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Abstract: Early detection of jaundice is critical, especially 

for neonates and adults with liver dysfunction. 

Traditional laboratory tests for total serum bilirubin 

(TSB) are often invasive, expensive, and may not be 

available in low-resource settings. Smartphone-based 

imaging provides a promising non-invasive, affordable, 

and portable alternative, but existing solutions suffer 

from population bias, device calibration issues, and lack 

of fairness or uncertainty assessments. This study 

presents a novel approach to estimating bilirubin levels 

through smartphone-captured skin and scleral images, 

using a deep learning model that does not require device 

calibration. The proposed framework leverages colour-

based spatial and temporal features using a cross-

attention transformer. Additionally, fairness-aware 

adversarial learning is incorporated to ensure that the 

model performs equitably across different skin tones and 

devices. To further improve reliability, heteroscedastic 

uncertainty regression is employed to quantify model 

uncertainty. Pilot simulations on 120 synthetic samples 

resulted in an RMSE of 0.95 mg/dL and a fairness gap 

within ±4%, demonstrating the model’s robustness and 

fairness. This approach signifies a step toward affordable, 

accurate, and ethically sound jaundice detection using 

everyday smartphones, enhancing accessibility in diverse 

populations and resource-limited settings. 

Keywords: Jaundice detection, smartphone imaging, 

bilirubin estimation, scleral colour, skin reflectance, deep 

learning, fairness, uncertainty. 

I INTRODUCTION 

Jaundice, characterized by the yellowing of the skin and 

sclera due to the accumulation of bilirubin in the 

bloodstream, is a common condition that can indicate 

liver dysfunction. In neonates, jaundice is prevalent, 

with approximately 60% of term infants and 80% of 

preterm infants developing some degree of jaundice in 

the first few days of life. In adults, jaundice can be a 

symptom of various liver disorders, such as cirrhosis, 

hepatitis, and bile duct obstructions. Timely and 

accurate detection of jaundice is crucial for effective 

treatment and prevention of severe complications, such 

as brain damage in neonates (kernicterus) or liver 

failure in adults. 

Conventional methods for diagnosing jaundice involve 

blood tests that measure the total serum bilirubin (TSB) 

levels. However, these tests are invasive, costly, and 

often require specialized medical equipment that may 

not be accessible in low-resource areas. These 

limitations highlight the need for non-invasive, 

portable, and cost-effective diagnostic tools for 

jaundice detection. 

Recent advancements in smartphone imaging have 

shown promise as a viable alternative for non-invasive 

jaundice detection. Smartphones, equipped with high-

quality cameras and computational power, have the 

potential to capture and analyse skin and scleral images 

to estimate bilirubin levels. However, current 

smartphone-based methods for bilirubin estimation are 

hindered by several challenges, such as the need for 

device calibration, sensitivity to population biases (i.e., 

skin tone variations), and lack of fairness and 

uncertainty awareness in the predictions. 

To address these challenges, this study proposes a novel 

smartphone-based bilirubin estimation framework that 

integrates deep learning techniques for image analysis, 



© November 2025| IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002 
 

IJIRT 186881          INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2367 

fairness-aware adversarial learning, and uncertainty 

quantification. This approach aims to create a cross-

population, calibration-free model that can provide 

accurate and reliable bilirubin estimations across 

different skin tones and smartphone devices. 

The framework uses a deep learning model to process 

images of both the skin and sclera regions, capturing 

colour-based spatial and temporal features. A cross-

attention transformer is employed to enhance the 

model’s ability to focus on important regions of interest 

in the images. Fairness-aware adversarial learning is 

integrated to mitigate biases related to skin tone and 

device type. Furthermore, heteroscedastic uncertainty 

regression is applied to estimate the uncertainty in the 

model’s predictions, ensuring more reliable and 

interpretable results. 

Problem Statement 

The early detection of jaundice remains a significant 

challenge, especially in resource-constrained 

environments where traditional diagnostic methods 

such as serum bilirubin tests are either inaccessible or 

prohibitively expensive. Smartphone-based imaging 

systems have emerged as a promising solution for non-

invasive bilirubin estimation, offering portability, ease 

of use, and cost-effectiveness. However, existing 

smartphone-based methods face several critical 

limitations. 

First, most models are heavily reliant on device 

calibration, which limits their widespread applicability 

across different smartphone models with varying 

camera qualities. Second, current approaches often 

suffer from population bias, as many models are trained 

primarily on data from specific demographic groups, 

leading to inaccuracies when applied to individuals 

with different skin tones. Finally, fairness and 

uncertainty awareness are typically not incorporated 

into these models, which means that they may not 

perform equitably across diverse populations, and their 

predictions may be prone to high levels of uncertainty. 

This study addresses these issues by proposing a 

calibration-free, cross-population deep learning model 

for bilirubin estimation using smartphone-captured 

images of the skin and sclera. The model incorporates 

fairness-aware adversarial learning to minimize bias 

and heteroscedastic uncertainty regression to quantify 

uncertainty in the predictions. The goal is to develop an 

accessible, accurate, and equitable tool for jaundice 

detection that can be used universally across different 

skin tones and device types. 

Limitations 

• Device Calibration: Many existing models require 

device-specific calibration, which limits their 

applicability across different smartphones. This 

issue is addressed in the proposed model by 

eliminating the need for calibration. 

• Population Bias: Skin tone variation is a 

significant challenge for jaundice detection, as 

many models are trained on datasets with a limited 

range of skin tones, resulting in biased predictions. 

The proposed model tackles this issue by 

incorporating fairness-aware adversarial learning. 

• Uncertainty in Predictions: Current methods often 

fail to quantify the uncertainty in their predictions, 

leading to unreliable results. By using 

heteroscedastic uncertainty regression, the 

proposed model accounts for this uncertainty, 

providing more trustworthy predictions. 

• Generalization Across Devices: Smartphone 

camera quality can vary significantly, which may 

affect the performance of image-based models. 

The framework in this study is designed to 

perform well across a range of devices without 

needing calibration. 

II LITERATURE REVIEW 

The development of non-invasive, portable methods for 

estimating total serum bilirubin (TSB) has attracted 

increasing attention over recent years, with particular 

emphasis on smartphone-based imaging approaches. 

The integration of computer vision and deep learning 

into smartphone imaging holds promise for low-cost 

jaundice screening, especially in resource-constrained 

settings. Nonetheless, key challenges remain device 

and lighting calibration, population (skin-tone) bias, 

and the absence of rigorous uncertainty estimation and 

fairness evaluation. This review synthesises the 

relevant literature under three main themes: (1) 

smartphone-based bilirubin estimation, (2) fairness and 
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bias in medical imaging AI, and (3) uncertainty 

quantification in deep learning for medical imaging. 

1. Smartphone-based bilirubin estimation 

Initial studies explored using digital images for 

jaundice screening in neonates. For example, one early 

work evaluated the “Biliscan” smartphone app in 

Indian newborns, demonstrating a correlation of ~0.6 

with serum bilirubin in a small cohort (n = 35) and 

highlighting that the chest region gave better results 

than the abdomen [22]. Such work pointed to feasibility 

but was limited in sample size and diversity. 

More recently, a larger prospective study developed 

and validated a smartphone app in a multi-ethnic 

neonatal population (term and late pre-term infants) in 

Singapore using skin and sclera images and assessing 

skin tone by Fitzpatrick scale. The app incorporated 

machine-learning to estimate serum bilirubin and 

reported promising accuracy [2]. However, the authors 

emphasised that the need for calibration, and limited 

testing across different smartphone models and lighting 

conditions, remained barriers. 

For adults, research has investigated smartphone 

images of the forehead, sclera, and lower eyelid in 

patients with cirrhosis to predict bilirubin levels. One 

study of n = 66 found correlation coefficients of 0.79, 

0.89, and 0.86 respectively for forehead, sclera and 

lower eyelid sites, after correction for ambient light and 

device calibration [1]. This suggests that scleral 

imaging may provide the most robust region for 

bilirubin estimation in adults. 

A recent meta-analysis and systematic review 

examined smartphone app performance in neonatal 

hyperbilirubinemia screening. The review concluded 

that while smartphone methods showed “reasonable 

correlation” with TSB, evidence remained limited and 

heterogeneity high, and most studies required 

calibration cards or specific lighting [6]. Another study 

evaluated a smartphone-based screening system 

(Pictures) across three different non-Caucasian 

populations (Mexico, Nepal, Philippines) and found 

variation in bias: under-estimating in one population, 

over-estimating in others, and wide limits of agreement 

(±89.2 µmol/L) [4]. 

These works underscore progress in smartphone-based 

bilirubin estimation, but also emphasise persistent 

limitations: small and skewed datasets (often fair skin 

tones), reliance on calibration cards or lighting control, 

and limited evaluation of device diversity and 

population fairness. 

2. Fairness and bias in medical imaging AI 

As deep learning models proliferate in medical image 

analysis (MedIA), concerns have grown around bias 

and fairness. A systematic review on fairness in MedIA 

categorises sensitive attributes (e.g., age, sex, race, skin 

tone) and divides investigation into fairness evaluation 

(measuring disparities across subgroups) and 

unfairness mitigation (pre-, in-, post-processing) [9]. 

The authors argue that inadequate fairness assessment 

may cause certain subpopulations to receive poorer 

performance or under-diagnosis, undermining trust in 

AI. 

In this vein, the MEDFAIR benchmark analysed 

multiple bias-mitigation algorithms across eleven 

methods and nine datasets in medical imaging and 

found that model selection strategies had a large impact 

on fairness, and that many state-of-the-art bias 

mitigation approaches did not significantly outperform 

standard empirical risk minimisation (ERM) in fairness 

[7][15]. These observations emphasise that fairness, 

particularly group fairness (equal performance across 

sensitive subgroups) is seldom adequately addressed in 

clinical AI. 

Given that smartphone-based bilirubin estimation relies 

on skin-tone and possibly device-type sensitive features 

(e.g., variations in colour capture, specular reflectance, 

camera sensor differences), fairness issues become 

particularly salient. Few published studies in the 

bilirubin imaging domain explicitly measure 

performance across skin-tone subgroups or device 

types; thus, the risk of bias remains largely 

unquantified. 

3. Uncertainty quantification in medical imaging deep 

learning 

Beyond accuracy and fairness, trust in clinical AI 

systems depends on quantifying prediction uncertainty. 
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In medical imaging, two types of uncertainty are 

commonly distinguished: aleatoric (data 

noise/ambiguity) and epistemic (model uncertainty due 

to limited knowledge) [11][17]. A review of 

uncertainty estimation in medical imaging reports that 

although research has increased, methods are still 

under-adopted clinically, and evaluation metrics vary 

[11]. 

For regression tasks (such as predicting a continuous 

bilirubin level), the calibration of uncertainty is 

challenging. One study applied variational Bayesian 

inference with Monte Carlo dropout and σ-scaling to 

recalibrate uncertainty in medical regression tasks, 

showing that naïve models systematically 

underestimate uncertainty [3]. More recently, an 

investigation into fairness and uncertainty in deep 

learning for medical image analysis revealed a 

trade-off: applying fairness-oriented methods (e.g., 

data balancing, distributionally robust optimisation) 

improved subgroup performance but degraded 

uncertainty calibration [17]. 

In the context of smartphone bilirubin estimation, 

uncertainty quantification remains rare in the literature. 

Most studies report correlation or error metrics, but do 

not provide confidence intervals or uncertainty 

awareness of predictions. Without uncertainty 

awareness, a model may give point estimates without 

indicating whether they should be trusted for clinical 

decision-making or require further laboratory 

confirmation. 

Synthesis and gap identification 

In sum, research on smartphone-based bilirubin 

estimation shows promising correlations with serum 

bilirubin and potential for low-cost screening. 

However, the literature reveals consistent gaps: 

• Many studies are restricted to neonatal populations 

and fair skin tones; adult populations and darker 

skin tones remain under-represented. 

• Device and lighting calibration are frequently 

required (e.g., colour calibration cards, 

flash/no-flash pairing) limiting real-world 

deployment in diverse smartphone settings 

[1][4][6]. 

• Explicit fairness evaluation across skin-tones or 

device types is rare; subgroup performance gaps 

are seldom reported, and mitigation strategies are 

not described. 

• Prediction uncertainty is seldom quantified, even 

though clinicians require confidence measures to 

act upon predictions. 

• Few studies integrate multi-region imaging 

(skin + sclera), multi-temporal colour features, and 

deep architectures (e.g., cross-attention 

transformer) that fuse multimodal input. 

• Existing methods seldom combine fairness-aware 

learning with uncertainty regression in the 

cross-population smartphone bilirubin estimation 

domain. 

• Generalisation across populations and devices, and 

field-validation in low-resource settings, remain 

limited. 

The proposed framework addresses these gaps by 

combining skin and sclera imaging, using 

device-agnostic processing (calibration-free), 

integrating fairness-aware adversarial learning, and 

estimating heteroscedastic uncertainty—all applied 

cross-population and cross-device. This positions the 

work at the intersection of the three themes above: 

smartphone imaging for bilirubin, fairness in MedIA, 

and uncertainty quantification. 

Table 1: Literature Review for Research Gap 

Comparison 

S.

N

o 

Title 
Auth

ors 

Methods 

Used 
Drawbacks 

1 

Smartpho

ne-Based 

Neonatal 

Jaundice 

Detection 

Smit

h et 

al., 

2019 

[22] 

Smartphone 

app 

(Biliscan) 

using colour 

calibration 

card + 

feature-extra

ction + 

regression 

Small sample 

size, chest 

region only, 

fair skin 

tones, tool for 

screening not 

comprehensiv

e 

2 

Develop

ment and 

Validatio

n of a 

Smartpho

ne 

Applicati

on for 

Ngeo

w et 

al., 

2024 

[2] 

Multi-region 

skin/scleral 

images, ML 

regression, 

multiethnic 

neonates 

Calibration 

required, 

limited device 

variety, 

fairness 

across skin 

tones not fully 

analysed 
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Neonatal 

Jaundice 

3 

Smartpho

nes could 

be used 

to 

monitor 

liver 

disease 

patients 

at home 

Nixo

n-Hil

l et 

al., 

2023 

[1][1

8] 

Forehead, 

sclera, lower 

eyelid 

images in 

adults with 

cirrhosis; 

device 

calibration 

& 

flash/no-flas

h correction 

Adult cohort 

only, limited 

diversity in 

devices, 

skin-tone 

subgroup 

analysis 

minimal 

4 

Smartpho

ne-based 

screening 

of 

neonatal 

jaundice 

in three 

LMIC 

populatio

ns 

Darj 

et al., 

2024 

[4] 

Smartphone 

screening 

(Picterus) in 

Mexico, 

Nepal, 

Philippines; 

ROC, 

Bland-Altm

an analysis 

Wide limits of 

agreement, 

bias across 

populations 

(under/over-e

stimation), 

device 

calibration 

still required 

5 

A review 

study of 

newborn 

bilirubin 

monitorin

g systems 

based on 

image 

Darj, 

2023 

[20] 

Literature 

review of 

image-based 

bilirubin 

monitoring 

in newborns 

Mostly 

neonatal 

studies, 

limited adult 

data, limited 

fairness/uncer

tainty 

discussion 

6 

Fairness 

in 

Medical 

Image 

Analysis 

and 

Healthcar

e: A 

Literature 

Survey 

Xu et 

al., 

2023 

[9] 

Review of 

fairness in 

MedIA: 

definitions, 

evaluation & 

mitigation 

General 

MedIA, not 

specific to 

bilirubin/imag

e-based 

bilirubin 

estimation; 

lacks 

quantitative 

fairness 

metrics for 

bilirubin 

domain 

7 

MEDFAI

R: 

Benchma

rking 

Fairness 

for 

Medical 

Imaging 

Zong 

et al., 

2022 

[7][1

5] 

Benchmark 

framework 

for fairness 

in MedIA 

across 

datasets/mo

dels 

Does not 

address 

regression 

tasks (e.g., 

bilirubin level 

estimation); 

device-type 

and skin-tone 

device-agnost

ic issues not 

specific to 

bilirubin 

domain 

8 

A 

Review 

of 

Uncertain

ty 

Zou 

et al., 

2023 

[11] 

Systematic 

review of 

uncertainty 

estimation in 

medical 

Focus mostly 

on 

segmentation/

classification; 

continuous 

Estimatio

n and its 

Applicati

on in 

Medical 

Imaging 

imaging 

tasks 

regression 

(bilirubin) 

settings and 

device-diversi

ty not 

emphasised 

9 

Evaluatin

g the 

Fairness 

of Deep 

Learning 

Uncertain

ty 

Estimates 

in 

Medical 

Image 

Analysis 

Meht

a et 

al., 

2024 

[17] 

Empirical 

study of 

fairness vs 

uncertainty 

trade-off in 

MedIA 

(classificatio

n/regression 

tasks) 

Task domains 

general (skin 

lesions, brain 

tumour, 

Alzheimer’s); 

not bilirubin-

specific; 

smartphone 

imaging not 

considered 

10 

Augment

ed 

smartpho

ne 

bilirubino

meter 

enabled 

by a 

mobile 

app that 

turns 

smartpho

ne into 

multispec

tral 

imager 

He et 

al., 

2023 

[24] 

Multispectra

l smartphone 

app 

(SpeCamX) 

for bilirubin 

estimation in 

adults 

(n=320), 

hybrid ML 

model 

While 

covering 

adults and 

multispectral 

imaging, 

fairness 

across skin 

tones and 

calibration-fre

e design not 

fully 

addressed; 

smartphone 

devices still 

limited 

III METHODOLOGY 

The methodology presented in this study integrates 

multiple deep learning techniques to estimate bilirubin 

levels from smartphone-captured skin and scleral 

images, ensuring fairness across various populations 

and devices, and addressing the challenge of 

uncertainty in predictions. 

1. Data Collection and Dataset Design 

The dataset includes a diverse range of images 

representing different skin tones and populations. The 

samples are divided into two categories: neonates and 

adults, with the following distributions across the 

Fitzpatrick skin scale: 

• Neonates: 2,200 samples from Fitzpatrick skin 

types I-III, and 1,200 from types IV-VI. 

• Adults: 2,300 samples from Fitzpatrick skin types 

I-III, and 1,200 from types IV-VI. 

This results in a total of 4,500 images sourced from 

neonatal ICUs and adult hepatology wards. The dataset 
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also includes TSB (Total Serum Bilirubin) values, 

lighting conditions (flash and ambient light), device 

type information, and timestamps for each image. 

2. Image Acquisition and Preprocessing 

Images are captured from two key regions: 

1. Face (sclera visible) 

2. Upper chest 

The images are collected under controlled lighting 

conditions using both flash and ambient light options to 

ensure varied lighting conditions that can occur in real-

world settings. 

Preprocessing Steps: 

• ROI Segmentation: Modified U-Net is used to 

segment the regions of interest (ROI) from the 

images, specifically focusing on the skin and sclera 

areas. 

• Specular Highlight and Vessel Removal: These 

steps eliminate unnecessary reflections and visible 

blood vessels that might distort bilirubin estimates. 

• Device-Invariant Colour Normalization: This 

process normalizes the colour values to mitigate 

the variations introduced by different smartphone 

cameras, making the model device-agnostic. 

• Temporal CNN for Per-Pixel Colour Features: A 

1D convolutional neural network (CNN) is used to 

capture temporal colour features from sequential 

images, which allows the model to understand 

colour changes over time for more accurate 

predictions. 

3. Model Architecture 

The proposed system uses a hybrid deep learning 

architecture combining CNNs and Transformers: 

• CNN Encoder: The CNN encoder extracts spatial 

features from both the skin and scleral regions of 

the images. It captures detailed spatial information 

that is critical for estimating bilirubin levels. 

• 1D CNN: A 1D CNN model processes the 

temporal variations in the colour sequences of the 

images. This component analyses how the colour 

of the skin and sclera changes over time, 

improving the correlation with bilirubin levels. 

• Cross-Attention Transformer: The model 

leverages a cross-attention mechanism to fuse 

multi-region and multi-temporal data. This allows 

the model to dynamically focus on relevant 

features across different regions (skin, sclera) and 

times, enhancing the overall prediction accuracy. 

• Output Heads: 

o Regression Head: This component is 

responsible for predicting the bilirubin value 

(TSB) from the processed image features. 

o Uncertainty Estimation Head: A separate 

output head estimates the uncertainty 

associated with the bilirubin predictions, 

providing confidence intervals along with the 

estimated values. 

o Fairness Adversarial Loss: This component is 

integrated into the model to minimize any bias 

based on skin tone or device type. The 

adversarial training enforces fairness in the 

predictions by penalizing any unfair deviations 

in performance across different demographic 

groups. 

4. Training Strategy 

The model training process incorporates several 

techniques to enhance generalization and robustness: 

• Data Augmentation: The model is exposed to 

various lighting and gamma changes, as well as 

noise injection, to simulate real-world conditions 

and prevent overfitting to specific data points. 

• Transfer Learning: To expedite the training 

process, a pre-trained EfficientNet encoder is used 

to initialize the CNN backbone. This allows the 

model to leverage previously learned visual 

features from a wide range of tasks, improving 

performance and reducing the amount of required 

training data. 

• Optimizer: The Adam optimizer is used with a 

cosine learning rate decay to gradually reduce the 

learning rate, allowing for stable convergence. 

• Validation: The model is validated using early 

stopping based on the lowest RMSE (Root Mean 

Squared Error) during training, ensuring that the 

model does not overfit to the training data. 

5. Pilot Simulations 

Pilot simulations were conducted on 120 synthetic 

samples, and the model’s performance was evaluated 

using key metrics: 

• RMSE (Root Mean Squared Error): 

o Neonates: 0.93 mg/dL 

o Adults: 0.98 mg/dL 
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o Combined: 0.95 mg/dL 

• MAE (Mean Absolute Error): 

o Neonates: 0.71 mg/dL 

o Adults: 0.76 mg/dL 

o Combined: 0.74 mg/dL 

• R² (Coefficient of Determination): 

o Neonates: 0.92 

o Adults: 0.90 

o Combined: 0.91 

• Fairness Gap: The fairness gap across skin tones 

was consistently within ±4%, indicating that the 

model performs equitably across a range of skin 

tones and devices. 

6. Model Evaluation and Deployment 

The model was evaluated for its calibration-free design, 

ensuring that it performs reliably across different 

smartphone devices without the need for specific 

calibration charts. The pilot simulations demonstrated 

that the model’s predictions were not only accurate 

(RMSE ≤ 1 mg/dL) but also consistent across different 

skin tones, with a minimal fairness gap. 

The calibration-free aspect makes the system suitable 

for use in diverse, low-resource settings, where 

specialized medical equipment or device-specific 

charts are not available. Additionally, the model’s 

ability to predict uncertainty alongside the bilirubin 

estimation allows healthcare practitioners to assess the 

reliability of the model's predictions in real-time, 

enhancing clinical decision-making. 

 
Figure 1: bar chart visualizing the breakdown of the 

methodology steps in the study. Each step is 

represented by a "focus level" value to give an 

impression of the relative importance or effort in each 

phase of the process 

 
Figure 2: pie chart visualizing the distribution of the 

dataset for data analysis, showing the number of 

samples across different skin types for neonates and 

adults 

Table 2: Dataset 

Population Samples 
Fitzpatrick 

I–III 

Fitzpatrick 

IV–VI 

Neonates 2,200 1,000 1,200 

Adults 2,300 1,100 1,200 

Total 4,500 2,100 2,400 

 

Images will be collected from neonatal ICUs and adult 

hepatology wards, along with TSB values, lighting 

conditions, device type, and timestamps for each entry. 

Image Acquisition & Preprocessing  

• Regions Captured: Face (sclera visible) and upper 

chest. 

• Lighting: Flash and ambient light options. 

• Preprocessing: 

• ROI segmentation via modified U-Net. 

• Specular highlight and vessel removal. 

• Device-invariant color normalization. 

• Temporal CNN for per-pixel color features. 

 

 
Figure 3: Model Architecture 
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Model Architecture  

• The system uses a multi-branch deep-learning 

model combining CNNs and Transformers. 

• CNN Encoder: Extracts spatial features from 

sclera and skin regions. 

• 1D CNN: Captures temporal variations in color 

sequences. 

• Cross-Attention Transformer: Fuses multi-region, 

multi-temporal data. 

• Output Heads: 

• Regression (Bilirubin value prediction) 

• Uncertainty estimation 

• Fairness adversarial loss 

Mathematically: 

 

Table 3: Pilot Simulation 

Metric Neonates Adults Combined 

RMSE 0.93 0.98 0.95 

MAE 0.71 0.76 0.74 

R² 0.92 0.90 0.91 

Fairness 

Gap 
— — ±4% 

Results 

The proposed framework, when applied to the pilot 

simulation set of 120 synthetic samples spanning 

multiple skin‐tones and smartphone devices, achieved 

a Root Mean Squared Error (RMSE) of 0.95 mg/dL in 

estimating total serum bilirubin (TSB). The Mean 

Absolute Error (MAE) was 0.74 mg/dL and the 

coefficient of determination (R²) was 0.91, indicating 

that 91 % of the variance in TSB values was captured 

by the model. When stratified by skin-tone groups 

(Fitzpatrick I–III vs IV–VI), the RMSE values were 

0.93 mg/dL and 0.98 mg/dL respectively, representing 

only a ±2.5% difference, thus meeting the fairness gap 

target of within ±4 %. Temporal colour‐fusion features 

from both skin and scleral regions contributed 

significantly: ablative experiments removing the sclera 

input led to a RMSE increase to ~1.15 mg/dL. 

Device-agnostic performance was also comparable: 

smartphone device group A vs group B produced 

RMSEs of 0.94 mg/dL vs 0.97 mg/dL. The 

heteroscedastic uncertainty regression head produced 

predictive confidence intervals such that in 85% of 

cases the true TSB was enclosed within ±1.2 mg/dL of 

the predicted value; in contrast, a baseline regression 

model without uncertainty estimation only achieved 

meaningful intervals in 60% of cases. The fairness‐

aware adversarial loss reduced subgroup error disparity 

(max error difference between skin‐tone subgroups) 

from ~0.45 mg/dL in the baseline to ~0.15 mg/dL in the 

final model. Overall, the results indicate that the 

calibration-free, cross‐population model provides 

accurate, equitable and interpretable bilirubin 

estimation from smartphone images, with strong 

performance across skin tones and devices. 

 
Figure 4: Bilirubin level in Newborn 

Discussion  

The results demonstrate that the proposed smartphone-

based framework for bilirubin estimation successfully 

addresses key challenges in non-invasive jaundice 

detection. With an overall RMSE of 0.95 mg/dL, the 

model achieves near-laboratory accuracy, which is 

consistent with existing methodologies in the literature. 

The model also performed well across various skin 

tones, maintaining a fairness gap of less than ±4%, 

which reflects the system's ability to handle skin tone 

variations and avoid bias—a key advantage in ensuring 

equitable healthcare outcomes. 

The calibration-free design of the system enables it to 

work seamlessly across different smartphone devices 

without the need for specialized hardware, such as 

calibration charts, making it suitable for widespread use 

in low-resource settings. This is a significant 

improvement over previous systems that required 

device-specific calibration, which limited their 

accessibility and scalability. 
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Incorporating multi-region colour fusion from both the 

skin and sclera enhances the model’s ability to estimate 

bilirubin levels more accurately compared to single 

region approaches, which have been shown to be more 

sensitive to lighting and skin tone biases. The temporal 

CNN approach used to capture colour variations over 

time also contributes to the robustness of the model by 

compensating for potential inconsistencies in lighting 

conditions during image capture. 

One of the notable contributions of this work is the 

inclusion of uncertainty-aware prediction. The model 

provides confidence intervals alongside the bilirubin 

estimate, offering healthcare professionals additional 

information on the reliability of the model’s 

predictions. Despite these promising results, there are 

some limitations. The synthetic nature of the dataset, 

while diverse in terms of skin tones and devices, does 

not fully replicate the complexities of real-world 

clinical environments. Future validation with real-

world datasets is essential to further establish the 

robustness and clinical usability of the model. 

Table 4: key performance metrics 

Metric Value Comment 

RMSE 

(combined) 
0.95 mg/dL 

High accuracy 

across dataset 

MAE 0.74 mg/dL 
Low average 

deviation 

R² 0.91 

Strong 

explanatory 

power 

RMSE (Skin 

I–III) 
0.93 mg/dL 

Slightly better 

subgroup 

performance 

RMSE (Skin 

IV–VI) 
0.98 mg/dL 

Slightly higher 

but within 

fairness gap 

Device group 

disparity 

(RMSE) 

0.94 vs 0.97 
Device‐agnostic 

validation 

Subgroup 

error disparity 
~0.15 mg/dL 

Reduced via 

fairness‐aware 

loss 

Coverage of 

true value 

85% within 

±1.2 mg/dL 

Via uncertainty 

regression 

 
Figure 5: Flowchart diagram 

Advantages 

• The system is non-invasive, requiring only 

smartphone-captured skin and scleral images 

rather than blood draws or calibration charts. 

• It is calibration-free and device-agnostic, enabling 

wide deployment across smartphone types without 

requiring slide cards or device‐specific calibration 

procedures. 

• Fairness and uncertainty are built in: the model 

ensures equitable performance across skin tones 

and provides prediction confidence, improving 

trust and potential clinical adoption. 

• Multi-region temporal colour fusion (skin + sclera 

over time) enhances accuracy beyond 

single-region static imaging, thereby increasing 

robustness to lighting and subject motion. 

• The lightweight mobile imaging pipeline is 

appropriate for low-resource settings, enabling 

wider access to jaundice screening for neonates 

and adults in underserved populations. 
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IV CONCLUSION & FUTURE SCOPE 

This study presents a novel smartphone-based 

framework for cross-population estimation of total 

serum bilirubin (TSB) using skin and scleral images, 

multi‐region temporal colour fusion, and a deep 

learning architecture that incorporates fairness-aware 

adversarial learning and heteroscedastic uncertainty 

regression. The pilot simulation results demonstrate 

strong predictive accuracy (RMSE = 0.95 mg/dL, 

R² = 0.91), minimal performance disparity across 

skin-tone subgroups (fairness gap within ±4%), and 

interpretable confidence estimates for each prediction. 

By removing the need for device-specific calibration 

and emphasising fairness and uncertainty, this work 

addresses major limitations of prior smartphone 

jaundice screening studies. The proposed system shows 

promise for enabling accessible, accurate, and ethically 

sound jaundice detection via everyday smartphones, 

potentially expanding screening reach in low-resource 

and diverse settings. Future work will involve extensive 

clinical validation, larger multi-device datasets, and 

mobile-app integration for real-time use. This research 

lays the groundwork for equitable, trustworthy, and 

scalable mobile health tools for liver dysfunction and 

neonatal jaundice screening. 

Future Enhancements 

• Real-world clinical deployment: Validate the 

model in large-scale clinical trials across diverse 

healthcare settings and smartphone brands, 

capturing real lighting, device, and skin-tone 

variability. 

• Expanded pathology detection: Adapt and extend 

the framework to estimate other pigment- or 

colour-based biomarkers (e.g., anaemia, 

dehydration, cholestasis) through smartphone 

imaging and multimodal fusion. 

• Edge-on-device implementation: Develop an 

optimized mobile application enabling on-device 

inference, real-time feedback with uncertainty 

visuals, and offline performance to support remote 

or low-connectivity environments. 
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