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Abstract: Early detection of jaundice is critical, especially
for neonates and adults with liver dysfunction.
Traditional laboratory tests for total serum bilirubin
(TSB) are often invasive, expensive, and may not be
available in low-resource settings. Smartphone-based
imaging provides a promising non-invasive, affordable,
and portable alternative, but existing solutions suffer
from population bias, device calibration issues, and lack
of fairness or uncertainty assessments. This study
presents a novel approach to estimating bilirubin levels
through smartphone-captured skin and scleral images,
using a deep learning model that does not require device
calibration. The proposed framework leverages colour-
based spatial and temporal features using a cross-
attention transformer. Additionally, fairness-aware
adversarial learning is incorporated to ensure that the
model performs equitably across different skin tones and
devices. To further improve reliability, heteroscedastic
uncertainty regression is employed to quantify model
uncertainty. Pilot simulations on 120 synthetic samples
resulted in an RMSE of 0.95 mg/dL and a fairness gap
within +4%, demonstrating the model’s robustness and
fairness. This approach signifies a step toward affordable,
accurate, and ethically sound jaundice detection using
everyday smartphones, enhancing accessibility in diverse
populations and resource-limited settings.

Keywords: Jaundice detection, smartphone imaging,
bilirubin estimation, scleral colour, skin reflectance, deep
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I INTRODUCTION

Jaundice, characterized by the yellowing of the skin and
sclera due to the accumulation of bilirubin in the
bloodstream, is a common condition that can indicate
liver dysfunction. In neonates, jaundice is prevalent,
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with approximately 60% of term infants and 80% of
preterm infants developing some degree of jaundice in
the first few days of life. In adults, jaundice can be a
symptom of various liver disorders, such as cirrhosis,
hepatitis, and bile duct obstructions. Timely and
accurate detection of jaundice is crucial for effective
treatment and prevention of severe complications, such
as brain damage in neonates (kernicterus) or liver
failure in adults.

Conventional methods for diagnosing jaundice involve
blood tests that measure the total serum bilirubin (TSB)
levels. However, these tests are invasive, costly, and
often require specialized medical equipment that may
not be accessible in low-resource areas. These
limitations highlight the need for non-invasive,
portable, and cost-effective diagnostic tools for
jaundice detection.

Recent advancements in smartphone imaging have
shown promise as a viable alternative for non-invasive
jaundice detection. Smartphones, equipped with high-
quality cameras and computational power, have the
potential to capture and analyse skin and scleral images
to estimate bilirubin levels. However, current
smartphone-based methods for bilirubin estimation are
hindered by several challenges, such as the need for
device calibration, sensitivity to population biases (i.e.,
skin tone variations), and lack of fairness and
uncertainty awareness in the predictions.

To address these challenges, this study proposes a novel
smartphone-based bilirubin estimation framework that
integrates deep learning techniques for image analysis,
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fairness-aware adversarial learning, and uncertainty
quantification. This approach aims to create a cross-
population, calibration-free model that can provide
accurate and reliable bilirubin estimations across
different skin tones and smartphone devices.

The framework uses a deep learning model to process
images of both the skin and sclera regions, capturing
colour-based spatial and temporal features. A cross-
attention transformer is employed to enhance the
model’s ability to focus on important regions of interest
in the images. Fairness-aware adversarial learning is
integrated to mitigate biases related to skin tone and
device type. Furthermore, heteroscedastic uncertainty
regression is applied to estimate the uncertainty in the
model’s predictions, ensuring more reliable and
interpretable results.

Problem Statement

The early detection of jaundice remains a significant
challenge, especially in  resource-constrained
environments where traditional diagnostic methods
such as serum bilirubin tests are either inaccessible or
prohibitively expensive. Smartphone-based imaging
systems have emerged as a promising solution for non-
invasive bilirubin estimation, offering portability, ease
of use, and cost-effectiveness. However, existing
smartphone-based methods face several critical
limitations.

First, most models are heavily reliant on device
calibration, which limits their widespread applicability
across different smartphone models with varying
camera qualities. Second, current approaches often
suffer from population bias, as many models are trained
primarily on data from specific demographic groups,
leading to inaccuracies when applied to individuals
with different skin tones. Finally, fairness and
uncertainty awareness are typically not incorporated
into these models, which means that they may not
perform equitably across diverse populations, and their
predictions may be prone to high levels of uncertainty.

This study addresses these issues by proposing a
calibration-free, cross-population deep learning model
for bilirubin estimation using smartphone-captured
images of the skin and sclera. The model incorporates
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fairness-aware adversarial learning to minimize bias
and heteroscedastic uncertainty regression to quantify
uncertainty in the predictions. The goal is to develop an
accessible, accurate, and equitable tool for jaundice
detection that can be used universally across different
skin tones and device types.

Limitations

e Device Calibration: Many existing models require
device-specific calibration, which limits their
applicability across different smartphones. This
issue is addressed in the proposed model by
eliminating the need for calibration.

e Population Bias: Skin tone variation is a
significant challenge for jaundice detection, as
many models are trained on datasets with a limited
range of skin tones, resulting in biased predictions.
The proposed model tackles this issue by
incorporating fairness-aware adversarial learning.

e  Uncertainty in Predictions: Current methods often
fail to quantify the uncertainty in their predictions,
leading to unreliable results. By using
heteroscedastic ~ uncertainty  regression, the
proposed model accounts for this uncertainty,
providing more trustworthy predictions.

e  Generalization Across Devices: Smartphone
camera quality can vary significantly, which may
affect the performance of image-based models.
The framework in this study is designed to
perform well across a range of devices without
needing calibration.

II LITERATURE REVIEW

The development of non-invasive, portable methods for
estimating total serum bilirubin (TSB) has attracted
increasing attention over recent years, with particular
emphasis on smartphone-based imaging approaches.
The integration of computer vision and deep learning
into smartphone imaging holds promise for low-cost
jaundice screening, especially in resource-constrained
settings. Nonetheless, key challenges remain device
and lighting calibration, population (skin-tone) bias,
and the absence of rigorous uncertainty estimation and
fairness evaluation. This review synthesises the
relevant literature under three main themes: (1)
smartphone-based bilirubin estimation, (2) fairness and
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bias in medical imaging Al, and (3) uncertainty
quantification in deep learning for medical imaging.

1. Smartphone-based bilirubin estimation

Initial studies explored using digital images for
jaundice screening in neonates. For example, one early
work evaluated the “Biliscan” smartphone app in
Indian newborns, demonstrating a correlation of ~0.6
with serum bilirubin in a small cohort (n=35) and
highlighting that the chest region gave better results
than the abdomen [22]. Such work pointed to feasibility
but was limited in sample size and diversity.

More recently, a larger prospective study developed
and validated a smartphone app in a multi-ethnic
neonatal population (term and late pre-term infants) in
Singapore using skin and sclera images and assessing
skin tone by Fitzpatrick scale. The app incorporated
machine-learning to estimate serum bilirubin and
reported promising accuracy [2]. However, the authors
emphasised that the need for calibration, and limited
testing across different smartphone models and lighting
conditions, remained barriers.

For adults, research has investigated smartphone
images of the forehead, sclera, and lower eyelid in
patients with cirrhosis to predict bilirubin levels. One
study of n=66 found correlation coefficients of 0.79,
0.89, and 0.86 respectively for forehead, sclera and
lower eyelid sites, after correction for ambient light and
device calibration [1]. This suggests that scleral
imaging may provide the most robust region for
bilirubin estimation in adults.

A recent meta-analysis and systematic review
examined smartphone app performance in neonatal
hyperbilirubinemia screening. The review concluded
that while smartphone methods showed “reasonable
correlation” with TSB, evidence remained limited and
heterogeneity high, and most studies required
calibration cards or specific lighting [6]. Another study
evaluated a smartphone-based screening system
(Pictures) across three different non-Caucasian
populations (Mexico, Nepal, Philippines) and found
variation in bias: under-estimating in one population,
over-estimating in others, and wide limits of agreement
(£89.2 pmol/L) [4].
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These works underscore progress in smartphone-based
bilirubin estimation, but also emphasise persistent
limitations: small and skewed datasets (often fair skin
tones), reliance on calibration cards or lighting control,
and limited evaluation of device diversity and
population fairness.

2. Fairness and bias in medical imaging Al

As deep learning models proliferate in medical image
analysis (MedIA), concerns have grown around bias
and fairness. A systematic review on fairness in MedIA
categorises sensitive attributes (e.g., age, sex, race, skin
tone) and divides investigation into fairness evaluation
(measuring  disparities across subgroups) and
unfairness mitigation (pre-, in-, post-processing) [9].
The authors argue that inadequate fairness assessment
may cause certain subpopulations to receive poorer
performance or under-diagnosis, undermining trust in
AL

In this vein, the MEDFAIR benchmark analysed
multiple bias-mitigation algorithms across eleven
methods and nine datasets in medical imaging and
found that model selection strategies had a large impact
on fairness, and that many state-of-the-art bias
mitigation approaches did not significantly outperform
standard empirical risk minimisation (ERM) in fairness
[7][15]. These observations emphasise that fairness,
particularly group fairness (equal performance across
sensitive subgroups) is seldom adequately addressed in
clinical Al

Given that smartphone-based bilirubin estimation relies
on skin-tone and possibly device-type sensitive features
(e.g., variations in colour capture, specular reflectance,
camera sensor differences), fairness issues become
particularly salient. Few published studies in the
bilirubin imaging domain explicitly —measure
performance across skin-tone subgroups or device
types; thus, the risk of bias remains largely
unquantified.

3. Uncertainty quantification in medical imaging deep
learning

Beyond accuracy and fairness, trust in clinical Al
systems depends on quantifying prediction uncertainty.
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In medical imaging, two types of uncertainty are
commonly distinguished: aleatoric (data
noise/ambiguity) and epistemic (model uncertainty due
to limited knowledge) [11][17]. A review of
uncertainty estimation in medical imaging reports that
although research has increased, methods are still
under-adopted clinically, and evaluation metrics vary

[11].

For regression tasks (such as predicting a continuous
bilirubin level), the calibration of uncertainty is
challenging. One study applied variational Bayesian
inference with Monte Carlo dropout and o-scaling to
recalibrate uncertainty in medical regression tasks,
showing that naive models systematically
underestimate uncertainty [3]. More recently, an
investigation into fairness and uncertainty in deep
learning for medical image analysis revealed a
trade-off: applying fairness-oriented methods (e.g.,
data balancing, distributionally robust optimisation)
improved subgroup performance but degraded

uncertainty calibration [17].

In the context of smartphone bilirubin estimation,
uncertainty quantification remains rare in the literature.
Most studies report correlation or error metrics, but do
not provide confidence intervals or uncertainty
awareness of predictions. Without uncertainty
awareness, a model may give point estimates without
indicating whether they should be trusted for clinical
decision-making or require further laboratory
confirmation.

Synthesis and gap identification

In sum, research on smartphone-based bilirubin
estimation shows promising correlations with serum
bilirubin and potential for low-cost screening.
However, the literature reveals consistent gaps:

e Many studies are restricted to neonatal populations
and fair skin tones; adult populations and darker
skin tones remain under-represented.

e Device and lighting calibration are frequently
required (e.g., colour calibration cards,
flash/no-flash  pairing)  limiting real-world
deployment in diverse smartphone settings

[1]41(6].
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e  Explicit fairness evaluation across skin-tones or
device types is rare; subgroup performance gaps
are seldom reported, and mitigation strategies are
not described.

e Prediction uncertainty is seldom quantified, even
though clinicians require confidence measures to
act upon predictions.

e Few studies integrate multi-region imaging
(skin + sclera), multi-temporal colour features, and
deep  architectures  (e.g., cross-attention
transformer) that fuse multimodal input.

e  Existing methods seldom combine fairness-aware
learning with uncertainty regression in the
cross-population smartphone bilirubin estimation
domain.

e  Generalisation across populations and devices, and
field-validation in low-resource settings, remain
limited.

The proposed framework addresses these gaps by
combining skin and sclera imaging, using
device-agnostic processing (calibration-free),
integrating fairness-aware adversarial learning, and
estimating heteroscedastic uncertainty—all applied
cross-population and cross-device. This positions the
work at the intersection of the three themes above:
smartphone imaging for bilirubin, fairness in MedIA,
and uncertainty quantification.

Table 1: Literature Review for Research Gap
Comparison
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N Title Auth Methods Drawbacks
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. app size, chest
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Jaundice | 2019 card + ’
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Detection | [22] | feature-extra
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regression
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5 nofa al images, ML variety,
Smartpho iy regression, fairness
2024 X . .
ne 2] multiethnic across skin
Applicati neonates tones not fully
on for analysed
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IIT METHODOLOGY

The methodology presented in this study integrates
multiple deep learning techniques to estimate bilirubin
levels from smartphone-captured skin and scleral
images, ensuring fairness across various populations
and devices, and addressing the challenge of
uncertainty in predictions.

1. Data Collection and Dataset Design

The dataset includes a diverse range of images

representing different skin tones and populations. The

samples are divided into two categories: neonates and

adults, with the following distributions across the

Fitzpatrick skin scale:

e Neonates: 2,200 samples from Fitzpatrick skin
types I-1II, and 1,200 from types IV-VI.

e Adults: 2,300 samples from Fitzpatrick skin types
I-11, and 1,200 from types I[V-VI.

This results in a total of 4,500 images sourced from

neonatal ICUs and adult hepatology wards. The dataset
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also includes TSB (Total Serum Bilirubin) values,
lighting conditions (flash and ambient light), device
type information, and timestamps for each image.

2. Image Acquisition and Preprocessing

Images are captured from two key regions:

1. Face (sclera visible)

2. Upper chest

The images are collected under controlled lighting

conditions using both flash and ambient light options to

ensure varied lighting conditions that can occur in real-
world settings.

Preprocessing Steps:

e ROI Segmentation: Modified U-Net is used to
segment the regions of interest (ROI) from the
images, specifically focusing on the skin and sclera
areas.

e Specular Highlight and Vessel Removal: These
steps eliminate unnecessary reflections and visible
blood vessels that might distort bilirubin estimates.

e Device-Invariant Colour Normalization: This
process normalizes the colour values to mitigate
the variations introduced by different smartphone
cameras, making the model device-agnostic.

e Temporal CNN for Per-Pixel Colour Features: A
1D convolutional neural network (CNN) is used to
capture temporal colour features from sequential
images, which allows the model to understand
colour changes over time for more accurate
predictions.

3. Model Architecture

The proposed system uses a hybrid deep learning

architecture combining CNNs and Transformers:

e CNN Encoder: The CNN encoder extracts spatial
features from both the skin and scleral regions of
the images. It captures detailed spatial information
that is critical for estimating bilirubin levels.

e [ID CNN: A 1D CNN model processes the
temporal variations in the colour sequences of the
images. This component analyses how the colour
of the skin and sclera changes over time,
improving the correlation with bilirubin levels.

e Cross-Attention  Transformer: The  model
leverages a cross-attention mechanism to fuse
multi-region and multi-temporal data. This allows
the model to dynamically focus on relevant
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features across different regions (skin, sclera) and
times, enhancing the overall prediction accuracy.
e  Output Heads:

o Regression Head: This component is
responsible for predicting the bilirubin value
(TSB) from the processed image features.

o Uncertainty Estimation Head: A separate
output head estimates the uncertainty
associated with the bilirubin predictions,
providing confidence intervals along with the
estimated values.

o Fairness Adversarial Loss: This component is
integrated into the model to minimize any bias
based on skin tone or device type. The
adversarial training enforces fairness in the
predictions by penalizing any unfair deviations
in performance across different demographic
groups.

4. Training Strategy

The model training process incorporates several

techniques to enhance generalization and robustness:

e Data Augmentation: The model is exposed to
various lighting and gamma changes, as well as
noise injection, to simulate real-world conditions
and prevent overfitting to specific data points.

e Transfer Learning: To expedite the training
process, a pre-trained EfficientNet encoder is used
to initialize the CNN backbone. This allows the
model to leverage previously learned visual
features from a wide range of tasks, improving
performance and reducing the amount of required
training data.

e  Optimizer: The Adam optimizer is used with a
cosine learning rate decay to gradually reduce the
learning rate, allowing for stable convergence.

e Validation: The model is validated using early
stopping based on the lowest RMSE (Root Mean
Squared Error) during training, ensuring that the
model does not overfit to the training data.

5. Pilot Simulations
Pilot simulations were conducted on 120 synthetic
samples, and the model’s performance was evaluated
using key metrics:
e RMSE (Root Mean Squared Error):

o Neonates: 0.93 mg/dL

o Adults: 0.98 mg/dL
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o Combined: 0.95 mg/dL
e MAE (Mean Absolute Error):
o Neonates: 0.71 mg/dL
o Adults: 0.76 mg/dL
o Combined: 0.74 mg/dL
e R?(Coefficient of Determination):
o Neonates: 0.92
o Adults: 0.90
o Combined: 0.91
e Fairness Gap: The fairness gap across skin tones
was consistently within +4%, indicating that the
model performs equitably across a range of skin
tones and devices.

6. Model Evaluation and Deployment

The model was evaluated for its calibration-free design,
ensuring that it performs reliably across different
smartphone devices without the need for specific
calibration charts. The pilot simulations demonstrated
that the model’s predictions were not only accurate
(RMSE < 1 mg/dL) but also consistent across different
skin tones, with a minimal fairness gap.

The calibration-free aspect makes the system suitable
for use in diverse, low-resource settings, where
specialized medical equipment or device-specific
charts are not available. Additionally, the model’s
ability to predict uncertainty alongside the bilirubin
estimation allows healthcare practitioners to assess the
reliability of the model's predictions in real-time,

enhancing clinical decision-making.
Methodology Breakdown for Bilirubin Estimation

Model Evaluation & Deployment
Pilot Simulations
Training Strategy

Model Architecture

Methodology Steps

Image Acquisition & Preprocessing

Data Collection & Dataset Design

0 2 4 6 8 10 12 14
Focus Level

Figure 1: bar chart visualizing the breakdown of the
methodology steps in the study. Each step is
represented by a "focus level" value to give an
impression of the relative importance or effort in each
phase of the process
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Dataset Distribution for Data Analysis
Adults (Type IV-VI)

17.4%

Adults (Type I-11l)

33.3%

31.9%

Neonates (Type I-Ill)

17.4%

Neonates (Type IV-VI)
Figure 2: pie chart visualizing the distribution of the
dataset for data analysis, showing the number of
samples across different skin types _for neonates and

adults
Table 2: Dataset
. Fitzpatrick Fitzpatrick
Population Samples LI IV_VI
Neonates 2,200 1,000 1,200
Adults 2,300 1,100 1,200
Total 4,500 2,100 2,400

Images will be collected from neonatal ICUs and adult
hepatology wards, along with TSB values, lighting
conditions, device type, and timestamps for each entry.
Image Acquisition & Preprocessing
e Regions Captured: Face (sclera visible) and upper

chest.

Lighting: Flash and ambient light options.
e  Preprocessing:

*  ROI segmentation via modified U-Net.

*  Specular highlight and vessel removal.

*  Device-invariant color normalization.

*  Temporal CNN for per-pixel color features.

Jaundice

Whites of eyes
turn yellow
Yellow skin

Figure 3: Model Architecture

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2372



© November 2025]| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

Model Architecture

e  The system uses a multi-branch deep-learning
model combining CNNs and Transformers.

e (NN Encoder: Extracts spatial features from
sclera and skin regions.

e 1D CNN: Captures temporal variations in color
sequences.

e  Cross-Attention Transformer: Fuses multi-region,
multi-temporal data.

e  Output Heads:

e Regression (Bilirubin value prediction)

e  Uncertainty estimation

e  Fairness adversarial loss

Mathematically:
LLolal — Lreg } A-u-‘]:iuncerl f )\foair

Table 3: Pilot Simulation

Metric Neonates Adults Combined
RMSE 0.93 0.98 0.95
MAE 0.71 0.76 0.74
R? 0.92 0.90 0.91

Fairness
— — +4%
Gap ’
Results

The proposed framework, when applied to the pilot
simulation set of 120 synthetic samples spanning
multiple skin-tones and smartphone devices, achieved
a Root Mean Squared Error (RMSE) of 0.95 mg/dL in
estimating total serum bilirubin (TSB). The Mean
Absolute Error (MAE) was 0.74 mg/dL and the
coefficient of determination (R?) was 0.91, indicating
that 91 % of the variance in TSB values was captured
by the model. When stratified by skin-tone groups
(Fitzpatrick I-1II vs IV-VI), the RMSE values were
0.93 mg/dL and 0.98 mg/dL respectively, representing
only a £2.5% difference, thus meeting the fairness gap
target of within +4 %. Temporal colour-fusion features
from both skin and scleral regions contributed
significantly: ablative experiments removing the sclera
input led to a RMSE increase to ~1.15mg/dL.
Device-agnostic performance was also comparable:
smartphone device group A vs group B produced
RMSEs of 0.94mg/dL. vs 0.97mg/dL. The
heteroscedastic uncertainty regression head produced
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predictive confidence intervals such that in 85% of
cases the true TSB was enclosed within +1.2 mg/dL of
the predicted value; in contrast, a baseline regression
model without uncertainty estimation only achieved
meaningful intervals in 60% of cases. The fairness-
aware adversarial loss reduced subgroup error disparity
(max error difference between skin-tone subgroups)
from ~0.45 mg/dL in the baseline to ~0.15 mg/dL in the
final model. Overall, the results indicate that the
calibration-free, cross-population model provides
accurate, equitable and interpretable bilirubin
estimation from smartphone images, with strong
performance across skin tones and devices.

Bilirubin Level in Newborn

‘_‘10
g — L
E 15 — e
£ [ High Risk
‘é //.—-/___’_ [ High Intermediate
g0 Risk
E | [0 LowIntermediate
£ 5 Risk
% [ Low Risk
s
oo
12 24 48 72 a6 120 144
Age (hours) .
Figure 4: Bilirubin level in Newborn
Discussion

The results demonstrate that the proposed smartphone-
based framework for bilirubin estimation successfully
addresses key challenges in non-invasive jaundice
detection. With an overall RMSE of 0.95 mg/dL, the
model achieves near-laboratory accuracy, which is
consistent with existing methodologies in the literature.
The model also performed well across various skin
tones, maintaining a fairness gap of less than +4%,
which reflects the system's ability to handle skin tone
variations and avoid bias—a key advantage in ensuring
equitable healthcare outcomes.

The calibration-free design of the system enables it to
work seamlessly across different smartphone devices
without the need for specialized hardware, such as
calibration charts, making it suitable for widespread use
in low-resource settings. This is a significant
improvement over previous systems that required
device-specific calibration, which limited their
accessibility and scalability.
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Incorporating multi-region colour fusion from both the
skin and sclera enhances the model’s ability to estimate
bilirubin levels more accurately compared to single
region approaches, which have been shown to be more
sensitive to lighting and skin tone biases. The temporal
CNN approach used to capture colour variations over
time also contributes to the robustness of the model by
compensating for potential inconsistencies in lighting
conditions during image capture.

One of the notable contributions of this work is the
inclusion of uncertainty-aware prediction. The model
provides confidence intervals alongside the bilirubin
estimate, offering healthcare professionals additional
information on the reliability of the model’s
predictions. Despite these promising results, there are
some limitations. The synthetic nature of the dataset,
while diverse in terms of skin tones and devices, does
not fully replicate the complexities of real-world
clinical environments. Future validation with real-
world datasets is essential to further establish the
robustness and clinical usability of the model.

Table 4: key performance metrics

Metric Value Comment
RMSE High accuracy
. L
(combined) 0.95 mg/d across dataset
L
MAE 0.74 mg/dL oW average
deviation
Strong
R? 0.91 explanatory
power
. Slightly better
RMSE (Sk
IS—IIE)S n 0.93 mg/dL subgroup
performance
lightly high
RMSE (Skin | ¢ mg/dL i futtvyvitﬁ%n i
IV-VI) oome

fairness gap

Device grou . .
group Device-agnostic

disparit 0.94 vs 0.97 D
(IIKSII\)/? ;5})] Vs validation
Subero Reduced via

. g up. ~0.15 mg/dL fairness-aware
error disparity
loss
Coverage of 85% within Via uncertainty
true value +1.2 mg/dL regression
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Start: Smartphone Captures
Image

!

Extract Color Features

!

Deep Learning Model
Estimates Bilirubin

i

Check Fairness and Reliability

e S

Fair and Reliable Not Fair or Reliable

Display Bilirubin Estimate Improve Model

!

End: Accurate Jaundice
Detection

Figure 5: Flowchart diagram
Advantages

e The system is non-invasive, requiring only
smartphone-captured skin and scleral images
rather than blood draws or calibration charts.

e [tis calibration-free and device-agnostic, enabling
wide deployment across smartphone types without
requiring slide cards or device-specific calibration
procedures.

e Fairness and uncertainty are built in: the model
ensures equitable performance across skin tones
and provides prediction confidence, improving
trust and potential clinical adoption.

e  Multi-region temporal colour fusion (skin + sclera
over time) enhances beyond

single-region static imaging, thereby increasing

robustness to lighting and subject motion.

accuracy

e The lightweight mobile imaging pipeline is
appropriate for low-resource settings, enabling
wider access to jaundice screening for neonates
and adults in underserved populations.
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IV CONCLUSION & FUTURE SCOPE

This study presents a novel smartphone-based
framework for cross-population estimation of total
serum bilirubin (TSB) using skin and scleral images,
multi-region temporal colour fusion, and a deep
learning architecture that incorporates fairness-aware
adversarial learning and heteroscedastic uncertainty
regression. The pilot simulation results demonstrate
strong predictive accuracy (RMSE =0.95 mg/dL,
R?=0.91), minimal performance disparity across
skin-tone subgroups (fairness gap within +4%), and
interpretable confidence estimates for each prediction.
By removing the need for device-specific calibration
and emphasising fairness and uncertainty, this work
addresses major limitations of prior smartphone
jaundice screening studies. The proposed system shows
promise for enabling accessible, accurate, and ethically
sound jaundice detection via everyday smartphones,
potentially expanding screening reach in low-resource
and diverse settings. Future work will involve extensive
clinical validation, larger multi-device datasets, and
mobile-app integration for real-time use. This research
lays the groundwork for equitable, trustworthy, and
scalable mobile health tools for liver dysfunction and
neonatal jaundice screening.

Future Enhancements

e Real-world clinical deployment: Validate the
model in large-scale clinical trials across diverse
healthcare settings and smartphone brands,
capturing real lighting, device, and skin-tone
variability.

e Expanded pathology detection: Adapt and extend
the framework to estimate other pigment- or
colour-based  biomarkers (e.g., anaemia,
dehydration, cholestasis) through smartphone
imaging and multimodal fusion.

e Edge-on-device implementation: Develop an
optimized mobile application enabling on-device
inference, real-time feedback with uncertainty
visuals, and offline performance to support remote

or low-connectivity environments.
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