implemented using Python classes 

representing Block and Blockchain structures. 

Each block stores the domain name, IP address, 

timestamp, and hash references. The system 

supports essential methods such as: 

add_block() – Adds new domain-to-IP records after 

computing cryptographic hashes. 

get_ip() – Retrieves verified IP addresses 

corresponding to a queried domain. 

save_chain() and load_chain() – Allow persistent 

storage of the blockchain for continuity [26]. 

Each block’s hash is computed using SHA-256, 

ensuring that no two entries can be modified without 

invalidating the chain, providing tamper detection 

and traceability. 

C. DATA FLOW PROCESS 

The data flow of the system follows these steps [27]: 

A user queries a domain name using a local DNS 

client. 

The DNS server receives the query and checks the 

blockchain for an existing domain record. 

If found, the corresponding IP address is retrieved 

and returned in the DNS response. 

If not found, the server logs the request for future 

updates. 

The blockchain ledger is updated through the Flask 

interface, which adds new records securely. 

This ensures real-time domain resolution, data 

consistency, and immutable record maintenance 

D. SECURITY AND INTEGRITY MECHANISM 

Security in the system is ensured through 

cryptographic hashing, timestamping, and chained 

block references [28]. 

Each block’s hash links to the previous block, 

forming an immutable chain. 

Unauthorized changes result in hash mismatches, 

immediately flagging the tampering attempt. 

Only authorized users can add records through the 

Flask interface, which uses form validation and local 

access control for safety. 

This approach provides decentralized verification 

without depending on a single trusted authority. 

E. DATA MANAGEMENT MODULES 

The blockchain data is managed through structured 

modules [29]: 

Domain Loader Module: Reads domain–IP 

mappings from CSV files and automatically adds 

them to the blockchain. 

DNS Server Module: Processes and resolves queries 

directly from the blockchain ledger. 



© November 2025| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002 

IJIRT 186820        INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1965 

Web Interface Module: Displays blockchain data, 

security checks, and record updates via an 

interactive dashboard. 

Together, these modules ensure smooth integration 

between backend data, network processing, and user 

interaction. 

F. DEPLOYMENT AND PERFORMANCE 

The system was initially deployed in a local 

environment using Python and Flask development 

servers. 

For cloud scalability, the project can be deployed on 

Oracle Cloud Infrastructure (OCI) using virtual 

machines or Docker containers [30]. 

Testing revealed: 

Real-time DNS query resolution within 

milliseconds. 

Blockchain transaction time of less than one second 

for adding records. 

Negligible overhead compared to traditional DNS 

when resolving known domains. 

This ensures high availability, low latency, and 

secure resolution performance in both local and 

cloud environments [31]. 

G. VALIDATION AND TESTING 

The following testing strategies were employed 

[32]: 

Functional Testing: Verified correct blockchain 

linking, DNS responses, and data persistence. 

Performance Testing: Measured query latency and 

block addition time under concurrent requests. 

Integrity Testing: Confirmed immutability by 

intentionally altering records to test chain validation. 

Scalability Testing: Simulated large datasets 

(10,000+ domains) to ensure smooth operation and 

minimal delay [33]. 

The results showed consistent performance and fault 

tolerance, validating the reliability of blockchain-

based DNS management [34]. 

V. IMPLEMENTATION 

The implementation of the Secure and Transparent 

DNS Resolution System is carried out using a 

modular Python-based architecture that combines 

blockchain technology, a DNS resolver, and a web 

interface. The project emphasizes data transparency, 

immutability, and decentralized validation of DNS 

records to prevent spoofing, tampering, and 

unauthorized modifications [35]. 

A. BLOCKCHAIN MODULE 

IMPLEMENTATION 

The blockchain forms the backbone of the system. 

Implemented in Python, it comprises two primary 

classes—Block and Blockchain. 

Each block contains the domain name, IP address, 

timestamp, previous block hash, and its own 

computed SHA-256 hash. 

A genesis block is created at initialization, followed 

by dynamic addition of domain-IP mappings via the 

add_block() method. 

The chain’s immutability ensures that any record 

tampering invalidates all subsequent hashes, 

enabling real-time integrity verification [36]. 

A JSON file is used as persistent storage, ensuring 

that the blockchain ledger is retained even after 

restarts. 

B. DNS SERVER MODULE 

The DNS resolver is developed using the dnslib and 

socketserver Python libraries. It acts as a 

middleware between users and the blockchain. 

When a user queries a domain, the DNS server 

searches the blockchain: 

If a valid record exists, the corresponding verified IP 

is returned. 

If the record is absent, the query is either logged or 

returned as NXDOMAIN, ensuring that no spoofed 

response is generated [37]. 

This module operates on UDP port 53, mimicking 

real DNS servers, but it retrieves records only from 

the blockchain instead of traditional name servers. 

C. WEB INTERFACE DEVELOPMENT 

The web interface, developed using the Flask 

framework, provides an interactive platform for 

adding, viewing, and managing domain entries. It 

also allows users to monitor the blockchain and 

validate record authenticity. 

Features include: 

Add or update domain records securely via forms. 



© November 2025| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002 

IJIRT 186820        INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1966 

View the complete blockchain ledger in tabular 

format. 

Perform real-time domain verification with response 

validation [38]. 

The Flask front-end uses HTML, CSS, and 

JavaScript for responsive design, making it suitable 

for both desktop and mobile browsers. 

D. DATABASE AND DATA MANAGEMENT 

Although blockchain ensures record permanence, a 

secondary CSV-based input loader 

(domain_loader.py) is used to bulk-import domain–

IP pairs. 

The loader checks for duplicates before insertion. 

The blockchain data is serialized into JSON for 

persistence. 

This design provides a balance between 

performance and traceability [39]. 

E. SYSTEM INTEGRATION AND TESTING 

All components—Blockchain, DNS Server, Web 

Interface, and Domain Loader—were individually 

tested and then integrated. Unit and integration 

testing ensured seamless communication among 

modules. 

Functional tests validated record addition, DNS 

query resolution, and hash-chain integrity. 

Stress tests confirmed consistent response times 

under simultaneous queries. 

The system was deployed on a local Flask server and 

later scaled on Oracle Cloud Infrastructure (OCI) 

using Docker containers for performance evaluation 

[40]. 

VI. DATABASE MODULE 

The blockchain itself serves as a distributed 

database, storing immutable DNS records. Each 

block acts as a verified record containing both 

metadata and linkage information. 

Fields include: domain, IP, timestamp, security 

status, previous hash, and computed hash. 

Data is stored in a JSON chain file (blockchain.json) 

for persistence and easy retrieval. 

Hash validation ensures authenticity and prevents 

any post-creation modification [41]. 

The blockchain structure effectively replaces 

conventional DNS zone files. This decentralized 

data storage ensures fault tolerance, tamper 

detection, and auditability [42]. 

In addition, the Flask web module supports role-

based access for record management. Only verified 

administrators can append new entries, ensuring 

integrity even in distributed environments. AES-

based encryption is optionally used for sensitive 

configuration files [43]. 

Backups of the blockchain ledger are scheduled 

automatically, and each block includes redundant 

linkage data to prevent data corruption. The 

architecture is flexible enough to integrate future 

consensus mechanisms (like Proof-of-Authority) for 

multi-node deployment [44]. 

VII. MODULE DESCRIPTION 

The project is divided into several independent but 

inter-connected modules [45]: 

A. Blockchain Module 

Manages the creation, linking, and validation of all 

domain-to-IP records. It performs hashing, 

timestamping, and verification of integrity through a 

chain of blocks. 

B. DNS Server Module 

Handles real-time DNS queries. Acts as the resolver 

that retrieves IP addresses from the blockchain 

ledger instead of traditional DNS databases, 

ensuring secure lookup. 

C. Domain Loader Module 

Facilitates bulk import of verified domain records 

from a CSV file. Prevents duplicate entries and 

automatically hashes new data before appending it 

to the chain. 

D. Web Interface Module 

Provides a graphical dashboard for users to interact 

with the blockchain system. Enables domain 

addition, security checking, and complete 

blockchain visualization. 

E. Security and Validation Module 

Implements SHA-256 hashing, timestamp 

verification, and hash-chain validation. This module 

ensures immutability and transparency across the 

ledger. 



© November 2025| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002 

IJIRT 186820        INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1967 

reporting [50]. 

VIII. RESULTS AND OUTPUT 

The system was successfully implemented and 

tested in a local as well as cloud environment. 

The blockchain successfully stored over 100 domain 

records without any corruption or duplication. 

DNS resolution time averaged 12–20 ms, 

comparable to traditional DNS systems. 

Any manual modification in a stored block instantly 

invalidated the entire hash chain, proving tamper 

detection accuracy of 100 % [51]. 

The Web Interface output provides a clear and 

interactive dashboard showing all blockchain 

entries—each block’s index, domain, IP address, 

timestamp, hash, and security status. Administrators 

can perform domain lookups and verify whether 

records are trusted or unverified. 

The DNS server console output shows live logs of 

incoming queries, detected domains, and blockchain 

lookups, ensuring real-time transparency [52]. 

 

IX.  TESTING AND EVALUATION 

The testing strategy validated system reliability, 

security, and functional correctness [53]. 

Unit Testing: Verified hash computation, block 

addition, and JSON serialization functions. 

Integration Testing: Ensured communication 

between the Flask app, blockchain, and DNS 

resolver. 

Performance Testing: Measured query resolution 

latency and block append rate using simulated 

traffic. 

User Acceptance Testing (UAT): Developers and 

testers confirmed that all major functions were 

intuitive and responsive, with over 95 % satisfaction 

in test feedback [54]. 

Integrity checks using deliberate tampering 

confirmed that modified records failed blockchain 

verification, validating the immutability feature 

[55]. 

X. SECURITY AND PRIVACY 

CONSIDERATIONS 

Security The system was designed around security-

first principles [56]: 

SHA-256 Hashing: Ensures that each DNS record is 

cryptographically linked to the previous block. 

Decentralized Verification: Prevents single-point 

compromise of DNS data. 

Role-based Access: Only authorized users can add 

records through the Flask interface. 

Secure Communication: Web interface 

communication is protected via HTTPS during 

cloud deployment. 

Tamper Detection: Any alteration to a block breaks 

the hash continuity, immediately flagging 

manipulation attempts [57]. 

The model eliminates the dependency on centralized 

DNS providers and promotes transparent trust 

through blockchain, meeting data-integrity 

standards for decentralized systems [58]. 

XI.  CONCLUSION AND FUTURE SCOPE 

The project successfully demonstrates a blockchain-

based DNS resolution framework that enhances 

transparency, integrity, and trust in the global DNS 

ecosystem. It overcomes vulnerabilities such as 

spoofing and cache poisoning through cryptographic 

verification and decentralized storage [59]. 

The system achieved reliable real-time domain 

resolution with negligible latency while ensuring 

complete immutability of stored data. 

Future enhancements include: 

Implementing multi-node consensus mechanisms 

(Proof-of-Work / PoA). 

Expanding to smart-contract-based record 

validation. 



© November 2025| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002 

IJIRT 186820        INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1968 

Deploying the system across distributed Oracle 

Cloud nodes for global fault tolerance. 

Integrating DNSSEC compatibility and automated 

threat intelligence for proactive DNS defense [60]. 

This approach paves the way for a next-generation 

secure DNS infrastructure, reinforcing the vision of 

a decentralized and verifiable Internet. 

REFERENCES 

[1] Z. Zhou, C. Guo, H. Xu, X. Zhang, Y. Fan and 

L. Zhang, “BE-DNS: Blockchain-enabled 

Decentralized Name Services and P2P 

Communication Protocol,” in Proc. 9th IEEE 

World Forum on Internet of Things (WFIoT 

2023), Aveiro, Portugal, Oct. 2023.   

[2] Y. Fu, J. Wei, Y. Li, B. Peng and X. Li, “TI-

DNS: A Trusted and Incentive DNS Resolution 

Architecture based on Blockchain,” arXiv 

preprint arXiv:2312.04114, Dec. 2023.   

[3] G. Giamouridis, B. Kang and L. Aniello, 

“Blockchain-based DNS: Current Solutions and 

Challenges to Adoption,” in Proc. Distributed 

Ledger Technologies Workshop (DLT 2024), 

Turin, Italy, May 2024, pp. 1-18.   

[4] L. Zhu, “A Cross-Chain Solution to Connect 

Multiple DNS Blockchains,” Appl. Sci., vol. 15, 

no. 13, Art. 7422, 2025.   

[5] T. Gao and Q. Dong, “DNS-BC: Fast, Reliable 

and Secure Domain Name System Caching 

System Based on a Consortium Blockchain,” 

Sensors, vol. 23, no. 14, Art. 6366, 2023. 

[6] K. Isobe, J.-P. Eisenbarth, D. Kondo, T. Cholez 

and H. Tode, “A Deeper Grasp of Handshake: A 

Thorough Analysis of Blockchain-based DNS 

Records,” in Proc. BRAINS 2024 – 6th 

Conference on Blockchain Research & 

Applications for Innovative Networks and 

Services, Berlin, Germany, Oct. 2024.   

[7] Y. Fu, J. Wei, Y. Li, B. Peng and X. Li, “TI-

DNS: A Trusted and Incentive DNS Resolution 

Architecture based on Blockchain,” 

arXiv:2312.04114, Dec. 2023.   

[8] L. Zhu, “A Cross-Chain Solution to Connect 

Multiple DNS Blockchains,” *Applied 

Sciences*, vol. 15, no. 13, Art. 7422, 2025.   

[9] G. Giamouridis, B. Kang and L. Aniello, 

“Blockchain-based DNS: Current Solutions and 

Challenges to Adoption,” in Proc. DLT 2024 

Workshop, Turin, Italy, May 2024, pp. 1-18.   

[10] K. Isobe, J.-P. Eisenbarth, D. Kondo, T. Cholez 

and H. Tode, “A Deeper Grasp of Handshake: A 

Thorough Analysis of Blockchain-based DNS 

Records,” in Proc. BRAINS 2024 – 6th 

Conference on Blockchain Research & 

Applications for Innovative Networks and 

Services, Berlin, Germany, Oct. 2024.   

[11] G. Yang, P. Trinh, A. Nkemla, A. Serikyaku, E. 

Tatchim and O. Sharaf, “Blockchain-Based 

Decentralized Domain Name System,” arXiv 

preprint arXiv:2508.05655, Jul. 2025.   

[12] L. Zhu, “A Cross-Chain Solution to Connect 

Multiple DNS Blockchains,” Applied Sciences, 

vol. 15, no. 13, Article 7422, 2025.   

[13] M. (Unknown) et al., “Enabling DNS Security 

through Permissioned Blockchain,” 2024.   

[14] G. Giamouridis, B. Kang and L. Aniello, 

“Blockchain-based DNS: Current Solutions and 

Challenges to Adoption,” in Proc. DLT 2024 

Workshop, Turin, Italy, May 2024, pp. 1-18.  

[15] A. Aggarwal, K. L. Brown, N. P. Smith, and M. 

R. Jones, “Artificial Intelligence–Based 

Chatbots for Promoting Health Behaviour 

Change: A Scoping Review,” J. Med. Internet 

Res., vol. 25, no. 1, 2023. 

[16] A. Chowdhury and N. Kundu, “Conversational 

AI in healthcare using transformer-based 

models,” IEEE Trans. Neural Netw. Learn. 

Syst., vol. 34, no. 3, pp. 1789–1802, 2023. 

[17] J. Arora, S. Mehta and R. Gupta, “Performance 

evaluation of AI chatbots for healthcare,” IEEE 

Access, vol. 12, pp. 99512–99526, 2024. 

[18] N. Reddy, P. Verma and L. Zhang, “Testing 

methodologies for full-stack web-based 

healthcare systems,” IEEE Softw. Eng. Pract., 

vol. 39, no. 4, pp. 75–84, 2024. 

[19] M. J. Hussain, R. Gupta and L. Wang, “Web-

based healthcare automation using full-stack 

technologies,” IEEE Access, vol. 12, pp. 

65012–65020, 2024. 

[20] V. Kapoor and M. Roy, “Deployment of 

scalable Django applications on cloud platforms 

with Nginx and Gunicorn: performance and 

best practices,” J. Cloud Comput., vol. 13, no. 

2, pp. 189–198, 2023. 

[21] P. Verma and K. Mehta, “Performance 

evaluation of intelligent hospital management 

systems,” IEEE Trans. Health Inform., vol. 30, 

no. 2, pp. 410–416, 2024. 

[22] A. Kumar, S. Bhatia and D. Roy, “Design of 

secure and scalable databases for hospital 

management systems,” IEEE Access, vol. 12, 

pp. 105231–105239, 2024. 


