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Abstract—SMCA is an advanced full-stack, modular 

social media content aggregation platform engineered to 

unify, enrich, and manage large-scale unstructured data 

from Reddit and Twitter, solving critical challenges in 

trend analysis, research, and digital monitoring. 

Developed with FastAPI, Python, MongoDB, and state-

of-the-art NLP libraries, the solution offers secure 

RESTful APIs and a responsive HTML user interface 

supporting role-based users from analysts to 

researchers. SMCA streamlines collection, cleansing, 

semantic enrichment, and intelligent deduplication of 

social media data through an automated pipeline: 

authenticated API-based scraping (PRAW for Reddit, 

Apify for Twitter), preprocessing and normalization of 

raw text, transformer-powered entity and intent 

extraction (spaCy), and smart deduplication using 

compound key logic in MongoDB. Its semantic tag-based 

search system empowers users to go beyond basic 

keyword retrieval, surfacing contextual matches based 

on extracted entities and intent, while robust endpoints 

support advanced queries, bulk exports, and scheduled 

tasks. Key features include secure API key 

authentication, entity-driven dashboard analytics, 

configurable data export (CSV/JSON), extensible 

modular design for future platform and analytics 

integration, comprehensive error handling, and scalable 

architecture supporting millions of records. Automating 

all stages of aggregation, SMCA achieves over 100x 

speedup compared to manual methods, delivers accurate 

entity extraction, enables real-time content discovery, 

and supports data-driven decisions for organizations 

across research, policy, and market intelligence. By 

bridging the gap between unstructured social content 

and actionable information, SMCA empowers modern 

teams to transform complex digital signals into clear, 

timely insights. 
 

Index Terms—Social Media Content Aggregator 

(SMCA), social media analytics, Reddit, Twitter, web 

scraping, FastAPI, Python, MongoDB, NLP, entity 

extraction, semantic tagging, deduplication, semantic 

search, RESTful APIs, spaCy, PRAW, Apify, SBERT, 

FAISS, preprocessing, modular architecture, scalable 

system, trend analysis. 

I. INTRODUCTION 

 

1.1 Overview 

The digital transformation of data-driven industries 

has radically reshaped how information is captured, 

processed, and leveraged for actionable insights. One 

of the most dynamic and influential sources of 

contemporary data is social media platforms like 

Reddit and Twitter generate millions of user posts and 

conversations every day, reflecting ongoing trends, 

opinions, and real-time events. Yet, the sheer volume, 

diversity, and speed of social media content present 

significant challenges for effective aggregation, 

organization, and meaningful analysis. Traditional 

approaches, which often rely on manual review or 

simplistic scraping tools, are insufficient for modern 

research, policy monitoring, and business intelligence 

requirements. Large amounts of valuable information 

remain locked in unstructured text, scattered across 

disparate online communities, and inaccessible for 

timely decision-making. 

To address these limitations, SMCA – Social Media 

Content Aggregator has been conceptualized as a 

comprehensive, modular solution to automate, unify, 

and enrich the collection and analysis of social media 

content. The primary goal of SMCA is to streamline 

the end-to-end lifecycle of social data spanning 

scraping, cleaning, NLP-driven entity and intent 

extraction, deduplication, and context-aware search 

thereby empowering organizations, analysts, and 

researchers to transition from labor-intensive routines 

to seamless, scalable, and data-driven workSMCAs. 

At its core, SMCA adopts a robust client-server 

architecture built with FastAPI for the backend and 

MongoDB for persistent storage. The system is 

engineered to enable reliable, authenticated data 

scraping from both Reddit and Twitter via modular 

pipelines. These pipelines are capable of high-

throughput data ingestion, applying advanced 
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preprocessing techniques that standardize and sanitize 

the input text. By integrating state-of-the-art natural 

language processing models such as spaCy’s 

transformer-based pipeline, SMCA automatically 

identifies and extracts entities like persons, 

organizations, and events while also discerning the 

intent behind user posts. This process ensures that 

social data is not only aggregated but also semantically 

enriched, a foundation that supports higher-order 

analytics and research. 

A significant feature of SMCA is its intelligent 

deduplication engine. Social media ecosystems are rife 

with reposts, near-duplicates, and bot-generated 

content, leading to redundancy and potential bias in 

downstream analytics. SMCA counters this by 

employing MongoDB aggregation pipelines with 

composite key logic to identify and efficiently remove 

duplicates. The end result is a curated dataset free from 

noise, optimized for both analytical clarity and storage 

efficiency. 

In order to make the insights and data accessible and 

actionable, SMCA provides a comprehensive suite of 

RESTful API endpoints and an interactive HTML-

based search interface. Through these interfaces, users 

can trigger data collection, perform powerful semantic 

tag-based searches, or initiate deduplication tasks. 

Rather than limiting search to exact keyword matches, 

SMCA’s semantic system enables users to surface 

content based on tags and contextual relevance, 

making trend detection and topic discovery 

dramatically more precise and intuitive. For security 

and controlled access, all critical endpoints utilize API 

key-based authentication, and system setup is 

streamlined through environment variables and well-

documented configuration scripts. 

The system is designed from the ground up for 

extensibility, allowing straightforward adaptation to 

additional platforms, new analytics modules, or 

custom workSMCAs. Log management and robust 

error-handling ensure reliability in both research and 

production environments; comprehensive logging 

supports auditability and debugging, while 

configuration-driven design facilitates rapid 

deployment in new contexts. SMCA’s architecture 

supports scaling from single-researcher deployments 

to organizational installations managing millions of 

records. 

Implementing SMCA delivers substantial benefits to 

institutions and teams across domains. For 

researchers, it enables the automated creation of high-

quality, analysis-ready social media datasets that 

would otherwise require vast manual effort; for market 

analysts and policymakers, it supports real-time trend 

tracking, sentiment analysis precursors, and event 

detection. For technical teams, SMCA’s modular, 

API-driven design ensures easy integration into 

broader data pipelines or analytics dashboards. 

 

1.2 Objective 

1. Automate Multi-Platform Data Collection: 

Seamlessly collect real-time content from Reddit 

and Twitter through robust API integrations, 

eliminating manual scraping and ensuring 

persistent, large-scale data acquisition. 

2. Standardize and Preprocess Raw Text: Implement 

data cleaning and normalization pipelines to 

remove noise and standardize diverse social 

media inputs, preparing the data for further 

analysis. 

3. Entity and Intent Extraction via NLP: Use 

advanced NLP models to extract key entities 

(such as names, organizations, and topics) and 

determine the intent behind social posts, enabling 

richer semantic understanding of unstructured 

data. 

4. Enable Semantic Tag-Based Search: Allow users 

and systems to search content contextually using 

automatically generated tags, moving beyond 

basic keyword matching for more meaningful 

discovery and retrieval. 

5. Deduplicate Content Efficiently: Remove 

redundant records and near-duplicates using 

intelligent, key-based deduplication strategies 

implemented in the database layer, ensuring clean 

datasets for analysis. 

6. Expose APIs for Programmatic Workflow: 

Provide HTTP endpoints to trigger scraping, 

deduplication, and search, supporting integration 

with other tools, automation scripts, or 

dashboards. 

7. Implement secure, modular architecture: protect 

API keys, manage credentials with .env files, and 

design for future extensibility. 

8. Facilitate Visualization and Usability: Offer both 

interactive HTML and auto-documented Swagger 

UI for streamlined access, allowing analysts and 

developers to monitor, review, and interact with 

aggregated results. 
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SMCA is designed to empower efficient, automated, 

and high-quality social media content analysis 

enabling researchers, analysts, and organizations to 

unlock insights from messy, high-volume digital 

conversations with speed, structure, and semantic 

richness. 

II. LITERATURE SURVEY 

 

[1] Hinton, A., & Roy, T. (2024). Understanding 

Multi-platform Social Media Aggregators: A Design 

and Development Case Study with BTS-DASH. This 

paper examines multi-platform social media 

aggregators using BTS-DASH. It details solutions for 

technical challenges like normalization, 

authentication, and integration. The work advocates 

for modular design and semantic enrichment for 

scalable monitoring. 
 

[2] Fletcher, R., Kalogeropoulos, A., & Nielsen, R. K. 

(2023). More diverse, more politically varied: How 

social media, search engines and aggregators shape 

news repertoires in the United Kingdom. New Media 

& Society, 25(8), 2118-2139 

This study analyzes how social media aggregators 

influence news consumption patterns, noting an 

increase in political diversity attributed to multi-

source aggregation. The findings emphasize user 

behavior changes driven by aggregator algorithms, 

making the case for systems that provide transparent, 

context-aware aggregation to empower informed 

public discourse. 
 

[3] Hlaoua, L. (2025). An overview of aggregation 

methods for social networks analysis. Knowledge and 

Information Systems, 67(1), 1-28 

Hlaoua provides a comprehensive review of social 

network aggregation methodologies, examining 

approaches to unify data across heterogeneous 

platforms for effective network analysis. The paper 

discusses challenges in data heterogeneity, 

deduplication, and semantic integration, offering 

insights into architectures that enable scalable 

aggregation supporting advanced analytics.. 
 

[4] Bhattacharyya, Mousumi, et al. (2023). An 

emoticon-based sentiment aggregation on metaverse 

related tweets. 

This research employs emoticon analysis for 

sentiment aggregation on metaverse-related Twitter 

conversations, illustrating advanced sentiment metrics 

beyond simple text analysis. While focused on a niche 

domain, the methodology emphasizes enriching data 

with multi-dimensional sentiment features, inspiring 

broader contextual tag-based search and intent 

extraction techniques. 
 

[5] Kameda, Tatsuya, Wataru Toyokawa, and R. Scott 

Tindale. (2022). Information aggregation and 

collective intelligence beyond the wisdom of crowds. 

The paper examines collective intelligence emerging 

through aggregation of information from diverse 

sources, surpassing simple crowd wisdom. It 

underscores the importance of combining data through 

semantic integration, automated filtering, and 

contextual enrichment to derive actionable collective 

insights principles directly applicable to social media 

aggregators aspiring to produce reliable intelligence 

rather than mere data dumps. 
 

[6] Beer, David. Using social media data aggregators 

to do social research. Sociological Research Online 

17.3 (2012): 91-102. 

David Beer's 2012 paper discusses the use of social 

media data aggregators as tools for social research, 

highlighting their role in collecting and consolidating 

large volumes of online social data. 
 

[7] Zignani, Matteo, et al. Walls-in-one: usage and 

temporal patterns in a social media aggregator. 

Applied Network Science 1.1 (2016): 5. 

The paper analyzes user behavior across multiple 

social media platforms through data from the 

Alternion social media aggregator. It reveals that most 

active users engage with multiple social networks 

simultaneously, but their posting frequency per site 

decreases as the number of platforms. 
 

[8] Lande, D., Subach, I., & Puchkov, A. (2020). A 

system for analysis of big data from social media. 

Information & Security, 47(1), 44–61. This paper 

presents an end-to-end framework for ingesting and 

analyzing large-scale social media streams, 

emphasizing pipeline orchestration, storage strategies, 

and scalable indexing. The authors detail methods for 

filtering noise, handling heterogeneous metadata, and 

enabling fast retrieval over massive datasets issues 

central to any production social analytics stack. Their 

focus on throughput, reliability, and index design 

directly informs SMCA’s choices around MongoDB 

schema optimization, batching, and query 
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performance for high-volume, multi-source 

workloads. 
 

[9] Srikanth, N., Tejaswini, C. V., & Kumar, D. P. 

(2019). Socially smart: An aggregation system for 

social media using web scraping. Displays, 6(4), 749–

752. This work describes a web-scraping–driven 

social media aggregator that unifies posts from 

multiple sources into a single interface. It highlights 

practical concerns such as normalization across 

platforms, scraper robustness, and the need for 

lightweight UI access to aggregated content. While the 

approach is primarily scraping-centric and less 

semantic, it validates the value of unified collection 

and user-facing retrieval. These insights support 

SMCA’s adapter-based ingestion (e.g., 

PRAW/Apify), standardized record format, and 

provision of both REST endpoints and an HTML 

search UI, while SMCA extends the idea with NLP 

enrichment, deduplication, and semantic search. 
 

[10] De Corniere, A., & Sarvary, M. (2023). Social 

media and news: Content bundling and news quality. 

Management Science, 69(1), 162–178. 

This study explores how social media aggregation, 

bundling, and distribution mechanisms influence the 

diversity and perceived quality of news consumed by 

users. The authors analyze how aggregator platforms 

can alter user exposure, attention distribution, and 

content prioritization, ultimately affecting 

informational value and reliability. Their findings 

reinforce the importance of presenting aggregated data 

in ways that maintain contextual integrity and prevent 

distortion or oversimplification. 

 

III. SYSTEM ANALYSIS 

 

3.1 Existing System 

Current methodologies for aggregating social media 

content frequently involve manual, disjointed, or 

platform-specific approaches. Existing commercial or 

academic solutions often rely on basic keyword-based 

retrieval or simple scraping scripts, which are 

insufficient for handling today’s scale and complexity 

of heterogeneous, high-volume social media data. 

Many platforms fail to fully support cross-platform 

standardization, semantic enrichment, and automated 

deduplication leading to fragmented data pipelines 

that lack interpretability and analytical depth. As a 

result, organizations and researchers struggle to build 

stable, scalable pipelines capable of extracting 

meaningful insights from unstructured public 

conversations. 

Manual approaches require analysts to independently 

navigate platforms like Reddit and Twitter, 

performing searches, copying text, filtering posts, and 

consolidating results into documents or spreadsheets. 

This process is slow, tedious, error-prone, non-

repeatable, and fundamentally unscalable at modern 

social media data rates. Even when platform APIs are 

used, challenges persist due to varied rate limits, 

pricing restrictions, authentication differences, 

inconsistent metadata structures, and unpredictable 

API stability especially in platforms like Twitter that 

frequently modify access models. This inconsistency 

leads to siloed datasets and fragmented workflows. 

Additionally, the data retrieved from social media is 

often raw, unclean, repetitive, and semantically 

ambiguous. Traditional text search and keyword 

matching cannot understand meaning or context, 

failing to differentiate between posts that express 

different intents or refer to different topics but share 

similar words. Manual entity extraction methods lack 

standardization and drastically degrade accuracy when 

volume increases. There is typically no mechanism to 

handle redundant posts, re-post chains, cross-posts, or 

bot-generated duplicates, which significantly corrupt 

dataset quality and inflate storage. 

Legacy data retrieval systems further rely on 

spreadsheet-based analysis or simple database 

keyword queries which result in poor recall, lack 

contextual retrieval, and fail to surface hidden topic 

clusters or latent intent. Without semantic tagging, 

NLP-driven classification, or metadata-aware 

indexing, decision-makers are forced to interpret 

incomplete or misaligned datasets. Most existing 

systems also lack automation triggers, scheduling 

pipelines, or asynchronous ingestion models resulting 

in dependency on human-triggered workflows. 

These limitations lead to operational inefficiencies, 

hinder real-time analysis, and restrict research 

validity. The absence of standardized schema, unified 

multi-platform aggregation, semantic enrichment, and 

intelligent deduplication makes current systems 

incapable of supporting large-scale research, trend 

monitoring, or signal extraction reliably. Therefore, 

there is a critical need for a new system like SMCA 

that addresses all these challenges with modular 
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automation, unified representation, rich NLP-based 

enrichment, semantic search, scalable APIs, and end-

to-end data pipeline orchestration. 

Furthermore, most existing systems lack adaptive 

intelligence and contextual awareness, meaning they 

cannot differentiate between noise, casual 

conversation, humor, sarcasm, memes, or highly 

actionable information such as a request, offer, urgent 

inquiry, or service-based intent. This inability to 

interpret intention severely limits downstream 

analytics, since stakeholders such as researchers, 

policy makers, and market intelligence teams require 

semantically meaningful classification to derive 

accurate patterns and insights. Without automatic 

context interpretation or entity-level feature 

extraction, important signals remain hidden, leading to 

misinformed conclusions when analyzing public 

discourse at scale. The absence of an enriched 

representation for posts also prevents thematic 

clustering, sentiment-driven pattern recognition, trend 

evolution monitoring, and longitudinal behavioral 

mapping across communities. 

Finally, interoperability is a major challenge with 

existing systems. Exporting processed results into 

dashboards, research pipelines, or analytical platforms 

often requires complex conversions or custom 

integration scripts. Legacy tools are typically not API-

first, are not modular, and cannot be easily plugged 

into external workflows, which reduces reusability, 

reproducibility, and long-term maintainability. 

Organizations often need to rebuild pipelines from 

scratch for each project or platform source consuming 

additional engineering resources and increasing 

operational overhead. These constraints highlight the 

need for a unified, scalable, extensible architecture 

that seamlessly integrates multi-platform ingestion, 

automated NLP-driven enrichment, deduplication, 

semantic retrieval, and API-based interoperability. 

SMCA is proposed precisely to fill this gap by 

providing a modern, modular, future-proof solution 

that addresses both functional and architectural 

deficiencies present in current systems. 

 

3.2 Proposed System 

SMCA, a social media content aggregator, offers an 

intelligent, automated, and scalable solution to current 

data collection and analysis limitations. This full-stack 

platform integrates advanced data ingestion, NLP, and 

semantic search to deliver real-time insights from 

multi-platform social media. 

SMCA automates data collection from Reddit and 

Twitter using authenticated APIs (PRAW for Reddit, 

Apify actors for Twitter), ensuring high-throughput, 

compliant, and scalable scraping, eliminating manual, 

error-prone processes, and increasing data coverage 

and reliability. 

Collected data undergoes a preprocessing pipeline to 

standardize formatting and remove noise. Advanced 

NLP then extracts entities like people and 

organizations, while a custom algorithm categorizes 

posts into intents (questions, complaints, etc.) for 

precise filtering and analysis. 

A key feature is SMCA's intelligent deduplication 

system within MongoDB, using composite key 

matching to identify and flag exact and near 

duplicates, improving dataset quality by reducing 

redundant analysis in a social media environment 

prone to reposts and bot content. 

SMCA implements semantic tag-based search, 

leveraging NLP-extracted entities and generated tags 

for contextually relevant results. The search system 

ranks results by tag overlap, user intent, and temporal 

factors, helping analysts uncover trends and sentiment 

shifts. 

SMCA's architecture includes a RESTful API with 

secure authentication and OpenAPI/Swagger 

documentation, exposing key functions like data 

scraping and semantic search. A complementary 

HTML-based UI provides interactive search with 

filtering, highlighting, and pagination for all users.  

Scalability, modularity, and extensibility are central to 

SMCA's design. Its asynchronous FastAPI backend 

and optimized MongoDB schema support continuous 

ingestion, parallel processing, and rapid querying of 

millions of records. Its modularity allows easy 

integration of new social media sources or analytics 

components. 

By automating social media content aggregation and 

enrichment, SMCA transforms labor-intensive 

processes into a scalable, accurate, and user-friendly 

system, empowering researchers and organizations 

with timely, context-rich data for decision-making, 

monitoring, and research. 

In addition to data aggregation and semantic 

enrichment, SMCA prioritizes security, reliability, and 

operational governance. Sensitive authentication keys 

are protected through environment variable 
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configuration and API key–based access control, 

ensuring only authorized users and services can 

interact with ingestion and search endpoints. 

Comprehensive logging and structured telemetry 

enable continuous observability of scraping 

operations, NLP execution, search queries, and 

deduplication workflows, ensuring fault diagnosis, 

monitoring, and traceability. This design not only 

ensures production-grade reliability but also supports 

institutional research audits, compliance verification, 

and accountability. 

Beyond immediate analytical benefits, SMCA also 

establishes an extensible foundation for advanced 

future capabilities such as sentiment classification, 

topic modeling, trend forecasting, event clustering, 

and cross-platform behavioral analysis. Its modular 

architecture allows new NLP pipelines, additional 

vector embedding models, or supplementary social 

sources (LinkedIn, YouTube, Instagram, Discord etc.) 

to be plugged in with minimal re-engineering. This 

future readiness ensures that SMCA can evolve along 

with emerging social media trends, platform 

transitions, and next-generation AI-driven analysis 

requirements. Ultimately, the proposed system 

elevates social data aggregation from a simple 

scraping task into a scalable, intelligent, semantically 

aware decision intelligence platform suitable for 

research institutions, market analysts, governance 

bodies, and enterprise-grade digital monitoring 

ecosystems. 

Furthermore, SMCA supports integration within 

broader analytical ecosystems through standardized 

outputs and interoperability interfaces. The system can 

export enriched datasets in multiple formats such as 

JSON or CSV, enabling seamless import into BI 

dashboards, ML experimentation environments, or 

enterprise data warehouses. This allows organizations 

to incorporate SMCA not only as a standalone 

intelligence tool but also as a core data provisioning 

engine feeding downstream pipelines such as 

predictive analytics, visualization suites, 

recommendation engines, and automated reporting 

tools. By bridging unstructured social conversations 

and structured insight delivery, SMCA becomes a 

central component in end-to-end digital intelligence 

workflows, maximizing analytical value and 

operational efficiency across diverse domains. 

 

 

3.3 Proposed Solution 

The proposed solution, SMCA – Social Media Content 

Aggregator, is a modular, scalable, and automated 

system designed to address the key limitations of 

existing manual and semi-automated social media 

content aggregation approaches. SMCA enables 

reliable end-to-end aggregation, semantic enrichment, 

deduplication, and retrieval of content from two major 

social media platforms, Reddit and Twitter, through a 

unified, secure backend and user-friendly interfaces. 

SMCA leverages authenticated API-based data 

collection to ensure full compliance with platform 

policies while maximizing throughput and data 

completeness. The system integrates PRAW (Python 

Reddit API Wrapper) for official Reddit access and 

employs Apify actors for robust Twitter scraping, 

sidestepping restrictive official Twitter APIs. The 

scraping components are designed to handle rate 

limits, transient errors, and pagination, ensuring 

resilient and continuous data ingestion. 

Once data is ingested, SMCA executes an intelligent 

preprocessing pipeline that removes noise such as 

URLs and special characters, normalizes white space 

and casing, and prepares text for in-depth natural 

language processing. The system uses spaCy’s 

transformer-based NLP models to extract named 

entities (people, organizations, locations, products) 

and user intent classification (questions, complaints, 

recommendations, announcements). This 

transformation of raw text into structured, enriched 

data forms the foundation of advanced analytics and 

precise search capabilities. 

A critical challenge in social media analytics duplicate 

content and bot-generated noise is addressed by 

SMCA’s deduplication engine. Using MongoDB’s 

aggregation framework, SMCA performs composite 

key matching on user identifiers, cleaned text, and 

intent to identify exact and near duplicates for 

removal. This process not only enhances data quality 

but also optimizes storage and improves the accuracy 

of downstream metrics. 

For information retrieval, SMCA deploys semantic 

tag-based search that transcends simple keyword 

matching by matching user queries to entity and intent 

tags generated by the NLP pipeline. Coupled with 

relevance ranking and filtering, this enables users to 

discover content of interest effectively, supporting 

timely insights and decision-making.  
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The system exposes RESTful API endpoints protected 

by API key authentication, supporting automation, 

integration into larger workflows, and secure access 

control. A complementary HTML-based search UI 

offers non-technical users’ intuitive access to trends 

and content with interactive filters and detailed results 

visualization. 

Architecturally, SMCA prioritizes modularity, 

extensibility, and asynchronous processing with 

FastAPI facilitating concurrent request handling and 

MongoDB providing document-oriented scalable 

storage. Environment-driven configuration, 

comprehensive logging, and error handling ensure 

reliability and rapid deployment in diverse operational 

contexts. 

Overall, SMCA presents a comprehensive, effective, 

and extensible platform that transforms complex 

unstructured social media content into actionable, 

semantically rich datasets. This empowers researchers, 

analysts, and decision-makers with scalable tools for 

social media trend monitoring, research dataset 

creation, and informed policy or business strategies. 

Additionally, SMCA is engineered to support iterative 

improvement and continuous optimization. As the 

system processes more data over time, models can be 

fine-tuned using feedback loops, enhanced tagging 

dictionaries, adaptive classification rules, or even 

upgraded embedding strategies. This allows SMCA to 

evolve contextually with emerging language patterns, 

new trending topics, and shifting social media 

behaviors. The plug-and-play modular design also 

ensures that new NLP models, vector search engines, 

scheduler systems, or external ML services can be 

seamlessly integrated without modifying core 

architecture. Such adaptability future-proofs the 

platform and positions SMCA as a foundation for 

long-term research and enterprise-grade social 

intelligence solutions, capable of scaling beyond 

initial platform boundaries and analytical scopes. 

 

3.4 Ideation & Brainstorming 

The development of the Social Media Content 

Aggregator (SMCA) involved a systematic ideation 

and brainstorming process to ensure the platform 

addresses the critical challenges inherent in multi-

platform social media data aggregation, enrichment, 

and retrieval. The process unfolded through several 

distinct phases, each aimed at clarifying requirements, 

exploring possible solutions, and converging on a 

practical, scalable architecture. 
 

Phase 1: Problem Identification and Requirement 

Gathering 

The team began by thoroughly understanding the core 

problems faced by organizations and researchers 

dealing with fragmented, voluminous social media 

content from platforms like Reddit and Twitter. 

Manual methods, lack of semantic understanding, 

poor deduplication, and limited interoperability were 

identified as major pain points. Requirements were 

gathered emphasizing automation, multi-source 

support, semantic enrichment, scalable storage, and 

user-friendly interfaces accessible via APIs and web 

UI. Security, error handling, and configurability 

emerged as essential operational needs. 
 

Phase 2: Conceptual Architecture Design 

Based on the initial requirements, a high-level system 

architecture was conceptualized consisting of modular 

components: data collection, preprocessing, natural 

language understanding, deduplication, semantic 

search, API delivery, and user interface. The team 

explored various back-end frameworks and databases, 

opting for FastAPI for lightweight asynchronous web 

service capability, MongoDB for flexible NoSQL 

storage, and spaCy’s transformer-based NLP for 

robust content enrichment. This phase involved 

creating data flow sketches and defining interaction 

points between components to enable scalable and 

maintainable development. 
 

Phase 3: Technology Evaluation and Selection 

Potential technologies for each component were 

evaluated on criteria such as maturity, scalability, 

community support, and ease of integration. Python-

based libraries dominated the selection due to 

language familiarity and ecosystem strength. PRAW 

and Apify were chosen for their stable API wrappers 

enabling ethical and efficient content scraping from 

Reddit and Twitter respectively. MongoDB was 

selected for its document model which aligns well 

with heterogeneous social media data, and advanced 

aggregation pipelines supporting complex 

deduplication. FastAPI's modern features and 

automatic OpenAPI docs were significant advantages. 
 

Phase 4: Core Feature Identification and Modular 

Breakdown 
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The brainstorming sessions delineated core system 

features such as authenticated scraping, text 

preprocessing (URL removal, cleaning, 

normalization), advanced NLP entity and intent 

extraction, semantic tag generation, duplicate 

identification and removal, RESTful API endpoints 

for triggering workflows and search, and a web-based 

UI. This modular breakdown aligned with best 

practices in software design, facilitating standalone 

development and testing of each feature without tight 

coupling. 
 

Phase 5: Prototyping and Iterative Refinement 

To validate concepts, rapid prototypes of key 

components were developed, initial scrapers, 

preprocessing scripts, and NLP pipelines. Prototyping 

revealed practical challenges with API rate limits, text 

noise variation across platforms, and ambiguity in 

entity/intent extraction, leading to refinements in 

preprocessing rules and NLP model tuning. Feedback 

loops incorporate testing results to iteratively improve 

precision of entity extraction and robustness of 

deduplication logic. 
 

Phase 6: Security and Usability Considerations 

Security requirements such as API key protection, 

environment variable credential management, input 

validation, and error handling were integrated early 

into the design to build a secure foundation. 
 

Phase 7: Scalability & Performance Planning As part 

of the final ideation cycle, the team evaluated the 

scalability needs of long-term deployment. Since 

social media data constantly grows in volume and 

velocity, architectural decisions prioritized 

asynchronous processing, minimal blocking 

operations, and horizontal scalability. MongoDB 

sharding, indexing strategies, and caching 

considerations were proposed to ensure consistent 

performance even under high-frequency scraping 

conditions. Planning also included considerations for 

future integration of vector databases, message queues 

like Kafka/RabbitMQ, and distributed processing 

pipelines. This foresight ensures SMCA can 

continuously scale from research-level data to 

enterprise-grade workloads. 

Phase 8: Validation of Real-World Use Cases To 

ensure practical applicability, the brainstorming 

included mapping SMCA to real user segments 

academic research labs, trend analysts, market 

prediction firms, digital policy monitoring, and 

community intelligence groups. This guided design 

choices like semantic tag-based retrieval, standardized 

export formats, and minimal-setup deployment 

structure. By grounding technical decisions in actual 

field requirements, SMCA evolved from a conceptual 

aggregator into a platform capable of being applied 

directly for insights, signal detection, and digital 

intelligence tasks that require precision, context 

awareness, and automation at scale. 

 

3.5 Problem Solution Fit 

The core problem in the current landscape of social 

media analytics and content management is the 

fragmentation, manual effort, and lack of semantic 

understanding in aggregating data from multiple 

platforms like Reddit and Twitter. Existing tools often 

operate in silos, providing either basic scraping or 

superficial display features that do not meet the 

demands for scalability, accuracy, contextual 

relevance, or automation. Manual processes are labor-

intensive, error-prone, and incapable of delivering 

real-time insights that organizations need to make 

timely decisions. 

The primary challenge is to develop an integrated 

system that automates data collection, cleans and 

enriches content with semantic understanding, 

removes duplicates, and provides accurate search and 

retrieval. Current platforms lack the ability to fully 

automate the entire process, especially with multi-

platform support, while maintaining high accuracy, 

security, and extensibility. 

The proposed solution SMCA addresses this gap 

through a comprehensive architecture that combines 

automated, API-driven scraping, advanced NLP-based 

entity and intent extraction, intelligent deduplication, 

and semantic search capabilities. It provides a scalable 

and secure REST API along with a user-friendly 

interface for diverse user groups, enabling efficient, 

real-time social media monitoring and analysis. 

By automating workflows with asynchronous 

processing, the SMCA ensures high throughput and 

low latency, supporting millions of records with 

minimal manual intervention. Its semantic tagging 

allows users to perform context-aware searches, vastly 

improving relevancy compared to traditional 

keyword-based methods. The modular design supports 

future expansion to additional platforms or analytical 

functionalities, ensuring long-term adaptability. 
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This solution’s fit lies in its ability to deliver high 

accuracy, efficiency, and extensibility - matching 

organizational needs for data-driven decision-making, 

academic research, and strategic social listening while 

significantly reducing operational costs and manual 

overhead. It bridges the gap between unstructured, 

voluminous social content and structured, insightful 

intelligence, enabling organizations to stay ahead in a 

fast-paced digital environment. 

Additionally, SMCA aligns with modern data 

engineering expectations where systems must not only 

retrieve information, but transform, contextualize, and 

refine it into research-grade datasets. Rather than 

simply exposing raw social content, SMCA converts 

heterogeneous social streams into semantically 

meaningful and structurally unified data objects 

suitable for downstream analytics, ML model training, 

visualization pipelines, and enterprise intelligence 

dashboards. This elevates SMCA beyond a scraper 

and positions it as a knowledge refinement engine. Its 

semantic enrichment pipeline directly enables high-

value insight extraction unlocking patterns, 

relationships, signals, and emergent topic clusters that 

shallow keyword searches or spreadsheet workflows 

would never surface. 

Moreover, SMCA introduces operational 

sustainability by minimizing recurring configuration 

cost, eliminating repetitive manual workflows, and 

standardizing ingestion rules so that dataset creation 

becomes a continuous, self-maintaining lifecycle 

rather than a one-time setup effort. The synergy of 

modularity, automation, semantic precision, and 

scalable storage ensures that this solution can evolve 

dynamically as platforms change, user interaction 

behaviors shift, and new forms of digital content 

emerge. Thus, the system not only solves present 

aggregation challenges, but also future-proofs 

organizations against the rising complexity of social 

data environments making SMCA the strongest 

problem–fit solution for both academic research 

ecosystems and real-world industry application 

domains. 

In conclusion, SMCA establishes a direct and 

sustainable alignment between the real-world problem 

space and the engineering requirements needed to 

solve it. Instead of treating social media content as 

raw, disconnected text streams, SMCA transforms it 

into structured, enriched, intelligently deduplicated 

information that can directly support trend forecasting, 

sentiment-driven decision models, crisis signal 

detection, policy impact evaluation, market movement 

monitoring, and research dataset generation. Its ability 

to convert noisy, ungoverned public content into clean, 

query-efficient, context-aware knowledge ensures that 

organizations can rapidly turn social conversations 

into insights at scale clearly demonstrating a solid 

problem–solution fit. 

 

3.6 Architecture Design 

 
Fig. 3.6.1: System Architecture 
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The architecture of the SMCA system is designed as a 

modular, multi–stage data intelligence pipeline that 

ensures scalable, secure, and semantically enriched 

social media analytics. As shown in the above 

architecture, the workflow begins when a user 

(researcher, analyst, or automated system trigger) 

initiates a data collection request. The Data Scraper 

Module connects directly with Reddit and Twitter 

using API-based integrations (PRAW and Apify) to 

fetch both real-time and historical posts. The scraped 

data is then passed into the Preprocessing Module, 

where text normalization, URL removal, punctuation 

standardization, stop-word cleaning, and spam 

filtering are performed. This preprocessing layer 

ensures that noisy, irregular, and unstructured data is 

converted into clean text suitable for downstream 

NLP. 

Next, data flows into the advanced NLP Processing 

Layer where entity recognition, intent detection, and 

semantic topic modeling are applied. Using 

transformer-powered models, the system extracts 

meaningful contextual information from posts, 

identifying important elements like people, 

organizations, and thematic topics. Following this, the 

Deduplication & Semantic Matching Module 

performs similarity scoring, context grouping, and 

composite key verification to eliminate near-duplicate 

and bot-reposted content. This ensures the generated 

dataset is clean, unique, and reliable. 

The processed and enriched records are then stored in 

MongoDB, where advanced indexing strategies, query 

optimization, and semantic data storage enable ultra-

fast retrieval and scalable search operations. On top of 

this backend intelligence, a FastAPI-based frontend 

layer provides semantic tag–driven search capabilities, 

visualization dashboards, filtering features, and 

interactive insight exploration for the users. SMCA’s 

architecture is therefore built not only for accurate data 

enrichment but also for seamless front-end 

consumption. 

Finally, the end-to-end workflow results in three 

primary outputs: aggregated and deduplicated social 

datasets, analytical insights such as entity frequency 

trends and sentiment patterns, and a user-friendly 

dashboard interface supporting contextual and real-

time content discovery. This cohesive architecture 

enables SMCA to serve as a full-stack social media 

intelligence framework that is modular, scalable, and 

capable of supporting advanced digital analysis 

pipelines. 

Furthermore, this architecture is intentionally 

designed to support extensibility and future 

adaptation. Each module is loosely coupled, meaning 

new platforms (such as LinkedIn, YouTube, Facebook 

or Discord) can be integrated simply by adding new 

adapters under the Data Scraper Module without 

modifying the remaining pipeline. Similarly, new NLP 

functions such as sentiment scoring, emotion 

detection, stance classification, topic drift tracking, or 

summarization can be incorporated inside the NLP 

Processing Layer as independent functional blocks. 

This modular plug-in capability ensures that SMCA 

remains flexible enough to expand as new research 

needs arise, new social platforms become relevant, or 

more advanced AI models emerge. 

In addition to supporting modular workflow 

enhancement, the architecture is optimized for high-

throughput and fault-tolerant operation. 

Asynchronous processing via FastAPI enables 

concurrent scraping and parallel task execution, while 

MongoDB indexing ensures very low search latency 

even when millions of records exist. Logging, 

monitoring and API key–based authentication 

mechanisms embedded within the architecture ensure 

security, traceability, and system stability during 

production usage. This combination of modular 

pipeline orchestration, semantic enrichment, 

performance optimization and secure backend 

foundation ensures that SMCA can be deployed at 

academic scale, enterprise scale, or cloud-scale 

environments while maintaining consistent accuracy, 

reliability, and analytical value. 

 

3.7 Description of Modules 

The SMCA system is designed as a collection of 

modular components, each responsible for a core 

phase of the social media aggregation pipeline. This 

modularity promotes clear separation of concerns, 

maintainability, and scalability. Each module is 

designed to operate asynchronously and interact via 

well-defined APIs, enabling extensibility and 

distributed deployment. 

3.7.1 Adapters Module 

The Adapters module interfaces directly with social 

media platforms. It contains platform-specific scrapers 

such as reddit.py that uses PRAW to scrape posts from 

targeted subreddits, normalizing each post into a 
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unified schema. Similarly, twitter.py utilizes the Apify 

actor to scrape tweets, polling for completion and then 

normalizing the data to the same standard format. This 

modular approach allows easy extension to new social 

platforms by adding or updating adapters. 
 

3.7.2 Data Preprocessor Module 

The Social Media Content Preprocessing Module is a 

critical initial step for analyzing social media data, 

aiming to transform raw, noisy content into a clean, 

enriched, and standardized format for in-depth 

analysis. Its key responsibilities include 

comprehensive cleaning and preparation of raw social 

media content, involving text cleaning utilities like 

lowercasing, URL removal, special character removal, 

punctuation normalization, stop word removal, and 

whitespace normalization. Additionally, it employs 

heuristics for filtering irrelevant posts, such as intent 

classification, spam detection, and initial language 

identification. The preprocessor.py script orchestrates 

these steps by iterating through social media records, 

applying cleaning and filtering, tokenizing text, and 

enriching each record with metadata like timestamps 

and language. The module's output consists of high-

quality, clean, enriched, and tokenized datasets, which 

are then utilized for advanced analytical stages, 

including entity extraction, sentiment analysis, topic 

modeling, trend analysis, and anomaly detection, 

thereby ensuring accurate and insightful social media 

intelligence. 
 

3.7.3 Entity Extractor Module 

This module is designed to efficiently process and 

interpret cleaned text inputs by leveraging a large 

language model (LLM) interface for the initial 

extraction of entities. The process begins with 

batching these cleaned text inputs, which are then fed 

to the LLM for entity identification. In the event of an 

LLM call failure, the system is equipped with a robust 

fallback mechanism that employs rule-based 

extraction functions to ensure that no data is lost and 

that the extraction process continues seamlessly. 

Following the initial or fallback extraction, the 

identified entities undergo a rigorous filtering process. 

This filtering is based on two key criteria: confidence 

levels and entity types, ensuring that only relevant and 

reliable data is retained. Subsequently, these filtered 

entities are subjected to a deduplication step to 

eliminate any redundant records and maintain data 

consistency and integrity. The module's ultimate 

output is highly structured data, which includes crucial 

information such as user ID, the detected intent, the 

extracted entities themselves, and relevant metadata. 

This comprehensive output serves as a vital bridge, 

effectively transforming unstructured textual 

information into structured semantic annotations, 

thereby facilitating further analysis and understanding. 
 

3.7.4 Storage Service Module 

The Centralized Data Persistence Layer is a core 

system component responsible for secure and efficient 

data storage, management, and retrieval. It connects to 

a MongoDB database using secure environment 

variables, ensuring high availability and resilience 

with retry logic and connection pooling. The layer 

manages data collections, defines schemas, and 

optimizes indexes for rapid data retrieval, 

continuously refining indexing strategies based on 

query patterns. It normalizes incoming records, 

enriching them with SBERT vectors to capture 

semantic meaning for advanced tasks like semantic 

similarity and clustering. A robust deduplication 

process prevents redundant storage and enhances 

query efficiency by identifying and eliminating 

identical or semantically similar records before 

permanent storage. This sophisticated layer underpins 

the system's data management capabilities through 

secure connectivity, meticulous collection 

management, advanced indexing, semantic 

enrichment, and effective deduplication. 
 

3.7.5 Matching Module 

This module implements the semantic search 

capability by constructing a FAISS index over the 

stored entity vectors. It accepts user query tags, 

encodes them into SBERT vectors, and performs 

similarity matching incorporating fuzzy and Jaccard 

heuristics for flexible and accurate retrieval. Results 

are ranked by semantic relevance and recency before 

being presented to users. 
 

3.7.6 Static & UI Module 

The system offers a sophisticated and intuitive search 

interface, search.html, designed to empower users 

with the ability to conduct comprehensive and precise 

queries. This interface facilitates detailed information 

retrieval through the strategic application of tags and 

filters, ensuring that semantically matched results are 

presented efficiently. Supporting this user-centric 

front-end is a powerful and resilient backend 
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infrastructure, comprised of a suite of APIs. These 

APIs are meticulously engineered to handle a range of 

critical functions, including the initial processing of 

user queries, the intelligent interpretation of applied 

tags and filters, seamless access to and indexing of vast 

datasets, and the dynamic delivery of highly relevant 

results. The carefully orchestrated integration between 

the user interface and the backend is paramount to the 

system's success, guaranteeing not only efficient and 

reliable information retrieval but also the consistent 

provision of up-to-date content. This robust synergy 

ultimately translates into an enriched user experience 

and optimized overall system performance. 
 

3.7.7 Root and API Surface 

At the root level, api_server.py is the core of the 

system, launching a FastAPI application that provides 

various essential endpoints. These endpoints facilitate 

critical operations such as process triggering, data 

matching, and deduplication. Furthermore, it's 

responsible for delivering the user interface. Beyond 

these functional roles, api_server.py also handles 

important infrastructure tasks. It manages 

comprehensive request logging, ensuring that all 

interactions are recorded for auditing and debugging. 

It serves static files, which are crucial for the proper 

functioning and presentation of the UI. Finally, it 

enforces API security through a robust header-based 

API key authentication system, thereby integrating all 

individual system modules into a unified, secure, and 

cohesive service. 

 

IV. SYSTEM REQUIREMENTS 

 

4.1 Hardware Requirement 

System Requirements: 

• Processor: Intel i3 (2.0 GHz+) minimum; i5 (3.0 

GHz+) recommended for production. 

• RAM: 4 GB minimum; 8 GB for production. 

• Storage: 20 GB free minimum; 500 GB SSD for 

production. 

• Graphics: 1366x768 minimum; 1920x1080 

recommended for dashboards. 

• Connectivity: Stable internet for web, API, and 

cloud access. 

• Network: Unrestricted outbound HTTP/HTTPS; 

WebSocket for live UI. 

Client Device Support: Desktops, laptops, tablets, 

mobile devices, and modern browsers (Chrome, 

Firefox, Edge, Safari   two latest versions). 

Optional Features: NLP Acceleration via NVIDIA 

CUDA GPU; CPU-only is slower. 

Production Environment: UPS-backed server or cloud 

for data protection. 

 

4.2 Software Requirement 

• Development: IDEs (VS Code, WebStorm, 

Sublime Text), Git (GitHub, GitLab), npm, Yarn. 

• Frontend: React.js with TypeScript, Jest, React 

Testing Library, Chrome, Firefox, Edge. 

• Backend: Node.js with Express.js, PostgreSQL 

with Prisma ORM, Postman. 

• Design & Reporting: Figma, Adobe XD, 

PDF/Excel generation. 

• Communication: SMS API. 

 

V. IMPLEMENTATION 

 

5.1 Development Environment Setup 

The project is meticulously engineered with a cutting-

edge and highly efficient technology stack, 

specifically chosen to guarantee exceptional 

scalability, robust performance, and streamlined 

development. This meticulously selected foundation 

provides a powerful and resilient framework, capable 

of effortlessly supporting the intricate and demanding 

requirements of a modern social media application. 

From the complexities of real-time data processing to 

the necessity for highly flexible and adaptable data 

storage solutions, every component of this stack is 

optimized for peak efficiency. 

• Python 3.9+: Selected as the core programming 

language, Python stands out for its vast and 

comprehensive ecosystem of libraries and 

frameworks. Its robust asynchronous capabilities 

are particularly crucial for handling concurrent 

operations and ensuring a responsive user 

experience in a high-traffic social media 

environment.  

• FastAPI: This modern, high-performance web 

framework forms the critical backbone of the 

application's API layer. It is highly valued for its 

asynchronous functionalities, which are essential 

for building non-blocking and highly concurrent 

web services. Furthermore, FastAPI's integrated 

API documentation generation (using OpenAPI 

standards) significantly simplifies development, 
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testing, and consumption of the API. 

• MongoDB: Adopted as the primary data 

persistence solution, MongoDB provides a 

flexible, schema-less NoSQL database. This 

flexibility is absolutely essential for managing the 

diverse, evolving, and often unstructured data 

inherent to social media applications, such as user 

profiles, posts, comments, and multimedia 

content. Its ability to scale horizontally makes it 

ideal for handling large volumes of data and high 

read/write loads. 

• requirements.txt: This crucial file meticulously 

maintains and lists all project dependencies, 

ensuring a standardized and reproducible 

environment configuration. By explicitly defining 

every required package and its version, 

requirements.txt guarantees consistency across all 

development, testing, and deployment 

environments, thereby preventing "it works on my 

machine" issues and facilitating seamless team 

collaboration. 

• Git and GitHub: These industry-standard tools are 

fundamental for facilitating robust version control 

and enabling seamless collaborative source code 

management. Git's distributed nature ensures 

every developer has a complete history of the 

codebase. 
 

5.2 Data Collection and Preprocessing 

The data collection and preparation process is 

systematically divided into two main, sequential 

stages: data acquisition and data preprocessing. This 

structured approach ensures a thorough and effective 

handling of information from its raw form to a refined 

state, ready for further analytical procedures. Data is 

meticulously gathered from two prominent social 

media platforms, Reddit and Twitter, utilizing 

specialized adapter modules designed for optimal 

interaction with their respective APIs. Following 

acquisition, the raw data undergoes a rigorous 

normalization and preprocessing phase. This critical 

step is essential for establishing consistency, rectifying 

anomalies, and ensuring the overall quality and 

uniformity of the dataset before any advanced 

analytical operations, such as entity extraction, can 

commence. 
 

Data Collection 

• Reddit posts are efficiently collected in defined 

batches. This process leverages the Python Reddit 

API Wrapper (PRAW), a robust library that 

seamlessly integrates with Reddit's API. PRAW 

is configured to utilize OAuth2 for secure 

authentication, ensuring authorized access to 

Reddit's data. A key advantage of using PRAW is 

its inherent capability to automatically manage 

API rate limits, preventing service interruptions 

and ensuring a continuous and compliant data 

flow. 

• Twitter tweets are acquired through a specialized 

scraping mechanism facilitated by the Apify 

platform. This platform employs a sophisticated 

polling mechanism, which continuously monitors 

the progress and completion of data scraping jobs. 

This ensures that data acquisition from Twitter is 

both reliable and comprehensive, capturing a 

wide array of relevant tweets. 
 

Data Preprocessing 

• Normalization: Standardizes data formats and 

values, eliminating inconsistencies. 

• Cleaning: Addresses and removes errors, 

duplicates, and irrelevant information. 

• Enrichment: Augments the dataset with additional 

valuable context or attributes, improving its 

analytical depth. 

• Filtering: Refines the dataset by removing any 

remaining irrelevant or low-quality data, ensuring 

that only high-quality, pertinent information 

proceeds to the entity extraction phase. 

 

5.3 Entity Extraction, Storage, And Search 

Our system delivers highly efficient text processing 

through a sophisticated, multi-layered architecture that 

combines cutting-edge natural language processing 

(NLP) with robust data management principles. This 

integrated approach is meticulously designed to ensure 

unparalleled accuracy in entity recognition, intelligent 

and precise intent classification, and rapid, context-

aware information retrieval. 

The core components of our system include: 

• Advanced Text Processing: At the heart of our 

system lies a powerful combination of large 

language model (LLM)-based techniques for both 

entity recognition and intent classification. This 

allows for nuanced understanding of text and the 

accurate identification of key information and 

user intent. To ensure maximum reliability and 
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prevent potential misinterpretations, a rule-based 

fallback mechanism is implemented, providing a 

robust safety net for critical processing tasks. 

• Intelligent Data Refinement: Once entities are 

extracted, they undergo a rigorous refinement 

process. This includes confidence filtering to 

ensure only high-quality data is retained, 

sophisticated deduplication algorithms to 

eliminate redundant information, and precise 

tagging of extracted entities. This meticulous 

refinement process significantly enhances the 

quality of our data, making it ideally suited for 

advanced semantic search capabilities. 

• Secure Data Storage & Analytical Foundations: 

For persistent storage of all processed records, we 

leverage the power and flexibility of MongoDB, a 

leading NoSQL database. This provides a scalable 

and reliable foundation for our data. Furthermore, 

to enable deep semantic understanding and 

facilitate advanced similarity computations, we 

utilize SBERT (Sentence Bidirectional Encoder 

Representations from Transformers) vectors. 

These vectors allow us to represent the meaning 

of text in a way that enables sophisticated 

comparisons and analyses. 

• High-Speed Search & Contextual Retrieval: To 

deliver incredibly fast and highly relevant search 

results, we employ an in-memory FAISS 

(Facebook AI Similarity Search) index. This 

specialized index allows for rapid, context-aware 

semantic searches, ensuring that users quickly 

find the most pertinent information even within 

vast datasets. The in-memory nature of FAISS 

provides near-instantaneous retrieval, crucial for 

real-time applications. 

 

5.4 Software Description 

FastAPI: This modern, high-performance Python web 

framework is designed for rapidly building APIs. Its 

key features include support for asynchronous 

programming, automatic data validation (using Python 

type hints), and the automatic generation of interactive 

API documentation (like OpenAPI/Swagger UI). 

These features significantly accelerate development 

and reduce the likelihood of errors. 

PRAW: A Python wrapper for the Reddit API, PRAW 

streamlines the process of interacting with Reddit. It 

simplifies tasks such as retrieving data, submitting 

content, and managing user accounts, making 

authenticated data retrieval and scraping from the 

platform much more straightforward. 

Apify: As a cloud-based platform, Apify specializes in 

web scraping and automation. In this context, it's used 

for Twitter data scraping. It runs prebuilt "scraping 

actors" and handles the complexities of asynchronous 

data retrieval while efficiently managing API rate 

limits and other restrictions imposed by platforms like 

Twitter. 

spaCy: This advanced Natural Language Processing 

(NLP) library is equipped with transformer-based 

models. It plays a crucial role in understanding and 

extracting information from text. Specifically, it's used 

for entity extraction (identifying key entities like 

people, organizations, and locations) and intent 

detection (understanding the purpose or goal behind a 

piece of text), which are vital for semantically 

enriching the collected data. 

MongoDB: A popular NoSQL database, MongoDB is 

document-oriented, meaning it stores data in flexible, 

JSON-like documents. This flexibility makes it ideal 

for storing semi-structured social media data, which 

often doesn't fit neatly into relational tables. It supports 

fast queries, indexing for quick data retrieval, and 

aggregation pipelines for tasks like data deduplication 

and advanced analytics. 

SBERT (Sentence-BERT): This transformer model is 

specifically designed to generate dense vector 

representations (semantic embeddings) for sentences 

or paragraphs. These embeddings capture the semantic 

meaning of the text, enabling deep contextual 

similarity searches that go beyond simple keyword 

matching and can understand the nuanced 

relationships between words and phrases. 

FAISS: Developed by Facebook AI, FAISS (Facebook 

AI Similarity Search) is a library optimized for 

performing fast and efficient similarity searches on 

large datasets of dense vectors. In this system, it would 

be used in conjunction with SBERT embeddings for 

efficient semantic tag matching, allowing for rapid 

retrieval of relevant information based on semantic 

similarity. 

python-dotenv: This library facilitates the secure 

management of environment variables. It allows 

developers to store configuration data, such as API 

keys and database credentials, in a separate .env file, 

keeping sensitive information out of the main 

codebase and preventing it from being accidentally 

committed to version control. 
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Git: An essential version control system, Git is used 

for tracking changes in source code during software 

development. It enables multiple developers to 

collaborate on projects simultaneously, manage 

different versions of the code, and easily revert to 

previous states if necessary. 

React: A popular JavaScript library for building user 

interfaces, especially single-page applications like the 

web UI for SMCA, allowing dynamic, responsive, and 

user-friendly interfaces. 

Node.js: A JavaScript runtime environment used for 

backend development, enabling server-side 

programming, API creation, and handling of 

authentication, data processing, and interaction with 

databases. 

Express.js: A minimal web framework for Node.js that 

simplifies API development by providing a structured 

way to handle routes, middleware, and request-

response cycles. 

 

5.5 Results 

 
Fig. 5.5.1: Home Page 

 

 
Fig. 5.5.2: Notifications Dialog Box 
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Fig. 5.5.3: Search Page 

 

 
Fig. 5.5.4: Bookmarks Page 

 

 
Fig. 5.5.5: Support Page 
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Fig. 5.5.6: Profile Settings 

 

 
Fig. 5.5.7: Appearance Settings 

 

 
Fig. 5.5.8: Preferences Settings 
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Fig. 5.5.9: Redirected to Reddit - Original Post 

 

 
Fig. 5.5.10: Dark Mode Home Page 

 

VI. CONCLUSION AND FUTURE 

ENHANCEMENT 

 

6.1 Conclusion 

The Social Media Content Aggregator (SMCA) 

project successfully addresses the pressing need for 

automated, scalable, and semantically enriched social 

media data collection and analysis. By integrating 

sophisticated data scraping techniques with cutting-

edge natural language processing and intelligent 

deduplication, SMCA transforms voluminous, 

unstructured content from platforms like Reddit and 

Twitter into actionable, high-quality datasets. The 

system’s modular design ensures flexibility and 

extensibility, enabling seamless incorporation of 

additional platforms and analytical capabilities in the 

future. 

Through robust preprocessing, accurate entity and 

intent extraction, and semantic tag-based search, 

SMCA enhances the relevance of social media 

insights, empowering researchers, analysts, and 

decision-makers to uncover nuanced trends, 

sentiments, and relationships that traditional keyword-

based systems miss. The secure RESTful API and 

intuitive user interface democratize access to complex 

social data, supporting both technical integrations and 

non-technical exploration. 

Performance evaluations demonstrate that SMCA 

achieves significant improvements in throughput, 

accuracy, and data quality compared to manual or 

semi-automated methods, drastically reducing 
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operational overhead and enabling timely, data-driven 

decision making. This solution exemplifies the 

effective convergence of modern software 

engineering, artificial intelligence, and data 

management practices to meet real-world challenges 

in social media intelligence. 

In summary, SMCA represents a vital step forward in 

harnessing social media’s vast informational potential, 

offering an open, flexible, and powerful toolset for 

comprehensive content aggregation and analysis. Its 

successful implementation lays a strong foundation for 

future advancements including multi-platform 

integration, real-time processing, advanced analytics, 

and enterprise readiness ensuring continued relevance 

amid rapidly evolving digital communication 

landscapes. 

Furthermore, the successful implementation of SMCA 

demonstrates how modern AI-driven automation can 

significantly reduce manual analysis effort while 

improving the depth, quality, and speed of insight 

generation. The project proves that combining scalable 

backend engineering with semantic intelligence 

creates a powerful analytical engine capable of 

understanding human digital behavior at scale. This 

outcome validates the necessity of advanced 

enrichment-based aggregation rather than keyword-

based retrieval approaches traditionally used in social 

media research. SMCA therefore stands as a 

benchmark model demonstrating how AI, NLP, and 

data engineering can converge to produce meaningful, 

structured intelligence from unstructured online data 

ecosystems. 

Moreover, this project also highlights the importance 

of standardizing social media intelligence architecture 

for academic and industrial applications. The 

methodologies, architectural patterns, and modular 

components developed within SMCA can serve as a 

reusable reference framework for future research in 

the domain of large-scale text mining and digital 

content aggregation. By documenting reusable best 

practices such as semantic enrichment workflow 

design, deduplication strategies, and scalable data 

orchestration pipelines, SMCA provides a foundation 

that future teams can enhance, benchmark, and further 

optimize for new domains and expanding platform 

ecosystems. This strengthens the academic 

contribution of the project beyond its functional 

implementation. 

 

6.2 Future Scope 

The Social Media Content Aggregator (SMCA) 

project holds significant potential for future 

enhancements and expansion to keep pace with 

evolving digital landscapes. One promising direction 

is extending support to include additional social media 

platforms such as LinkedIn, Instagram, Facebook, 

YouTube, TikTok, Discord, and emerging 

decentralized platforms. This multi-platform 

integration would enable more comprehensive data 

aggregation, providing richer insights across broader 

audience segments. 

Advancements in Artificial Intelligence and Machine 

Learning offer opportunities to enhance SMCA's 

analytical capabilities beyond current NLP with entity 

and intent extraction. Incorporating fine-grained 

sentiment analysis, emotion detection, topic modeling, 

and trend forecasting can deepen content 

understanding and improve decision-making support. 

Real-time content aggregation and streaming ingestion 

will allow users to respond instantly to emerging 

trends and events, increasing the system’s relevancy in 

fast-paced environments. 

Personalization and customization features are another 

vital area of growth. Future versions could allow users 

to tailor content feeds dynamically based on interests, 

geography, or user profile attributes, delivering 

individualized insights. Enhanced semantic search 

with vector embeddings and fuzzy matching can 

improve accuracy and relevance even with vague or 

misspelled queries. 

Improvements in user experience, such as multi-user 

authentication with role-based access control, 

interactive dashboards, mobile application support, 

and data export for reporting, will broaden access and 

utility across organizational roles. Enterprise-grade 

features like audit logging, data retention policies, 

single sign-on (SSO) integration, and high availability 

clustering can facilitate adoption by larger businesses 

and regulated sectors. 

Lastly, incorporating machine learning-driven 

recommendation engines, automated summarization, 

anomaly detection, and cross-platform entity 

resolution will make SMCA a comprehensive content 

intelligence solution adaptable to diverse use cases 

across marketing, research, policy, and customer 

service domains. 

In the long term, SMCA can also expand into 

multimodal intelligence by integrating image, audio, 
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and video based social signals in addition to text. With 

advancement in vision-language models (VLMs), the 

system can evolve to detect patterns from memes, 

reels, YouTube shorts, livestream transcripts, voice-

based spaces or podcast discussions giving researchers 

a unified platform for complete social media 

intelligence across all digital formats. Eventually, 

SMCA could mature into a plug-in intelligence layer 

for enterprise SOCs, government digital governance 

systems, smart policy monitoring platforms, and 

commercial brand sentiment engines positioning it as 

a highly adaptable solution capable of influencing 

real-time, nationwide or global scale strategic decision 

making. 

Additionally, future enhancements may also introduce 

federated learning and privacy-preserving techniques, 

allowing SMCA to operate across distributed data 

sources without compromising user confidentiality or 

violating data compliance regulations. Approaches 

such as differential privacy, encrypted vector 

embeddings, anonymized entity mapping, and on-

device NLP inference can make SMCA suitable even 

for highly restricted or confidential research 

environments. This direction opens opportunities for 

collaborations with health, finance, defense, and 

public policy institutions where privacy and data 

security are essential, further expanding SMCA’s 

scope as a trusted, compliant, and ethically governed 

social media intelligence framework. 

 

VII. APPENDICES SOURCE CODE 

 

twitter.py: 

import os 

import time 

import logging 

from datetime import datetime, timezone, timedelta 

from typing import List, Dict 

from dotenv import load_dotenv 

import praw 

 

load_dotenv() 

 

client_id = os.getenv("REDDIT_CLIENT_ID") 

client_secret = 

os.getenv("REDDIT_CLIENT_SECRET") 

user_agent = os.getenv("REDDIT_USER_AGENT") 

 

POST_LIMIT_PER_SUB = 5 

MAX_RETRIES = 3 

RATE_LIMIT_PER_MINUTE = 60 

REQUEST_DELAY = 60 / 

RATE_LIMIT_PER_MINUTE 

 

SUBREDDITS = [ 

    'forhire', 'slavelabour', 'freelance_forhire', 

'designjobs', 'RemoteJobs', 

    'jobs', 'WorkOnline', 'cscareerquestions', 

'recruiting', 'ITCareerQuestions', 

    'meetup', 'Networking', 'studygroup', 

'EntrepreneurRideAlong', 'FindABand', 

'FindACoFounder', 

    'RealEstate', 'forrent', 'RealEstateTechnology', 

'roommates', 'PropertyManagement', 

    'hardwareswap', 'gamesale', 'IndieExchange', 

'AVexchange', 'mechmarket', 'free', 

    'influencermarketing', 'InstagramMarketing', 

'YouTubeCollab', 'SocialMediaMarketing', 

    'Assistance', 'helpme', 'Need', 'learnpython', 

'Entrepreneur', 'startups', 'mentors', 

'randomactsofkindness', 

    'DealsReddit', 'BulkDeals', 

    'Collaborate', 'FindABand', 'FindACoFounder', 

'YouTubeCollab', 'ProgrammingBuddies', 'INAT', 

    'reviews', 'RecommendMe', 'SuggestALaptop', 

'BuyItForLife', 'AskReddit' 

] 

 

logger = logging.getLogger(__name__) 

reddit = praw.Reddit(client_id=client_id, 

client_secret=client_secret, user_agent=user_agent) 

 

def fetch_subreddit_posts(subreddit_name: str, 

retries: int = 0) -> List[Dict]: 

    try: 

        subreddit = reddit.subreddit(subreddit_name) 

        posts = 

subreddit.new(limit=POST_LIMIT_PER_SUB) 

 

        results = [] 

        for post in posts: 

            permalink = getattr(post, "permalink", None) 

            url = f"https://reddit.com{permalink}" if 

permalink else "" 

            if not permalink: 

                logger.warning(f"Post {post.id} missing 

permalink (may be deleted or removed)") 
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            results.append({ 

                "id": post.id, 

                "user": { 

                    "id": f"u/{post.author.name}" if 

post.author else "u/deleted", 

                    "name": post.author.name if post.author 

else "deleted" 

                }, 

                "title": post.title,               

                "body": post.selftext,           

                "text": f"{post.title}\n{post.selftext}", 

                "created_at": 

datetime.fromtimestamp(post.created_utc, 

tz=timezone.utc).isoformat(), 

                "url": url, 

                "source": "Reddit API", 

                "community": subreddit_name, 

                "conversation_id": post.name, 

                "in_reply_to": None 

            }) 

 

        return results 

 

    except Exception as e: 

        if retries < MAX_RETRIES: 

            time.sleep(2) 

            return fetch_subreddit_posts(subreddit_name, 

retries + 1) 

        else: 

            logger.error(f"Failed to fetch 

r/{subreddit_name}: {e}") 

            return [] 

 

def scrape_reddit() -> Dict: 

    logger.info("Starting Reddit scrape...") 

    raw_data = [] 

    request_count = 0 

 

    for subreddit in SUBREDDITS: 

        posts = fetch_subreddit_posts(subreddit) 

        raw_data.extend(posts) 

        request_count += 1 

 

        if request_count % 

RATE_LIMIT_PER_MINUTE == 0: 

            time.sleep(60) 

        else: 

            time.sleep(REQUEST_DELAY) 

 

    result = { 

        "platform": "reddit", 

        "timestamp": 

datetime.now(tz=timezone.utc).isoformat(), 

        "raw_data": raw_data, 

        "metadata": { 

            "request_id": f"req-rd-

{datetime.now(tz=timezone.utc).strftime('%Y%m%d

%H%M%S')}", 

            "status": "success", 

            "rate_limit": { 

                "remaining": max(0, 

RATE_LIMIT_PER_MINUTE - (request_count % 

RATE_LIMIT_PER_MINUTE)), 

                "reset_time": 

(datetime.now(tz=timezone.utc) + 

timedelta(minutes=1)).isoformat() 

            } 

        } 

    } 

 

    return result 

 

x.py: 

import json 

from datetime import datetime, timezone 

# Load your scraped Twitter data (replace with actual 

path if reading from file) 

with open("twitter_scraped_data.json", "r", 

encoding="utf-8") as f: 

    twitter_data = json.load(f) 

standardized_data = [] 

for tweet in twitter_data: 

    standardized_data.append({ 

        "id": tweet.get("id"), 

        "user": { 

            "id": "No_id",  # Apify output doesn't include 

user ID 

            "name": tweet.get("url").split("/")[3]  # Extract 

username from URL 

        }, 

        "text": tweet.get("text"), 

        "created_at": 

datetime.strptime(tweet["createdAt"], "%a %b %d 

%H:%M:%S %z 

%Y").astimezone(timezone.utc).isoformat(), 

        "url": tweet.get("url"), 

        "source": "Twitter Scraper (Apify)", 

        "community": "Twitter", 
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        "conversation_id": None,  # Not present in output 

        "in_reply_to": None       # Not present in output 

    }) 

result = { 

    "platform": "twitter", 

    "timestamp": 

datetime.now(timezone.utc).isoformat(), 

    "raw_data": standardized_data, 

    "metadata": { 

        "request_id": f"req-tw-

{datetime.now(timezone.utc).strftime('%Y%m%d%

H%M%S')}", 

        "status": "success", 

        "rate_limit": { 

            "remaining": "unknown",  # Apify handles rate 

limits internally 

            "reset_time": None 

        } 

    } 

} 

# Save to file 

output_file = "twitter_posts_data.json" 

with open(output_file, 'w', encoding='utf-8') as f: 

    json.dump(result, f, indent=2, ensure_ascii=False) 

print(f"Data saved to {output_file}") 

 

preprocessor.py: 

import json 

import logging 

from datetime import datetime 

from tqdm import tqdm 

from .cleaning import clean_text 

from .utils import tokenize 

from .filtering import should_remove, 

classify_service_intent 

logger = logging.getLogger(__name__) 

class DataPreprocessor: 

    def __init__(self): 

        self.stats = { 

            "total": 0, 

            "processed": 0, 

            "removed": 0, 

            "errors": 0 

        } 

    def process(self, input_data: dict) -> dict: 

        processed, removed = [], [] 

        raw_records = input_data.get("raw_data", 

input_data.get("data", []))  # support reddit & twitter 

        self.stats["total"] = len(raw_records) 

        for record in tqdm(raw_records, 

desc="Processing"): 

            try: 

                raw_title = record.get("title", "") 

                raw_body = record.get("body", "") 

                raw_text = record.get("text", "") 

                # Clean title and body separately 

                title_clean = clean_text(raw_title) 

                body_clean = clean_text(raw_body) 

                # Keep for UI 

                record["title_clean"] = title_clean 

                record["body_clean"] = body_clean 

                # Combine for NLP logic as before 

                text_clean = clean_text(raw_text) 

                record["text_clean"] = text_clean 

 

                # Use original or fallback timestamp 

                post_ts = record.get("metadata", 

{}).get("post_timestamp") or record.get("created_at") 

                record["timestamp"] = post_ts or 

datetime.utcnow().isoformat() 

                # Filtering logic 

                remove, reason = should_remove(record) 

                if remove: 

                    self._log_removal(removed, record, 

reason) 

                    continue 

                record["language"] = "en" 

                record["sentiment"] = 0  # placeholder 

                record["tokens"] = tokenize(text_clean, 

max_tokens=15) 

                record["is_clean"] = True 

                record["reason_kept"] = "service 

seeker/provider" 

                record["intent"] = 

classify_service_intent(text_clean) 

                processed.append(record) 

                self.stats["processed"] += 1 

            except Exception as e: 

                self._log_error(removed, record, str(e)) 

        self.stats["removed"] = len(removed) 

        logger.info( 

            f"Processing complete: 

total={self.stats['total']} " 

            f"processed={self.stats['processed']} 

removed={self.stats['removed']} " 

            f"errors={self.stats['errors']}" 

        ) 

        return { 
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            "platform": input_data.get("platform", 

"unknown"), 

            "timestamp": input_data.get("timestamp", 

datetime.utcnow().isoformat()), 

            "processed_data": processed, 

            "removed_data": removed, 

            "metadata": { 

                **input_data.get("metadata", {}), 

                "stats": self.stats 

            } 

        } 

    def _log_removal(self, removed_list, record, 

reason): 

        removed_list.append({ 

            "id": record.get("id", "NO_ID"), 

            "reason": reason, 

            "text": record.get("text", "") 

        }) 

        self.stats["removed"] += 1 

    def _log_error(self, removed_list, record, 

error_msg): 

        record_id = record.get("id", "NO_ID") 

        removed_list.append({ 

            "id": record_id, 

            "reason": f"processing error: {error_msg}", 

            "text": record.get("text", "") 

        }) 

        self.stats["errors"] += 1 

        logger.error(f"Error processing record ID 

{record_id}: {error_msg}") 

 

filtering.py: 

import re 

from .config import ( 

    SPAM_KEYWORDS, MIN_WORDS, 

ACTIONABLE_PATTERNS, 

IRRELEVANT_PATTERNS, 

    SHORT_POST_ENTITY_PATTERNS 

) 

from .utils import normalize, is_english, 

has_actionable_entity 

from sentence_transformers import CrossEncoder 

# Load the cross-encoder model for intent 

classification 

try: 

    crossencoder_model = CrossEncoder('cross-

encoder/nli-deberta-v3-small', device='cuda') 

except Exception as e: 

    print(f"Error loading cross-encoder model: {e}") 

    crossencoder_model = None 

ACTIONABLE_REGEXES = [re.compile(p, 

re.IGNORECASE) for p in 

ACTIONABLE_PATTERNS] 

IRRELEVANT_REGEXES = [re.compile(p, 

re.IGNORECASE) for p in 

IRRELEVANT_PATTERNS] 

ENTITY_REGEXES = [re.compile(p, 

re.IGNORECASE) for p in 

SHORT_POST_ENTITY_PATTERNS] 

def is_spam(text: str) -> bool: 

    text = normalize(text) 

    return any(kw in text for kw in 

SPAM_KEYWORDS) 

def is_actionable_regex(text: str) -> bool: 

    return any(rgx.search(text) for rgx in 

ACTIONABLE_REGEXES) 

def is_irrelevant(text: str) -> bool: 

    return any(rgx.search(text) for rgx in 

IRRELEVANT_REGEXES) 

def is_too_short(text: str) -> bool: 

    words = text.split() 

    return len(words) < MIN_WORDS 

def should_keep_short(text: str) -> bool: 

    # Keep if strong entity signal (price, phone, action 

word) 

    return has_actionable_entity(text, 

SHORT_POST_ENTITY_PATTERNS) 

def is_actionable_crossencoder(text: str) -> bool: 

    if not crossencoder_model or not text.strip(): 

        return False 

    try: 

        hypothesis = ( 

            "This post is a direct, actionable request or 

offer related to services, jobs, events, real estate, 

secondhand goods, " 

            "social commerce or influencer campaigns, 

community support, group buying, content 

collaboration, or reviews and recommendations. " 

            "It is NOT advice, a tip, a meme, a joke, news, 

a rant, a random thought, general discussion, or a 

greeting." 

        ) 

        pairs = [(text, hypothesis)] 

        scores = crossencoder_model.predict(pairs)  # 

returns np.ndarray 

        return float(scores[0]) >= 0.7  #  explicitly use 

first value 

    except Exception as e: 
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        #print(f"Error in cross-encoder classification: 

{e}") 

        return False 

 

def classify_service_intent(text: str) -> str: 

    if re.search(r"\b(offering|service offered|for 

hire|providing|can do|available for hire|expert in)\b", 

text): 

        return "provider" 

    elif re.search(r"\b(looking for|need 

a|seeking|service needed|wanted|require|help 

needed|searching for)\b", text): 

        return "seeker" 

    return "undefined" 

def should_remove(record: dict) -> tuple[bool, str]: 

    text = record.get("text_clean", "") or 

record.get("text", "") 

    if not isinstance(text, str): 

        return True, "text not a string" 

    text = text.strip() 

    if not text: 

        return True, "empty text" 

    if is_spam(text): 

        return True, "spam detected" 

    if not is_english(text): 

        return True, "non-English" 

    if is_irrelevant(text): 

        return True, "irrelevant 

(advice/meme/rant/news/etc)" 

    actionable = is_actionable_regex(text) or 

should_keep_short(text) 

    if actionable: 

        return False, "" 

    if is_actionable_crossencoder(text): 

        return False, "" 

    return True, "not actionable" 

 

extractor.py: 

import logging 

from datetime import datetime 

from entity_extractor.config import ( 

    CONFIDENCE_THRESHOLD, 

    SUPPORTED_ENTITY_TYPES, 

    MAX_ENTITIES_PER_RECORD 

) 

from entity_extractor.rules import detect_intent, 

extract_entities 

from entity_extractor.utils import validate_record 

from entity_extractor.llm_batch import run_llm_batch 

logger = logging.getLogger(__name__) 

 

def filter_entities(entities): 

    filtered = [e for e in entities if e["confidence"] >= 

CONFIDENCE_THRESHOLD] 

    filtered = [e for e in filtered if e["type"] in 

SUPPORTED_ENTITY_TYPES] 

    seen = set() 

    deduped = [] 

    for e in filtered: 

        key = (e["type"], e["value"].lower()) 

        if key not in seen: 

            deduped.append(e) 

            seen.add(key) 

    return 

deduped[:MAX_ENTITIES_PER_RECORD] 

 

class EntityExtractor: 

    def process(self, input_data): 

        processed, removed = [], [] 

        platform = input_data.get("platform") 

        timestamp = input_data.get("timestamp") 

        total = len(input_data.get("processed_data", [])) 

 

        records = input_data.get("processed_data", []) 

        batch_size = 5  # Adjust as needed 

 

        logger.info(f"Starting extraction: total 

records={total}") 

 

        for i in range(0, total, batch_size): 

            batch_records = records[i:i+batch_size] 

            batch_texts = [r.get("text_clean", "") for r in 

batch_records] 

 

            try: 

                logger.info(f"Attempting LLM batch 

extraction for records {i}-{i + len(batch_records) - 

1}...") 

                batch_results = run_llm_batch(batch_texts) 

                logger.info(f"LLM batch extraction 

succeeded for records {i}-{i + len(batch_records) - 

1}.") 

 

                for record, llm_result in zip(batch_records, 

batch_results): 

                    intent = llm_result.get("intent") 

                    entities = llm_result.get("entities", []) 

                    entities = filter_entities(entities) 
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                    if not validate_record(intent, entities): 

                        removed.append({ 

                            "id": record.get("id"), 

                            "reason": "No intent or entities 

found", 

                            "text": record.get("text_clean", "") 

                        }) 

                        continue 

 

                    processed.append({ 

                        "record_id": record.get("id"), 

                        "user_id": record.get("user", 

{}).get("id"), 

                        "user_name": record.get("user", 

{}).get("name"), 

                        "text_clean": record.get("text_clean", 

""), 

                        "title_clean": record.get("title_clean", 

""), 

                        "body_clean": 

record.get("body_clean", ""), 

                        "intent": intent, 

                        "entities": entities, 

                        "timestamp": record.get("timestamp"), 

                        "metadata": { 

                            "platform": platform or "unknown", 

                            "url": record.get("url") or "", 

                            "community": 

record.get("community") or "", 

                            "language": record.get("language") 

or "en", 

                            "extracted_at": 

datetime.utcnow().isoformat() + "Z" 

                        }, 

                        "confidence": min([e["confidence"] for 

e in entities], default=1.0) 

                    }) 

 

            except Exception as e: 

                logger.error(f"LLM batch extraction failed 

at records {i}-{i + len(batch_records) - 1}: {e}") 

                logger.info(f"Falling back to rule-based 

extraction for records {i}-{i + len(batch_records) - 

1}.") 

 

                # Fallback: process each record one by one 

                for record in batch_records: 

                    try: 

                        text = record.get("text_clean", "") 

                        intent = detect_intent(text) 

                        entities = extract_entities(text) 

                        entities = filter_entities(entities) 

 

                        if not validate_record(intent, entities): 

                            removed.append({ 

                                "id": record.get("id"), 

                                "reason": "No intent or entities 

found", 

                                "text": text 

                            }) 

                            continue 

 

                        processed.append({ 

                            "record_id": record.get("id"), 

                            "user_id": record.get("user", 

{}).get("id"), 

                            "user_name": record.get("user", 

{}).get("name"), 

                            "text_clean": text, 

                            "title_clean": 

record.get("title_clean", ""), 

                            "body_clean": 

record.get("body_clean", ""), 

                            "intent": intent, 

                            "entities": entities, 

                            "timestamp": 

record.get("timestamp"), 

                            "metadata": { 

                                "platform": platform or 

"unknown", 

                                "url": record.get("url") or "", 

                                "community": 

record.get("community") or "", 

                                "language": 

record.get("language") or "en", 

                                "extracted_at": 

datetime.utcnow().isoformat() + "Z" 

                            }, 

                            "confidence": min([e["confidence"] 

for e in entities], default=1.0) 

                        }) 

 

                    except Exception as inner_e: 

                        removed.append({ 

                            "id": record.get("id"), 

                            "reason": f"extraction error: 

{inner_e}", 

                            "text": record.get("text_clean", "") 
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                        }) 

                        logger.error(f"Error processing record 

ID {record.get('id')}: {inner_e}") 

 

        logger.info(f"Extraction complete: total={total} 

processed={len(processed)} 

removed={len(removed)}") 

        return { 

            "platform": platform, 

            "timestamp": timestamp, 

            "extracted_data": processed, 

            "removed_data": removed 

        } 
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