
© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2770

Social Media Content Aggregator

Rakshith Rao S V1, Sheik Mohammed Ali M2, Vimalesh D3, Dr. D M Vijayalakshmi4
1,2,3,4Bachelor Of Engineering in Computer Science and Engineering, Adhiyamaan College of Engineering

Dr.M.G.R Nagar, Hosur- 635130

Anna University: Chennai 600 025

Abstract—SMCA is an advanced full-stack, modular

social media content aggregation platform engineered to

unify, enrich, and manage large-scale unstructured data

from Reddit and Twitter, solving critical challenges in

trend analysis, research, and digital monitoring.

Developed with FastAPI, Python, MongoDB, and state-

of-the-art NLP libraries, the solution offers secure

RESTful APIs and a responsive HTML user interface

supporting role-based users from analysts to

researchers. SMCA streamlines collection, cleansing,

semantic enrichment, and intelligent deduplication of

social media data through an automated pipeline:

authenticated API-based scraping (PRAW for Reddit,

Apify for Twitter), preprocessing and normalization of

raw text, transformer-powered entity and intent

extraction (spaCy), and smart deduplication using

compound key logic in MongoDB. Its semantic tag-based

search system empowers users to go beyond basic

keyword retrieval, surfacing contextual matches based

on extracted entities and intent, while robust endpoints

support advanced queries, bulk exports, and scheduled

tasks. Key features include secure API key

authentication, entity-driven dashboard analytics,

configurable data export (CSV/JSON), extensible

modular design for future platform and analytics

integration, comprehensive error handling, and scalable

architecture supporting millions of records. Automating

all stages of aggregation, SMCA achieves over 100x

speedup compared to manual methods, delivers accurate

entity extraction, enables real-time content discovery,

and supports data-driven decisions for organizations

across research, policy, and market intelligence. By

bridging the gap between unstructured social content

and actionable information, SMCA empowers modern

teams to transform complex digital signals into clear,

timely insights.

Index Terms—Social Media Content Aggregator

(SMCA), social media analytics, Reddit, Twitter, web

scraping, FastAPI, Python, MongoDB, NLP, entity

extraction, semantic tagging, deduplication, semantic

search, RESTful APIs, spaCy, PRAW, Apify, SBERT,

FAISS, preprocessing, modular architecture, scalable

system, trend analysis.

I. INTRODUCTION

1.1 Overview

The digital transformation of data-driven industries

has radically reshaped how information is captured,

processed, and leveraged for actionable insights. One

of the most dynamic and influential sources of

contemporary data is social media platforms like

Reddit and Twitter generate millions of user posts and

conversations every day, reflecting ongoing trends,

opinions, and real-time events. Yet, the sheer volume,

diversity, and speed of social media content present

significant challenges for effective aggregation,

organization, and meaningful analysis. Traditional

approaches, which often rely on manual review or

simplistic scraping tools, are insufficient for modern

research, policy monitoring, and business intelligence

requirements. Large amounts of valuable information

remain locked in unstructured text, scattered across

disparate online communities, and inaccessible for

timely decision-making.

To address these limitations, SMCA – Social Media

Content Aggregator has been conceptualized as a

comprehensive, modular solution to automate, unify,

and enrich the collection and analysis of social media

content. The primary goal of SMCA is to streamline

the end-to-end lifecycle of social data spanning

scraping, cleaning, NLP-driven entity and intent

extraction, deduplication, and context-aware search

thereby empowering organizations, analysts, and

researchers to transition from labor-intensive routines

to seamless, scalable, and data-driven workSMCAs.

At its core, SMCA adopts a robust client-server

architecture built with FastAPI for the backend and

MongoDB for persistent storage. The system is

engineered to enable reliable, authenticated data

scraping from both Reddit and Twitter via modular

pipelines. These pipelines are capable of high-

throughput data ingestion, applying advanced

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2771

preprocessing techniques that standardize and sanitize

the input text. By integrating state-of-the-art natural

language processing models such as spaCy’s

transformer-based pipeline, SMCA automatically

identifies and extracts entities like persons,

organizations, and events while also discerning the

intent behind user posts. This process ensures that

social data is not only aggregated but also semantically

enriched, a foundation that supports higher-order

analytics and research.

A significant feature of SMCA is its intelligent

deduplication engine. Social media ecosystems are rife

with reposts, near-duplicates, and bot-generated

content, leading to redundancy and potential bias in

downstream analytics. SMCA counters this by

employing MongoDB aggregation pipelines with

composite key logic to identify and efficiently remove

duplicates. The end result is a curated dataset free from

noise, optimized for both analytical clarity and storage

efficiency.

In order to make the insights and data accessible and

actionable, SMCA provides a comprehensive suite of

RESTful API endpoints and an interactive HTML-

based search interface. Through these interfaces, users

can trigger data collection, perform powerful semantic

tag-based searches, or initiate deduplication tasks.

Rather than limiting search to exact keyword matches,

SMCA’s semantic system enables users to surface

content based on tags and contextual relevance,

making trend detection and topic discovery

dramatically more precise and intuitive. For security

and controlled access, all critical endpoints utilize API

key-based authentication, and system setup is

streamlined through environment variables and well-

documented configuration scripts.

The system is designed from the ground up for

extensibility, allowing straightforward adaptation to

additional platforms, new analytics modules, or

custom workSMCAs. Log management and robust

error-handling ensure reliability in both research and

production environments; comprehensive logging

supports auditability and debugging, while

configuration-driven design facilitates rapid

deployment in new contexts. SMCA’s architecture

supports scaling from single-researcher deployments

to organizational installations managing millions of

records.

Implementing SMCA delivers substantial benefits to

institutions and teams across domains. For

researchers, it enables the automated creation of high-

quality, analysis-ready social media datasets that

would otherwise require vast manual effort; for market

analysts and policymakers, it supports real-time trend

tracking, sentiment analysis precursors, and event

detection. For technical teams, SMCA’s modular,

API-driven design ensures easy integration into

broader data pipelines or analytics dashboards.

1.2 Objective

1. Automate Multi-Platform Data Collection:

Seamlessly collect real-time content from Reddit

and Twitter through robust API integrations,

eliminating manual scraping and ensuring

persistent, large-scale data acquisition.

2. Standardize and Preprocess Raw Text: Implement

data cleaning and normalization pipelines to

remove noise and standardize diverse social

media inputs, preparing the data for further

analysis.

3. Entity and Intent Extraction via NLP: Use

advanced NLP models to extract key entities

(such as names, organizations, and topics) and

determine the intent behind social posts, enabling

richer semantic understanding of unstructured

data.

4. Enable Semantic Tag-Based Search: Allow users

and systems to search content contextually using

automatically generated tags, moving beyond

basic keyword matching for more meaningful

discovery and retrieval.

5. Deduplicate Content Efficiently: Remove

redundant records and near-duplicates using

intelligent, key-based deduplication strategies

implemented in the database layer, ensuring clean

datasets for analysis.

6. Expose APIs for Programmatic Workflow:

Provide HTTP endpoints to trigger scraping,

deduplication, and search, supporting integration

with other tools, automation scripts, or

dashboards.

7. Implement secure, modular architecture: protect

API keys, manage credentials with .env files, and

design for future extensibility.

8. Facilitate Visualization and Usability: Offer both

interactive HTML and auto-documented Swagger

UI for streamlined access, allowing analysts and

developers to monitor, review, and interact with

aggregated results.

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2772

SMCA is designed to empower efficient, automated,

and high-quality social media content analysis

enabling researchers, analysts, and organizations to

unlock insights from messy, high-volume digital

conversations with speed, structure, and semantic

richness.

II. LITERATURE SURVEY

[1] Hinton, A., & Roy, T. (2024). Understanding

Multi-platform Social Media Aggregators: A Design

and Development Case Study with BTS-DASH. This

paper examines multi-platform social media

aggregators using BTS-DASH. It details solutions for

technical challenges like normalization,

authentication, and integration. The work advocates

for modular design and semantic enrichment for

scalable monitoring.

[2] Fletcher, R., Kalogeropoulos, A., & Nielsen, R. K.

(2023). More diverse, more politically varied: How

social media, search engines and aggregators shape

news repertoires in the United Kingdom. New Media

& Society, 25(8), 2118-2139

This study analyzes how social media aggregators

influence news consumption patterns, noting an

increase in political diversity attributed to multi-

source aggregation. The findings emphasize user

behavior changes driven by aggregator algorithms,

making the case for systems that provide transparent,

context-aware aggregation to empower informed

public discourse.

[3] Hlaoua, L. (2025). An overview of aggregation

methods for social networks analysis. Knowledge and

Information Systems, 67(1), 1-28

Hlaoua provides a comprehensive review of social

network aggregation methodologies, examining

approaches to unify data across heterogeneous

platforms for effective network analysis. The paper

discusses challenges in data heterogeneity,

deduplication, and semantic integration, offering

insights into architectures that enable scalable

aggregation supporting advanced analytics..

[4] Bhattacharyya, Mousumi, et al. (2023). An

emoticon-based sentiment aggregation on metaverse

related tweets.

This research employs emoticon analysis for

sentiment aggregation on metaverse-related Twitter

conversations, illustrating advanced sentiment metrics

beyond simple text analysis. While focused on a niche

domain, the methodology emphasizes enriching data

with multi-dimensional sentiment features, inspiring

broader contextual tag-based search and intent

extraction techniques.

[5] Kameda, Tatsuya, Wataru Toyokawa, and R. Scott

Tindale. (2022). Information aggregation and

collective intelligence beyond the wisdom of crowds.

The paper examines collective intelligence emerging

through aggregation of information from diverse

sources, surpassing simple crowd wisdom. It

underscores the importance of combining data through

semantic integration, automated filtering, and

contextual enrichment to derive actionable collective

insights principles directly applicable to social media

aggregators aspiring to produce reliable intelligence

rather than mere data dumps.

[6] Beer, David. Using social media data aggregators

to do social research. Sociological Research Online

17.3 (2012): 91-102.

David Beer's 2012 paper discusses the use of social

media data aggregators as tools for social research,

highlighting their role in collecting and consolidating

large volumes of online social data.

[7] Zignani, Matteo, et al. Walls-in-one: usage and

temporal patterns in a social media aggregator.

Applied Network Science 1.1 (2016): 5.

The paper analyzes user behavior across multiple

social media platforms through data from the

Alternion social media aggregator. It reveals that most

active users engage with multiple social networks

simultaneously, but their posting frequency per site

decreases as the number of platforms.

[8] Lande, D., Subach, I., & Puchkov, A. (2020). A

system for analysis of big data from social media.

Information & Security, 47(1), 44–61. This paper

presents an end-to-end framework for ingesting and

analyzing large-scale social media streams,

emphasizing pipeline orchestration, storage strategies,

and scalable indexing. The authors detail methods for

filtering noise, handling heterogeneous metadata, and

enabling fast retrieval over massive datasets issues

central to any production social analytics stack. Their

focus on throughput, reliability, and index design

directly informs SMCA’s choices around MongoDB

schema optimization, batching, and query

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2773

performance for high-volume, multi-source

workloads.

[9] Srikanth, N., Tejaswini, C. V., & Kumar, D. P.

(2019). Socially smart: An aggregation system for

social media using web scraping. Displays, 6(4), 749–

752. This work describes a web-scraping–driven

social media aggregator that unifies posts from

multiple sources into a single interface. It highlights

practical concerns such as normalization across

platforms, scraper robustness, and the need for

lightweight UI access to aggregated content. While the

approach is primarily scraping-centric and less

semantic, it validates the value of unified collection

and user-facing retrieval. These insights support

SMCA’s adapter-based ingestion (e.g.,

PRAW/Apify), standardized record format, and

provision of both REST endpoints and an HTML

search UI, while SMCA extends the idea with NLP

enrichment, deduplication, and semantic search.

[10] De Corniere, A., & Sarvary, M. (2023). Social

media and news: Content bundling and news quality.

Management Science, 69(1), 162–178.

This study explores how social media aggregation,

bundling, and distribution mechanisms influence the

diversity and perceived quality of news consumed by

users. The authors analyze how aggregator platforms

can alter user exposure, attention distribution, and

content prioritization, ultimately affecting

informational value and reliability. Their findings

reinforce the importance of presenting aggregated data

in ways that maintain contextual integrity and prevent

distortion or oversimplification.

III. SYSTEM ANALYSIS

3.1 Existing System

Current methodologies for aggregating social media

content frequently involve manual, disjointed, or

platform-specific approaches. Existing commercial or

academic solutions often rely on basic keyword-based

retrieval or simple scraping scripts, which are

insufficient for handling today’s scale and complexity

of heterogeneous, high-volume social media data.

Many platforms fail to fully support cross-platform

standardization, semantic enrichment, and automated

deduplication leading to fragmented data pipelines

that lack interpretability and analytical depth. As a

result, organizations and researchers struggle to build

stable, scalable pipelines capable of extracting

meaningful insights from unstructured public

conversations.

Manual approaches require analysts to independently

navigate platforms like Reddit and Twitter,

performing searches, copying text, filtering posts, and

consolidating results into documents or spreadsheets.

This process is slow, tedious, error-prone, non-

repeatable, and fundamentally unscalable at modern

social media data rates. Even when platform APIs are

used, challenges persist due to varied rate limits,

pricing restrictions, authentication differences,

inconsistent metadata structures, and unpredictable

API stability especially in platforms like Twitter that

frequently modify access models. This inconsistency

leads to siloed datasets and fragmented workflows.

Additionally, the data retrieved from social media is

often raw, unclean, repetitive, and semantically

ambiguous. Traditional text search and keyword

matching cannot understand meaning or context,

failing to differentiate between posts that express

different intents or refer to different topics but share

similar words. Manual entity extraction methods lack

standardization and drastically degrade accuracy when

volume increases. There is typically no mechanism to

handle redundant posts, re-post chains, cross-posts, or

bot-generated duplicates, which significantly corrupt

dataset quality and inflate storage.

Legacy data retrieval systems further rely on

spreadsheet-based analysis or simple database

keyword queries which result in poor recall, lack

contextual retrieval, and fail to surface hidden topic

clusters or latent intent. Without semantic tagging,

NLP-driven classification, or metadata-aware

indexing, decision-makers are forced to interpret

incomplete or misaligned datasets. Most existing

systems also lack automation triggers, scheduling

pipelines, or asynchronous ingestion models resulting

in dependency on human-triggered workflows.

These limitations lead to operational inefficiencies,

hinder real-time analysis, and restrict research

validity. The absence of standardized schema, unified

multi-platform aggregation, semantic enrichment, and

intelligent deduplication makes current systems

incapable of supporting large-scale research, trend

monitoring, or signal extraction reliably. Therefore,

there is a critical need for a new system like SMCA

that addresses all these challenges with modular

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2774

automation, unified representation, rich NLP-based

enrichment, semantic search, scalable APIs, and end-

to-end data pipeline orchestration.

Furthermore, most existing systems lack adaptive

intelligence and contextual awareness, meaning they

cannot differentiate between noise, casual

conversation, humor, sarcasm, memes, or highly

actionable information such as a request, offer, urgent

inquiry, or service-based intent. This inability to

interpret intention severely limits downstream

analytics, since stakeholders such as researchers,

policy makers, and market intelligence teams require

semantically meaningful classification to derive

accurate patterns and insights. Without automatic

context interpretation or entity-level feature

extraction, important signals remain hidden, leading to

misinformed conclusions when analyzing public

discourse at scale. The absence of an enriched

representation for posts also prevents thematic

clustering, sentiment-driven pattern recognition, trend

evolution monitoring, and longitudinal behavioral

mapping across communities.

Finally, interoperability is a major challenge with

existing systems. Exporting processed results into

dashboards, research pipelines, or analytical platforms

often requires complex conversions or custom

integration scripts. Legacy tools are typically not API-

first, are not modular, and cannot be easily plugged

into external workflows, which reduces reusability,

reproducibility, and long-term maintainability.

Organizations often need to rebuild pipelines from

scratch for each project or platform source consuming

additional engineering resources and increasing

operational overhead. These constraints highlight the

need for a unified, scalable, extensible architecture

that seamlessly integrates multi-platform ingestion,

automated NLP-driven enrichment, deduplication,

semantic retrieval, and API-based interoperability.

SMCA is proposed precisely to fill this gap by

providing a modern, modular, future-proof solution

that addresses both functional and architectural

deficiencies present in current systems.

3.2 Proposed System

SMCA, a social media content aggregator, offers an

intelligent, automated, and scalable solution to current

data collection and analysis limitations. This full-stack

platform integrates advanced data ingestion, NLP, and

semantic search to deliver real-time insights from

multi-platform social media.

SMCA automates data collection from Reddit and

Twitter using authenticated APIs (PRAW for Reddit,

Apify actors for Twitter), ensuring high-throughput,

compliant, and scalable scraping, eliminating manual,

error-prone processes, and increasing data coverage

and reliability.

Collected data undergoes a preprocessing pipeline to

standardize formatting and remove noise. Advanced

NLP then extracts entities like people and

organizations, while a custom algorithm categorizes

posts into intents (questions, complaints, etc.) for

precise filtering and analysis.

A key feature is SMCA's intelligent deduplication

system within MongoDB, using composite key

matching to identify and flag exact and near

duplicates, improving dataset quality by reducing

redundant analysis in a social media environment

prone to reposts and bot content.

SMCA implements semantic tag-based search,

leveraging NLP-extracted entities and generated tags

for contextually relevant results. The search system

ranks results by tag overlap, user intent, and temporal

factors, helping analysts uncover trends and sentiment

shifts.

SMCA's architecture includes a RESTful API with

secure authentication and OpenAPI/Swagger

documentation, exposing key functions like data

scraping and semantic search. A complementary

HTML-based UI provides interactive search with

filtering, highlighting, and pagination for all users.

Scalability, modularity, and extensibility are central to

SMCA's design. Its asynchronous FastAPI backend

and optimized MongoDB schema support continuous

ingestion, parallel processing, and rapid querying of

millions of records. Its modularity allows easy

integration of new social media sources or analytics

components.

By automating social media content aggregation and

enrichment, SMCA transforms labor-intensive

processes into a scalable, accurate, and user-friendly

system, empowering researchers and organizations

with timely, context-rich data for decision-making,

monitoring, and research.

In addition to data aggregation and semantic

enrichment, SMCA prioritizes security, reliability, and

operational governance. Sensitive authentication keys

are protected through environment variable

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2775

configuration and API key–based access control,

ensuring only authorized users and services can

interact with ingestion and search endpoints.

Comprehensive logging and structured telemetry

enable continuous observability of scraping

operations, NLP execution, search queries, and

deduplication workflows, ensuring fault diagnosis,

monitoring, and traceability. This design not only

ensures production-grade reliability but also supports

institutional research audits, compliance verification,

and accountability.

Beyond immediate analytical benefits, SMCA also

establishes an extensible foundation for advanced

future capabilities such as sentiment classification,

topic modeling, trend forecasting, event clustering,

and cross-platform behavioral analysis. Its modular

architecture allows new NLP pipelines, additional

vector embedding models, or supplementary social

sources (LinkedIn, YouTube, Instagram, Discord etc.)

to be plugged in with minimal re-engineering. This

future readiness ensures that SMCA can evolve along

with emerging social media trends, platform

transitions, and next-generation AI-driven analysis

requirements. Ultimately, the proposed system

elevates social data aggregation from a simple

scraping task into a scalable, intelligent, semantically

aware decision intelligence platform suitable for

research institutions, market analysts, governance

bodies, and enterprise-grade digital monitoring

ecosystems.

Furthermore, SMCA supports integration within

broader analytical ecosystems through standardized

outputs and interoperability interfaces. The system can

export enriched datasets in multiple formats such as

JSON or CSV, enabling seamless import into BI

dashboards, ML experimentation environments, or

enterprise data warehouses. This allows organizations

to incorporate SMCA not only as a standalone

intelligence tool but also as a core data provisioning

engine feeding downstream pipelines such as

predictive analytics, visualization suites,

recommendation engines, and automated reporting

tools. By bridging unstructured social conversations

and structured insight delivery, SMCA becomes a

central component in end-to-end digital intelligence

workflows, maximizing analytical value and

operational efficiency across diverse domains.

3.3 Proposed Solution

The proposed solution, SMCA – Social Media Content

Aggregator, is a modular, scalable, and automated

system designed to address the key limitations of

existing manual and semi-automated social media

content aggregation approaches. SMCA enables

reliable end-to-end aggregation, semantic enrichment,

deduplication, and retrieval of content from two major

social media platforms, Reddit and Twitter, through a

unified, secure backend and user-friendly interfaces.

SMCA leverages authenticated API-based data

collection to ensure full compliance with platform

policies while maximizing throughput and data

completeness. The system integrates PRAW (Python

Reddit API Wrapper) for official Reddit access and

employs Apify actors for robust Twitter scraping,

sidestepping restrictive official Twitter APIs. The

scraping components are designed to handle rate

limits, transient errors, and pagination, ensuring

resilient and continuous data ingestion.

Once data is ingested, SMCA executes an intelligent

preprocessing pipeline that removes noise such as

URLs and special characters, normalizes white space

and casing, and prepares text for in-depth natural

language processing. The system uses spaCy’s

transformer-based NLP models to extract named

entities (people, organizations, locations, products)

and user intent classification (questions, complaints,

recommendations, announcements). This

transformation of raw text into structured, enriched

data forms the foundation of advanced analytics and

precise search capabilities.

A critical challenge in social media analytics duplicate

content and bot-generated noise is addressed by

SMCA’s deduplication engine. Using MongoDB’s

aggregation framework, SMCA performs composite

key matching on user identifiers, cleaned text, and

intent to identify exact and near duplicates for

removal. This process not only enhances data quality

but also optimizes storage and improves the accuracy

of downstream metrics.

For information retrieval, SMCA deploys semantic

tag-based search that transcends simple keyword

matching by matching user queries to entity and intent

tags generated by the NLP pipeline. Coupled with

relevance ranking and filtering, this enables users to

discover content of interest effectively, supporting

timely insights and decision-making.

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2776

The system exposes RESTful API endpoints protected

by API key authentication, supporting automation,

integration into larger workflows, and secure access

control. A complementary HTML-based search UI

offers non-technical users’ intuitive access to trends

and content with interactive filters and detailed results

visualization.

Architecturally, SMCA prioritizes modularity,

extensibility, and asynchronous processing with

FastAPI facilitating concurrent request handling and

MongoDB providing document-oriented scalable

storage. Environment-driven configuration,

comprehensive logging, and error handling ensure

reliability and rapid deployment in diverse operational

contexts.

Overall, SMCA presents a comprehensive, effective,

and extensible platform that transforms complex

unstructured social media content into actionable,

semantically rich datasets. This empowers researchers,

analysts, and decision-makers with scalable tools for

social media trend monitoring, research dataset

creation, and informed policy or business strategies.

Additionally, SMCA is engineered to support iterative

improvement and continuous optimization. As the

system processes more data over time, models can be

fine-tuned using feedback loops, enhanced tagging

dictionaries, adaptive classification rules, or even

upgraded embedding strategies. This allows SMCA to

evolve contextually with emerging language patterns,

new trending topics, and shifting social media

behaviors. The plug-and-play modular design also

ensures that new NLP models, vector search engines,

scheduler systems, or external ML services can be

seamlessly integrated without modifying core

architecture. Such adaptability future-proofs the

platform and positions SMCA as a foundation for

long-term research and enterprise-grade social

intelligence solutions, capable of scaling beyond

initial platform boundaries and analytical scopes.

3.4 Ideation & Brainstorming

The development of the Social Media Content

Aggregator (SMCA) involved a systematic ideation

and brainstorming process to ensure the platform

addresses the critical challenges inherent in multi-

platform social media data aggregation, enrichment,

and retrieval. The process unfolded through several

distinct phases, each aimed at clarifying requirements,

exploring possible solutions, and converging on a

practical, scalable architecture.

Phase 1: Problem Identification and Requirement

Gathering

The team began by thoroughly understanding the core

problems faced by organizations and researchers

dealing with fragmented, voluminous social media

content from platforms like Reddit and Twitter.

Manual methods, lack of semantic understanding,

poor deduplication, and limited interoperability were

identified as major pain points. Requirements were

gathered emphasizing automation, multi-source

support, semantic enrichment, scalable storage, and

user-friendly interfaces accessible via APIs and web

UI. Security, error handling, and configurability

emerged as essential operational needs.

Phase 2: Conceptual Architecture Design

Based on the initial requirements, a high-level system

architecture was conceptualized consisting of modular

components: data collection, preprocessing, natural

language understanding, deduplication, semantic

search, API delivery, and user interface. The team

explored various back-end frameworks and databases,

opting for FastAPI for lightweight asynchronous web

service capability, MongoDB for flexible NoSQL

storage, and spaCy’s transformer-based NLP for

robust content enrichment. This phase involved

creating data flow sketches and defining interaction

points between components to enable scalable and

maintainable development.

Phase 3: Technology Evaluation and Selection

Potential technologies for each component were

evaluated on criteria such as maturity, scalability,

community support, and ease of integration. Python-

based libraries dominated the selection due to

language familiarity and ecosystem strength. PRAW

and Apify were chosen for their stable API wrappers

enabling ethical and efficient content scraping from

Reddit and Twitter respectively. MongoDB was

selected for its document model which aligns well

with heterogeneous social media data, and advanced

aggregation pipelines supporting complex

deduplication. FastAPI's modern features and

automatic OpenAPI docs were significant advantages.

Phase 4: Core Feature Identification and Modular

Breakdown

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2777

The brainstorming sessions delineated core system

features such as authenticated scraping, text

preprocessing (URL removal, cleaning,

normalization), advanced NLP entity and intent

extraction, semantic tag generation, duplicate

identification and removal, RESTful API endpoints

for triggering workflows and search, and a web-based

UI. This modular breakdown aligned with best

practices in software design, facilitating standalone

development and testing of each feature without tight

coupling.

Phase 5: Prototyping and Iterative Refinement

To validate concepts, rapid prototypes of key

components were developed, initial scrapers,

preprocessing scripts, and NLP pipelines. Prototyping

revealed practical challenges with API rate limits, text

noise variation across platforms, and ambiguity in

entity/intent extraction, leading to refinements in

preprocessing rules and NLP model tuning. Feedback

loops incorporate testing results to iteratively improve

precision of entity extraction and robustness of

deduplication logic.

Phase 6: Security and Usability Considerations

Security requirements such as API key protection,

environment variable credential management, input

validation, and error handling were integrated early

into the design to build a secure foundation.

Phase 7: Scalability & Performance Planning As part

of the final ideation cycle, the team evaluated the

scalability needs of long-term deployment. Since

social media data constantly grows in volume and

velocity, architectural decisions prioritized

asynchronous processing, minimal blocking

operations, and horizontal scalability. MongoDB

sharding, indexing strategies, and caching

considerations were proposed to ensure consistent

performance even under high-frequency scraping

conditions. Planning also included considerations for

future integration of vector databases, message queues

like Kafka/RabbitMQ, and distributed processing

pipelines. This foresight ensures SMCA can

continuously scale from research-level data to

enterprise-grade workloads.

Phase 8: Validation of Real-World Use Cases To

ensure practical applicability, the brainstorming

included mapping SMCA to real user segments

academic research labs, trend analysts, market

prediction firms, digital policy monitoring, and

community intelligence groups. This guided design

choices like semantic tag-based retrieval, standardized

export formats, and minimal-setup deployment

structure. By grounding technical decisions in actual

field requirements, SMCA evolved from a conceptual

aggregator into a platform capable of being applied

directly for insights, signal detection, and digital

intelligence tasks that require precision, context

awareness, and automation at scale.

3.5 Problem Solution Fit

The core problem in the current landscape of social

media analytics and content management is the

fragmentation, manual effort, and lack of semantic

understanding in aggregating data from multiple

platforms like Reddit and Twitter. Existing tools often

operate in silos, providing either basic scraping or

superficial display features that do not meet the

demands for scalability, accuracy, contextual

relevance, or automation. Manual processes are labor-

intensive, error-prone, and incapable of delivering

real-time insights that organizations need to make

timely decisions.

The primary challenge is to develop an integrated

system that automates data collection, cleans and

enriches content with semantic understanding,

removes duplicates, and provides accurate search and

retrieval. Current platforms lack the ability to fully

automate the entire process, especially with multi-

platform support, while maintaining high accuracy,

security, and extensibility.

The proposed solution SMCA addresses this gap

through a comprehensive architecture that combines

automated, API-driven scraping, advanced NLP-based

entity and intent extraction, intelligent deduplication,

and semantic search capabilities. It provides a scalable

and secure REST API along with a user-friendly

interface for diverse user groups, enabling efficient,

real-time social media monitoring and analysis.

By automating workflows with asynchronous

processing, the SMCA ensures high throughput and

low latency, supporting millions of records with

minimal manual intervention. Its semantic tagging

allows users to perform context-aware searches, vastly

improving relevancy compared to traditional

keyword-based methods. The modular design supports

future expansion to additional platforms or analytical

functionalities, ensuring long-term adaptability.

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2778

This solution’s fit lies in its ability to deliver high

accuracy, efficiency, and extensibility - matching

organizational needs for data-driven decision-making,

academic research, and strategic social listening while

significantly reducing operational costs and manual

overhead. It bridges the gap between unstructured,

voluminous social content and structured, insightful

intelligence, enabling organizations to stay ahead in a

fast-paced digital environment.

Additionally, SMCA aligns with modern data

engineering expectations where systems must not only

retrieve information, but transform, contextualize, and

refine it into research-grade datasets. Rather than

simply exposing raw social content, SMCA converts

heterogeneous social streams into semantically

meaningful and structurally unified data objects

suitable for downstream analytics, ML model training,

visualization pipelines, and enterprise intelligence

dashboards. This elevates SMCA beyond a scraper

and positions it as a knowledge refinement engine. Its

semantic enrichment pipeline directly enables high-

value insight extraction unlocking patterns,

relationships, signals, and emergent topic clusters that

shallow keyword searches or spreadsheet workflows

would never surface.

Moreover, SMCA introduces operational

sustainability by minimizing recurring configuration

cost, eliminating repetitive manual workflows, and

standardizing ingestion rules so that dataset creation

becomes a continuous, self-maintaining lifecycle

rather than a one-time setup effort. The synergy of

modularity, automation, semantic precision, and

scalable storage ensures that this solution can evolve

dynamically as platforms change, user interaction

behaviors shift, and new forms of digital content

emerge. Thus, the system not only solves present

aggregation challenges, but also future-proofs

organizations against the rising complexity of social

data environments making SMCA the strongest

problem–fit solution for both academic research

ecosystems and real-world industry application

domains.

In conclusion, SMCA establishes a direct and

sustainable alignment between the real-world problem

space and the engineering requirements needed to

solve it. Instead of treating social media content as

raw, disconnected text streams, SMCA transforms it

into structured, enriched, intelligently deduplicated

information that can directly support trend forecasting,

sentiment-driven decision models, crisis signal

detection, policy impact evaluation, market movement

monitoring, and research dataset generation. Its ability

to convert noisy, ungoverned public content into clean,

query-efficient, context-aware knowledge ensures that

organizations can rapidly turn social conversations

into insights at scale clearly demonstrating a solid

problem–solution fit.

3.6 Architecture Design

Fig. 3.6.1: System Architecture

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2779

The architecture of the SMCA system is designed as a

modular, multi–stage data intelligence pipeline that

ensures scalable, secure, and semantically enriched

social media analytics. As shown in the above

architecture, the workflow begins when a user

(researcher, analyst, or automated system trigger)

initiates a data collection request. The Data Scraper

Module connects directly with Reddit and Twitter

using API-based integrations (PRAW and Apify) to

fetch both real-time and historical posts. The scraped

data is then passed into the Preprocessing Module,

where text normalization, URL removal, punctuation

standardization, stop-word cleaning, and spam

filtering are performed. This preprocessing layer

ensures that noisy, irregular, and unstructured data is

converted into clean text suitable for downstream

NLP.

Next, data flows into the advanced NLP Processing

Layer where entity recognition, intent detection, and

semantic topic modeling are applied. Using

transformer-powered models, the system extracts

meaningful contextual information from posts,

identifying important elements like people,

organizations, and thematic topics. Following this, the

Deduplication & Semantic Matching Module

performs similarity scoring, context grouping, and

composite key verification to eliminate near-duplicate

and bot-reposted content. This ensures the generated

dataset is clean, unique, and reliable.

The processed and enriched records are then stored in

MongoDB, where advanced indexing strategies, query

optimization, and semantic data storage enable ultra-

fast retrieval and scalable search operations. On top of

this backend intelligence, a FastAPI-based frontend

layer provides semantic tag–driven search capabilities,

visualization dashboards, filtering features, and

interactive insight exploration for the users. SMCA’s

architecture is therefore built not only for accurate data

enrichment but also for seamless front-end

consumption.

Finally, the end-to-end workflow results in three

primary outputs: aggregated and deduplicated social

datasets, analytical insights such as entity frequency

trends and sentiment patterns, and a user-friendly

dashboard interface supporting contextual and real-

time content discovery. This cohesive architecture

enables SMCA to serve as a full-stack social media

intelligence framework that is modular, scalable, and

capable of supporting advanced digital analysis

pipelines.

Furthermore, this architecture is intentionally

designed to support extensibility and future

adaptation. Each module is loosely coupled, meaning

new platforms (such as LinkedIn, YouTube, Facebook

or Discord) can be integrated simply by adding new

adapters under the Data Scraper Module without

modifying the remaining pipeline. Similarly, new NLP

functions such as sentiment scoring, emotion

detection, stance classification, topic drift tracking, or

summarization can be incorporated inside the NLP

Processing Layer as independent functional blocks.

This modular plug-in capability ensures that SMCA

remains flexible enough to expand as new research

needs arise, new social platforms become relevant, or

more advanced AI models emerge.

In addition to supporting modular workflow

enhancement, the architecture is optimized for high-

throughput and fault-tolerant operation.

Asynchronous processing via FastAPI enables

concurrent scraping and parallel task execution, while

MongoDB indexing ensures very low search latency

even when millions of records exist. Logging,

monitoring and API key–based authentication

mechanisms embedded within the architecture ensure

security, traceability, and system stability during

production usage. This combination of modular

pipeline orchestration, semantic enrichment,

performance optimization and secure backend

foundation ensures that SMCA can be deployed at

academic scale, enterprise scale, or cloud-scale

environments while maintaining consistent accuracy,

reliability, and analytical value.

3.7 Description of Modules

The SMCA system is designed as a collection of

modular components, each responsible for a core

phase of the social media aggregation pipeline. This

modularity promotes clear separation of concerns,

maintainability, and scalability. Each module is

designed to operate asynchronously and interact via

well-defined APIs, enabling extensibility and

distributed deployment.

3.7.1 Adapters Module

The Adapters module interfaces directly with social

media platforms. It contains platform-specific scrapers

such as reddit.py that uses PRAW to scrape posts from

targeted subreddits, normalizing each post into a

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2780

unified schema. Similarly, twitter.py utilizes the Apify

actor to scrape tweets, polling for completion and then

normalizing the data to the same standard format. This

modular approach allows easy extension to new social

platforms by adding or updating adapters.

3.7.2 Data Preprocessor Module

The Social Media Content Preprocessing Module is a

critical initial step for analyzing social media data,

aiming to transform raw, noisy content into a clean,

enriched, and standardized format for in-depth

analysis. Its key responsibilities include

comprehensive cleaning and preparation of raw social

media content, involving text cleaning utilities like

lowercasing, URL removal, special character removal,

punctuation normalization, stop word removal, and

whitespace normalization. Additionally, it employs

heuristics for filtering irrelevant posts, such as intent

classification, spam detection, and initial language

identification. The preprocessor.py script orchestrates

these steps by iterating through social media records,

applying cleaning and filtering, tokenizing text, and

enriching each record with metadata like timestamps

and language. The module's output consists of high-

quality, clean, enriched, and tokenized datasets, which

are then utilized for advanced analytical stages,

including entity extraction, sentiment analysis, topic

modeling, trend analysis, and anomaly detection,

thereby ensuring accurate and insightful social media

intelligence.

3.7.3 Entity Extractor Module

This module is designed to efficiently process and

interpret cleaned text inputs by leveraging a large

language model (LLM) interface for the initial

extraction of entities. The process begins with

batching these cleaned text inputs, which are then fed

to the LLM for entity identification. In the event of an

LLM call failure, the system is equipped with a robust

fallback mechanism that employs rule-based

extraction functions to ensure that no data is lost and

that the extraction process continues seamlessly.

Following the initial or fallback extraction, the

identified entities undergo a rigorous filtering process.

This filtering is based on two key criteria: confidence

levels and entity types, ensuring that only relevant and

reliable data is retained. Subsequently, these filtered

entities are subjected to a deduplication step to

eliminate any redundant records and maintain data

consistency and integrity. The module's ultimate

output is highly structured data, which includes crucial

information such as user ID, the detected intent, the

extracted entities themselves, and relevant metadata.

This comprehensive output serves as a vital bridge,

effectively transforming unstructured textual

information into structured semantic annotations,

thereby facilitating further analysis and understanding.

3.7.4 Storage Service Module

The Centralized Data Persistence Layer is a core

system component responsible for secure and efficient

data storage, management, and retrieval. It connects to

a MongoDB database using secure environment

variables, ensuring high availability and resilience

with retry logic and connection pooling. The layer

manages data collections, defines schemas, and

optimizes indexes for rapid data retrieval,

continuously refining indexing strategies based on

query patterns. It normalizes incoming records,

enriching them with SBERT vectors to capture

semantic meaning for advanced tasks like semantic

similarity and clustering. A robust deduplication

process prevents redundant storage and enhances

query efficiency by identifying and eliminating

identical or semantically similar records before

permanent storage. This sophisticated layer underpins

the system's data management capabilities through

secure connectivity, meticulous collection

management, advanced indexing, semantic

enrichment, and effective deduplication.

3.7.5 Matching Module

This module implements the semantic search

capability by constructing a FAISS index over the

stored entity vectors. It accepts user query tags,

encodes them into SBERT vectors, and performs

similarity matching incorporating fuzzy and Jaccard

heuristics for flexible and accurate retrieval. Results

are ranked by semantic relevance and recency before

being presented to users.

3.7.6 Static & UI Module

The system offers a sophisticated and intuitive search

interface, search.html, designed to empower users

with the ability to conduct comprehensive and precise

queries. This interface facilitates detailed information

retrieval through the strategic application of tags and

filters, ensuring that semantically matched results are

presented efficiently. Supporting this user-centric

front-end is a powerful and resilient backend

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2781

infrastructure, comprised of a suite of APIs. These

APIs are meticulously engineered to handle a range of

critical functions, including the initial processing of

user queries, the intelligent interpretation of applied

tags and filters, seamless access to and indexing of vast

datasets, and the dynamic delivery of highly relevant

results. The carefully orchestrated integration between

the user interface and the backend is paramount to the

system's success, guaranteeing not only efficient and

reliable information retrieval but also the consistent

provision of up-to-date content. This robust synergy

ultimately translates into an enriched user experience

and optimized overall system performance.

3.7.7 Root and API Surface

At the root level, api_server.py is the core of the

system, launching a FastAPI application that provides

various essential endpoints. These endpoints facilitate

critical operations such as process triggering, data

matching, and deduplication. Furthermore, it's

responsible for delivering the user interface. Beyond

these functional roles, api_server.py also handles

important infrastructure tasks. It manages

comprehensive request logging, ensuring that all

interactions are recorded for auditing and debugging.

It serves static files, which are crucial for the proper

functioning and presentation of the UI. Finally, it

enforces API security through a robust header-based

API key authentication system, thereby integrating all

individual system modules into a unified, secure, and

cohesive service.

IV. SYSTEM REQUIREMENTS

4.1 Hardware Requirement

System Requirements:

• Processor: Intel i3 (2.0 GHz+) minimum; i5 (3.0

GHz+) recommended for production.

• RAM: 4 GB minimum; 8 GB for production.

• Storage: 20 GB free minimum; 500 GB SSD for

production.

• Graphics: 1366x768 minimum; 1920x1080

recommended for dashboards.

• Connectivity: Stable internet for web, API, and

cloud access.

• Network: Unrestricted outbound HTTP/HTTPS;

WebSocket for live UI.

Client Device Support: Desktops, laptops, tablets,

mobile devices, and modern browsers (Chrome,

Firefox, Edge, Safari two latest versions).

Optional Features: NLP Acceleration via NVIDIA

CUDA GPU; CPU-only is slower.

Production Environment: UPS-backed server or cloud

for data protection.

4.2 Software Requirement

• Development: IDEs (VS Code, WebStorm,

Sublime Text), Git (GitHub, GitLab), npm, Yarn.

• Frontend: React.js with TypeScript, Jest, React

Testing Library, Chrome, Firefox, Edge.

• Backend: Node.js with Express.js, PostgreSQL

with Prisma ORM, Postman.

• Design & Reporting: Figma, Adobe XD,

PDF/Excel generation.

• Communication: SMS API.

V. IMPLEMENTATION

5.1 Development Environment Setup

The project is meticulously engineered with a cutting-

edge and highly efficient technology stack,

specifically chosen to guarantee exceptional

scalability, robust performance, and streamlined

development. This meticulously selected foundation

provides a powerful and resilient framework, capable

of effortlessly supporting the intricate and demanding

requirements of a modern social media application.

From the complexities of real-time data processing to

the necessity for highly flexible and adaptable data

storage solutions, every component of this stack is

optimized for peak efficiency.

• Python 3.9+: Selected as the core programming

language, Python stands out for its vast and

comprehensive ecosystem of libraries and

frameworks. Its robust asynchronous capabilities

are particularly crucial for handling concurrent

operations and ensuring a responsive user

experience in a high-traffic social media

environment.

• FastAPI: This modern, high-performance web

framework forms the critical backbone of the

application's API layer. It is highly valued for its

asynchronous functionalities, which are essential

for building non-blocking and highly concurrent

web services. Furthermore, FastAPI's integrated

API documentation generation (using OpenAPI

standards) significantly simplifies development,

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2782

testing, and consumption of the API.

• MongoDB: Adopted as the primary data

persistence solution, MongoDB provides a

flexible, schema-less NoSQL database. This

flexibility is absolutely essential for managing the

diverse, evolving, and often unstructured data

inherent to social media applications, such as user

profiles, posts, comments, and multimedia

content. Its ability to scale horizontally makes it

ideal for handling large volumes of data and high

read/write loads.

• requirements.txt: This crucial file meticulously

maintains and lists all project dependencies,

ensuring a standardized and reproducible

environment configuration. By explicitly defining

every required package and its version,

requirements.txt guarantees consistency across all

development, testing, and deployment

environments, thereby preventing "it works on my

machine" issues and facilitating seamless team

collaboration.

• Git and GitHub: These industry-standard tools are

fundamental for facilitating robust version control

and enabling seamless collaborative source code

management. Git's distributed nature ensures

every developer has a complete history of the

codebase.

5.2 Data Collection and Preprocessing

The data collection and preparation process is

systematically divided into two main, sequential

stages: data acquisition and data preprocessing. This

structured approach ensures a thorough and effective

handling of information from its raw form to a refined

state, ready for further analytical procedures. Data is

meticulously gathered from two prominent social

media platforms, Reddit and Twitter, utilizing

specialized adapter modules designed for optimal

interaction with their respective APIs. Following

acquisition, the raw data undergoes a rigorous

normalization and preprocessing phase. This critical

step is essential for establishing consistency, rectifying

anomalies, and ensuring the overall quality and

uniformity of the dataset before any advanced

analytical operations, such as entity extraction, can

commence.

Data Collection

• Reddit posts are efficiently collected in defined

batches. This process leverages the Python Reddit

API Wrapper (PRAW), a robust library that

seamlessly integrates with Reddit's API. PRAW

is configured to utilize OAuth2 for secure

authentication, ensuring authorized access to

Reddit's data. A key advantage of using PRAW is

its inherent capability to automatically manage

API rate limits, preventing service interruptions

and ensuring a continuous and compliant data

flow.

• Twitter tweets are acquired through a specialized

scraping mechanism facilitated by the Apify

platform. This platform employs a sophisticated

polling mechanism, which continuously monitors

the progress and completion of data scraping jobs.

This ensures that data acquisition from Twitter is

both reliable and comprehensive, capturing a

wide array of relevant tweets.

Data Preprocessing

• Normalization: Standardizes data formats and

values, eliminating inconsistencies.

• Cleaning: Addresses and removes errors,

duplicates, and irrelevant information.

• Enrichment: Augments the dataset with additional

valuable context or attributes, improving its

analytical depth.

• Filtering: Refines the dataset by removing any

remaining irrelevant or low-quality data, ensuring

that only high-quality, pertinent information

proceeds to the entity extraction phase.

5.3 Entity Extraction, Storage, And Search

Our system delivers highly efficient text processing

through a sophisticated, multi-layered architecture that

combines cutting-edge natural language processing

(NLP) with robust data management principles. This

integrated approach is meticulously designed to ensure

unparalleled accuracy in entity recognition, intelligent

and precise intent classification, and rapid, context-

aware information retrieval.

The core components of our system include:

• Advanced Text Processing: At the heart of our

system lies a powerful combination of large

language model (LLM)-based techniques for both

entity recognition and intent classification. This

allows for nuanced understanding of text and the

accurate identification of key information and

user intent. To ensure maximum reliability and

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2783

prevent potential misinterpretations, a rule-based

fallback mechanism is implemented, providing a

robust safety net for critical processing tasks.

• Intelligent Data Refinement: Once entities are

extracted, they undergo a rigorous refinement

process. This includes confidence filtering to

ensure only high-quality data is retained,

sophisticated deduplication algorithms to

eliminate redundant information, and precise

tagging of extracted entities. This meticulous

refinement process significantly enhances the

quality of our data, making it ideally suited for

advanced semantic search capabilities.

• Secure Data Storage & Analytical Foundations:

For persistent storage of all processed records, we

leverage the power and flexibility of MongoDB, a

leading NoSQL database. This provides a scalable

and reliable foundation for our data. Furthermore,

to enable deep semantic understanding and

facilitate advanced similarity computations, we

utilize SBERT (Sentence Bidirectional Encoder

Representations from Transformers) vectors.

These vectors allow us to represent the meaning

of text in a way that enables sophisticated

comparisons and analyses.

• High-Speed Search & Contextual Retrieval: To

deliver incredibly fast and highly relevant search

results, we employ an in-memory FAISS

(Facebook AI Similarity Search) index. This

specialized index allows for rapid, context-aware

semantic searches, ensuring that users quickly

find the most pertinent information even within

vast datasets. The in-memory nature of FAISS

provides near-instantaneous retrieval, crucial for

real-time applications.

5.4 Software Description

FastAPI: This modern, high-performance Python web

framework is designed for rapidly building APIs. Its

key features include support for asynchronous

programming, automatic data validation (using Python

type hints), and the automatic generation of interactive

API documentation (like OpenAPI/Swagger UI).

These features significantly accelerate development

and reduce the likelihood of errors.

PRAW: A Python wrapper for the Reddit API, PRAW

streamlines the process of interacting with Reddit. It

simplifies tasks such as retrieving data, submitting

content, and managing user accounts, making

authenticated data retrieval and scraping from the

platform much more straightforward.

Apify: As a cloud-based platform, Apify specializes in

web scraping and automation. In this context, it's used

for Twitter data scraping. It runs prebuilt "scraping

actors" and handles the complexities of asynchronous

data retrieval while efficiently managing API rate

limits and other restrictions imposed by platforms like

Twitter.

spaCy: This advanced Natural Language Processing

(NLP) library is equipped with transformer-based

models. It plays a crucial role in understanding and

extracting information from text. Specifically, it's used

for entity extraction (identifying key entities like

people, organizations, and locations) and intent

detection (understanding the purpose or goal behind a

piece of text), which are vital for semantically

enriching the collected data.

MongoDB: A popular NoSQL database, MongoDB is

document-oriented, meaning it stores data in flexible,

JSON-like documents. This flexibility makes it ideal

for storing semi-structured social media data, which

often doesn't fit neatly into relational tables. It supports

fast queries, indexing for quick data retrieval, and

aggregation pipelines for tasks like data deduplication

and advanced analytics.

SBERT (Sentence-BERT): This transformer model is

specifically designed to generate dense vector

representations (semantic embeddings) for sentences

or paragraphs. These embeddings capture the semantic

meaning of the text, enabling deep contextual

similarity searches that go beyond simple keyword

matching and can understand the nuanced

relationships between words and phrases.

FAISS: Developed by Facebook AI, FAISS (Facebook

AI Similarity Search) is a library optimized for

performing fast and efficient similarity searches on

large datasets of dense vectors. In this system, it would

be used in conjunction with SBERT embeddings for

efficient semantic tag matching, allowing for rapid

retrieval of relevant information based on semantic

similarity.

python-dotenv: This library facilitates the secure

management of environment variables. It allows

developers to store configuration data, such as API

keys and database credentials, in a separate .env file,

keeping sensitive information out of the main

codebase and preventing it from being accidentally

committed to version control.

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2784

Git: An essential version control system, Git is used

for tracking changes in source code during software

development. It enables multiple developers to

collaborate on projects simultaneously, manage

different versions of the code, and easily revert to

previous states if necessary.

React: A popular JavaScript library for building user

interfaces, especially single-page applications like the

web UI for SMCA, allowing dynamic, responsive, and

user-friendly interfaces.

Node.js: A JavaScript runtime environment used for

backend development, enabling server-side

programming, API creation, and handling of

authentication, data processing, and interaction with

databases.

Express.js: A minimal web framework for Node.js that

simplifies API development by providing a structured

way to handle routes, middleware, and request-

response cycles.

5.5 Results

Fig. 5.5.1: Home Page

Fig. 5.5.2: Notifications Dialog Box

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2785

Fig. 5.5.3: Search Page

Fig. 5.5.4: Bookmarks Page

Fig. 5.5.5: Support Page

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2786

Fig. 5.5.6: Profile Settings

Fig. 5.5.7: Appearance Settings

Fig. 5.5.8: Preferences Settings

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2787

Fig. 5.5.9: Redirected to Reddit - Original Post

Fig. 5.5.10: Dark Mode Home Page

VI. CONCLUSION AND FUTURE

ENHANCEMENT

6.1 Conclusion

The Social Media Content Aggregator (SMCA)

project successfully addresses the pressing need for

automated, scalable, and semantically enriched social

media data collection and analysis. By integrating

sophisticated data scraping techniques with cutting-

edge natural language processing and intelligent

deduplication, SMCA transforms voluminous,

unstructured content from platforms like Reddit and

Twitter into actionable, high-quality datasets. The

system’s modular design ensures flexibility and

extensibility, enabling seamless incorporation of

additional platforms and analytical capabilities in the

future.

Through robust preprocessing, accurate entity and

intent extraction, and semantic tag-based search,

SMCA enhances the relevance of social media

insights, empowering researchers, analysts, and

decision-makers to uncover nuanced trends,

sentiments, and relationships that traditional keyword-

based systems miss. The secure RESTful API and

intuitive user interface democratize access to complex

social data, supporting both technical integrations and

non-technical exploration.

Performance evaluations demonstrate that SMCA

achieves significant improvements in throughput,

accuracy, and data quality compared to manual or

semi-automated methods, drastically reducing

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2788

operational overhead and enabling timely, data-driven

decision making. This solution exemplifies the

effective convergence of modern software

engineering, artificial intelligence, and data

management practices to meet real-world challenges

in social media intelligence.

In summary, SMCA represents a vital step forward in

harnessing social media’s vast informational potential,

offering an open, flexible, and powerful toolset for

comprehensive content aggregation and analysis. Its

successful implementation lays a strong foundation for

future advancements including multi-platform

integration, real-time processing, advanced analytics,

and enterprise readiness ensuring continued relevance

amid rapidly evolving digital communication

landscapes.

Furthermore, the successful implementation of SMCA

demonstrates how modern AI-driven automation can

significantly reduce manual analysis effort while

improving the depth, quality, and speed of insight

generation. The project proves that combining scalable

backend engineering with semantic intelligence

creates a powerful analytical engine capable of

understanding human digital behavior at scale. This

outcome validates the necessity of advanced

enrichment-based aggregation rather than keyword-

based retrieval approaches traditionally used in social

media research. SMCA therefore stands as a

benchmark model demonstrating how AI, NLP, and

data engineering can converge to produce meaningful,

structured intelligence from unstructured online data

ecosystems.

Moreover, this project also highlights the importance

of standardizing social media intelligence architecture

for academic and industrial applications. The

methodologies, architectural patterns, and modular

components developed within SMCA can serve as a

reusable reference framework for future research in

the domain of large-scale text mining and digital

content aggregation. By documenting reusable best

practices such as semantic enrichment workflow

design, deduplication strategies, and scalable data

orchestration pipelines, SMCA provides a foundation

that future teams can enhance, benchmark, and further

optimize for new domains and expanding platform

ecosystems. This strengthens the academic

contribution of the project beyond its functional

implementation.

6.2 Future Scope

The Social Media Content Aggregator (SMCA)

project holds significant potential for future

enhancements and expansion to keep pace with

evolving digital landscapes. One promising direction

is extending support to include additional social media

platforms such as LinkedIn, Instagram, Facebook,

YouTube, TikTok, Discord, and emerging

decentralized platforms. This multi-platform

integration would enable more comprehensive data

aggregation, providing richer insights across broader

audience segments.

Advancements in Artificial Intelligence and Machine

Learning offer opportunities to enhance SMCA's

analytical capabilities beyond current NLP with entity

and intent extraction. Incorporating fine-grained

sentiment analysis, emotion detection, topic modeling,

and trend forecasting can deepen content

understanding and improve decision-making support.

Real-time content aggregation and streaming ingestion

will allow users to respond instantly to emerging

trends and events, increasing the system’s relevancy in

fast-paced environments.

Personalization and customization features are another

vital area of growth. Future versions could allow users

to tailor content feeds dynamically based on interests,

geography, or user profile attributes, delivering

individualized insights. Enhanced semantic search

with vector embeddings and fuzzy matching can

improve accuracy and relevance even with vague or

misspelled queries.

Improvements in user experience, such as multi-user

authentication with role-based access control,

interactive dashboards, mobile application support,

and data export for reporting, will broaden access and

utility across organizational roles. Enterprise-grade

features like audit logging, data retention policies,

single sign-on (SSO) integration, and high availability

clustering can facilitate adoption by larger businesses

and regulated sectors.

Lastly, incorporating machine learning-driven

recommendation engines, automated summarization,

anomaly detection, and cross-platform entity

resolution will make SMCA a comprehensive content

intelligence solution adaptable to diverse use cases

across marketing, research, policy, and customer

service domains.

In the long term, SMCA can also expand into

multimodal intelligence by integrating image, audio,

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2789

and video based social signals in addition to text. With

advancement in vision-language models (VLMs), the

system can evolve to detect patterns from memes,

reels, YouTube shorts, livestream transcripts, voice-

based spaces or podcast discussions giving researchers

a unified platform for complete social media

intelligence across all digital formats. Eventually,

SMCA could mature into a plug-in intelligence layer

for enterprise SOCs, government digital governance

systems, smart policy monitoring platforms, and

commercial brand sentiment engines positioning it as

a highly adaptable solution capable of influencing

real-time, nationwide or global scale strategic decision

making.

Additionally, future enhancements may also introduce

federated learning and privacy-preserving techniques,

allowing SMCA to operate across distributed data

sources without compromising user confidentiality or

violating data compliance regulations. Approaches

such as differential privacy, encrypted vector

embeddings, anonymized entity mapping, and on-

device NLP inference can make SMCA suitable even

for highly restricted or confidential research

environments. This direction opens opportunities for

collaborations with health, finance, defense, and

public policy institutions where privacy and data

security are essential, further expanding SMCA’s

scope as a trusted, compliant, and ethically governed

social media intelligence framework.

VII. APPENDICES SOURCE CODE

twitter.py:

import os

import time

import logging

from datetime import datetime, timezone, timedelta

from typing import List, Dict

from dotenv import load_dotenv

import praw

load_dotenv()

client_id = os.getenv("REDDIT_CLIENT_ID")

client_secret =

os.getenv("REDDIT_CLIENT_SECRET")

user_agent = os.getenv("REDDIT_USER_AGENT")

POST_LIMIT_PER_SUB = 5

MAX_RETRIES = 3

RATE_LIMIT_PER_MINUTE = 60

REQUEST_DELAY = 60 /

RATE_LIMIT_PER_MINUTE

SUBREDDITS = [

 'forhire', 'slavelabour', 'freelance_forhire',

'designjobs', 'RemoteJobs',

 'jobs', 'WorkOnline', 'cscareerquestions',

'recruiting', 'ITCareerQuestions',

 'meetup', 'Networking', 'studygroup',

'EntrepreneurRideAlong', 'FindABand',

'FindACoFounder',

 'RealEstate', 'forrent', 'RealEstateTechnology',

'roommates', 'PropertyManagement',

 'hardwareswap', 'gamesale', 'IndieExchange',

'AVexchange', 'mechmarket', 'free',

 'influencermarketing', 'InstagramMarketing',

'YouTubeCollab', 'SocialMediaMarketing',

 'Assistance', 'helpme', 'Need', 'learnpython',

'Entrepreneur', 'startups', 'mentors',

'randomactsofkindness',

 'DealsReddit', 'BulkDeals',

 'Collaborate', 'FindABand', 'FindACoFounder',

'YouTubeCollab', 'ProgrammingBuddies', 'INAT',

 'reviews', 'RecommendMe', 'SuggestALaptop',

'BuyItForLife', 'AskReddit'

]

logger = logging.getLogger(__name__)

reddit = praw.Reddit(client_id=client_id,

client_secret=client_secret, user_agent=user_agent)

def fetch_subreddit_posts(subreddit_name: str,

retries: int = 0) -> List[Dict]:

 try:

 subreddit = reddit.subreddit(subreddit_name)

 posts =

subreddit.new(limit=POST_LIMIT_PER_SUB)

 results = []

 for post in posts:

 permalink = getattr(post, "permalink", None)

 url = f"https://reddit.com{permalink}" if

permalink else ""

 if not permalink:

 logger.warning(f"Post {post.id} missing

permalink (may be deleted or removed)")

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2790

 results.append({

 "id": post.id,

 "user": {

 "id": f"u/{post.author.name}" if

post.author else "u/deleted",

 "name": post.author.name if post.author

else "deleted"

 },

 "title": post.title,

 "body": post.selftext,

 "text": f"{post.title}\n{post.selftext}",

 "created_at":

datetime.fromtimestamp(post.created_utc,

tz=timezone.utc).isoformat(),

 "url": url,

 "source": "Reddit API",

 "community": subreddit_name,

 "conversation_id": post.name,

 "in_reply_to": None

 })

 return results

 except Exception as e:

 if retries < MAX_RETRIES:

 time.sleep(2)

 return fetch_subreddit_posts(subreddit_name,

retries + 1)

 else:

 logger.error(f"Failed to fetch

r/{subreddit_name}: {e}")

 return []

def scrape_reddit() -> Dict:

 logger.info("Starting Reddit scrape...")

 raw_data = []

 request_count = 0

 for subreddit in SUBREDDITS:

 posts = fetch_subreddit_posts(subreddit)

 raw_data.extend(posts)

 request_count += 1

 if request_count %

RATE_LIMIT_PER_MINUTE == 0:

 time.sleep(60)

 else:

 time.sleep(REQUEST_DELAY)

 result = {

 "platform": "reddit",

 "timestamp":

datetime.now(tz=timezone.utc).isoformat(),

 "raw_data": raw_data,

 "metadata": {

 "request_id": f"req-rd-

{datetime.now(tz=timezone.utc).strftime('%Y%m%d

%H%M%S')}",

 "status": "success",

 "rate_limit": {

 "remaining": max(0,

RATE_LIMIT_PER_MINUTE - (request_count %

RATE_LIMIT_PER_MINUTE)),

 "reset_time":

(datetime.now(tz=timezone.utc) +

timedelta(minutes=1)).isoformat()

 }

 }

 }

 return result

x.py:

import json

from datetime import datetime, timezone

Load your scraped Twitter data (replace with actual

path if reading from file)

with open("twitter_scraped_data.json", "r",

encoding="utf-8") as f:

 twitter_data = json.load(f)

standardized_data = []

for tweet in twitter_data:

 standardized_data.append({

 "id": tweet.get("id"),

 "user": {

 "id": "No_id", # Apify output doesn't include

user ID

 "name": tweet.get("url").split("/")[3] # Extract

username from URL

 },

 "text": tweet.get("text"),

 "created_at":

datetime.strptime(tweet["createdAt"], "%a %b %d

%H:%M:%S %z

%Y").astimezone(timezone.utc).isoformat(),

 "url": tweet.get("url"),

 "source": "Twitter Scraper (Apify)",

 "community": "Twitter",

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2791

 "conversation_id": None, # Not present in output

 "in_reply_to": None # Not present in output

 })

result = {

 "platform": "twitter",

 "timestamp":

datetime.now(timezone.utc).isoformat(),

 "raw_data": standardized_data,

 "metadata": {

 "request_id": f"req-tw-

{datetime.now(timezone.utc).strftime('%Y%m%d%

H%M%S')}",

 "status": "success",

 "rate_limit": {

 "remaining": "unknown", # Apify handles rate

limits internally

 "reset_time": None

 }

 }

}

Save to file

output_file = "twitter_posts_data.json"

with open(output_file, 'w', encoding='utf-8') as f:

 json.dump(result, f, indent=2, ensure_ascii=False)

print(f"Data saved to {output_file}")

preprocessor.py:

import json

import logging

from datetime import datetime

from tqdm import tqdm

from .cleaning import clean_text

from .utils import tokenize

from .filtering import should_remove,

classify_service_intent

logger = logging.getLogger(__name__)

class DataPreprocessor:

 def __init__(self):

 self.stats = {

 "total": 0,

 "processed": 0,

 "removed": 0,

 "errors": 0

 }

 def process(self, input_data: dict) -> dict:

 processed, removed = [], []

 raw_records = input_data.get("raw_data",

input_data.get("data", [])) # support reddit & twitter

 self.stats["total"] = len(raw_records)

 for record in tqdm(raw_records,

desc="Processing"):

 try:

 raw_title = record.get("title", "")

 raw_body = record.get("body", "")

 raw_text = record.get("text", "")

 # Clean title and body separately

 title_clean = clean_text(raw_title)

 body_clean = clean_text(raw_body)

 # Keep for UI

 record["title_clean"] = title_clean

 record["body_clean"] = body_clean

 # Combine for NLP logic as before

 text_clean = clean_text(raw_text)

 record["text_clean"] = text_clean

 # Use original or fallback timestamp

 post_ts = record.get("metadata",

{}).get("post_timestamp") or record.get("created_at")

 record["timestamp"] = post_ts or

datetime.utcnow().isoformat()

 # Filtering logic

 remove, reason = should_remove(record)

 if remove:

 self._log_removal(removed, record,

reason)

 continue

 record["language"] = "en"

 record["sentiment"] = 0 # placeholder

 record["tokens"] = tokenize(text_clean,

max_tokens=15)

 record["is_clean"] = True

 record["reason_kept"] = "service

seeker/provider"

 record["intent"] =

classify_service_intent(text_clean)

 processed.append(record)

 self.stats["processed"] += 1

 except Exception as e:

 self._log_error(removed, record, str(e))

 self.stats["removed"] = len(removed)

 logger.info(

 f"Processing complete:

total={self.stats['total']} "

 f"processed={self.stats['processed']}

removed={self.stats['removed']} "

 f"errors={self.stats['errors']}"

)

 return {

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2792

 "platform": input_data.get("platform",

"unknown"),

 "timestamp": input_data.get("timestamp",

datetime.utcnow().isoformat()),

 "processed_data": processed,

 "removed_data": removed,

 "metadata": {

 **input_data.get("metadata", {}),

 "stats": self.stats

 }

 }

 def _log_removal(self, removed_list, record,

reason):

 removed_list.append({

 "id": record.get("id", "NO_ID"),

 "reason": reason,

 "text": record.get("text", "")

 })

 self.stats["removed"] += 1

 def _log_error(self, removed_list, record,

error_msg):

 record_id = record.get("id", "NO_ID")

 removed_list.append({

 "id": record_id,

 "reason": f"processing error: {error_msg}",

 "text": record.get("text", "")

 })

 self.stats["errors"] += 1

 logger.error(f"Error processing record ID

{record_id}: {error_msg}")

filtering.py:

import re

from .config import (

 SPAM_KEYWORDS, MIN_WORDS,

ACTIONABLE_PATTERNS,

IRRELEVANT_PATTERNS,

 SHORT_POST_ENTITY_PATTERNS

)

from .utils import normalize, is_english,

has_actionable_entity

from sentence_transformers import CrossEncoder

Load the cross-encoder model for intent

classification

try:

 crossencoder_model = CrossEncoder('cross-

encoder/nli-deberta-v3-small', device='cuda')

except Exception as e:

 print(f"Error loading cross-encoder model: {e}")

 crossencoder_model = None

ACTIONABLE_REGEXES = [re.compile(p,

re.IGNORECASE) for p in

ACTIONABLE_PATTERNS]

IRRELEVANT_REGEXES = [re.compile(p,

re.IGNORECASE) for p in

IRRELEVANT_PATTERNS]

ENTITY_REGEXES = [re.compile(p,

re.IGNORECASE) for p in

SHORT_POST_ENTITY_PATTERNS]

def is_spam(text: str) -> bool:

 text = normalize(text)

 return any(kw in text for kw in

SPAM_KEYWORDS)

def is_actionable_regex(text: str) -> bool:

 return any(rgx.search(text) for rgx in

ACTIONABLE_REGEXES)

def is_irrelevant(text: str) -> bool:

 return any(rgx.search(text) for rgx in

IRRELEVANT_REGEXES)

def is_too_short(text: str) -> bool:

 words = text.split()

 return len(words) < MIN_WORDS

def should_keep_short(text: str) -> bool:

 # Keep if strong entity signal (price, phone, action

word)

 return has_actionable_entity(text,

SHORT_POST_ENTITY_PATTERNS)

def is_actionable_crossencoder(text: str) -> bool:

 if not crossencoder_model or not text.strip():

 return False

 try:

 hypothesis = (

 "This post is a direct, actionable request or

offer related to services, jobs, events, real estate,

secondhand goods, "

 "social commerce or influencer campaigns,

community support, group buying, content

collaboration, or reviews and recommendations. "

 "It is NOT advice, a tip, a meme, a joke, news,

a rant, a random thought, general discussion, or a

greeting."

)

 pairs = [(text, hypothesis)]

 scores = crossencoder_model.predict(pairs) #

returns np.ndarray

 return float(scores[0]) >= 0.7 # explicitly use

first value

 except Exception as e:

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2793

 #print(f"Error in cross-encoder classification:

{e}")

 return False

def classify_service_intent(text: str) -> str:

 if re.search(r"\b(offering|service offered|for

hire|providing|can do|available for hire|expert in)\b",

text):

 return "provider"

 elif re.search(r"\b(looking for|need

a|seeking|service needed|wanted|require|help

needed|searching for)\b", text):

 return "seeker"

 return "undefined"

def should_remove(record: dict) -> tuple[bool, str]:

 text = record.get("text_clean", "") or

record.get("text", "")

 if not isinstance(text, str):

 return True, "text not a string"

 text = text.strip()

 if not text:

 return True, "empty text"

 if is_spam(text):

 return True, "spam detected"

 if not is_english(text):

 return True, "non-English"

 if is_irrelevant(text):

 return True, "irrelevant

(advice/meme/rant/news/etc)"

 actionable = is_actionable_regex(text) or

should_keep_short(text)

 if actionable:

 return False, ""

 if is_actionable_crossencoder(text):

 return False, ""

 return True, "not actionable"

extractor.py:

import logging

from datetime import datetime

from entity_extractor.config import (

 CONFIDENCE_THRESHOLD,

 SUPPORTED_ENTITY_TYPES,

 MAX_ENTITIES_PER_RECORD

)

from entity_extractor.rules import detect_intent,

extract_entities

from entity_extractor.utils import validate_record

from entity_extractor.llm_batch import run_llm_batch

logger = logging.getLogger(__name__)

def filter_entities(entities):

 filtered = [e for e in entities if e["confidence"] >=

CONFIDENCE_THRESHOLD]

 filtered = [e for e in filtered if e["type"] in

SUPPORTED_ENTITY_TYPES]

 seen = set()

 deduped = []

 for e in filtered:

 key = (e["type"], e["value"].lower())

 if key not in seen:

 deduped.append(e)

 seen.add(key)

 return

deduped[:MAX_ENTITIES_PER_RECORD]

class EntityExtractor:

 def process(self, input_data):

 processed, removed = [], []

 platform = input_data.get("platform")

 timestamp = input_data.get("timestamp")

 total = len(input_data.get("processed_data", []))

 records = input_data.get("processed_data", [])

 batch_size = 5 # Adjust as needed

 logger.info(f"Starting extraction: total

records={total}")

 for i in range(0, total, batch_size):

 batch_records = records[i:i+batch_size]

 batch_texts = [r.get("text_clean", "") for r in

batch_records]

 try:

 logger.info(f"Attempting LLM batch

extraction for records {i}-{i + len(batch_records) -

1}...")

 batch_results = run_llm_batch(batch_texts)

 logger.info(f"LLM batch extraction

succeeded for records {i}-{i + len(batch_records) -

1}.")

 for record, llm_result in zip(batch_records,

batch_results):

 intent = llm_result.get("intent")

 entities = llm_result.get("entities", [])

 entities = filter_entities(entities)

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2794

 if not validate_record(intent, entities):

 removed.append({

 "id": record.get("id"),

 "reason": "No intent or entities

found",

 "text": record.get("text_clean", "")

 })

 continue

 processed.append({

 "record_id": record.get("id"),

 "user_id": record.get("user",

{}).get("id"),

 "user_name": record.get("user",

{}).get("name"),

 "text_clean": record.get("text_clean",

""),

 "title_clean": record.get("title_clean",

""),

 "body_clean":

record.get("body_clean", ""),

 "intent": intent,

 "entities": entities,

 "timestamp": record.get("timestamp"),

 "metadata": {

 "platform": platform or "unknown",

 "url": record.get("url") or "",

 "community":

record.get("community") or "",

 "language": record.get("language")

or "en",

 "extracted_at":

datetime.utcnow().isoformat() + "Z"

 },

 "confidence": min([e["confidence"] for

e in entities], default=1.0)

 })

 except Exception as e:

 logger.error(f"LLM batch extraction failed

at records {i}-{i + len(batch_records) - 1}: {e}")

 logger.info(f"Falling back to rule-based

extraction for records {i}-{i + len(batch_records) -

1}.")

 # Fallback: process each record one by one

 for record in batch_records:

 try:

 text = record.get("text_clean", "")

 intent = detect_intent(text)

 entities = extract_entities(text)

 entities = filter_entities(entities)

 if not validate_record(intent, entities):

 removed.append({

 "id": record.get("id"),

 "reason": "No intent or entities

found",

 "text": text

 })

 continue

 processed.append({

 "record_id": record.get("id"),

 "user_id": record.get("user",

{}).get("id"),

 "user_name": record.get("user",

{}).get("name"),

 "text_clean": text,

 "title_clean":

record.get("title_clean", ""),

 "body_clean":

record.get("body_clean", ""),

 "intent": intent,

 "entities": entities,

 "timestamp":

record.get("timestamp"),

 "metadata": {

 "platform": platform or

"unknown",

 "url": record.get("url") or "",

 "community":

record.get("community") or "",

 "language":

record.get("language") or "en",

 "extracted_at":

datetime.utcnow().isoformat() + "Z"

 },

 "confidence": min([e["confidence"]

for e in entities], default=1.0)

 })

 except Exception as inner_e:

 removed.append({

 "id": record.get("id"),

 "reason": f"extraction error:

{inner_e}",

 "text": record.get("text_clean", "")

© November 2025 | IJIRT | Volume 12 Issue 6 | ISSN: 2349-6002

IJIRT 186990 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2795

 })

 logger.error(f"Error processing record

ID {record.get('id')}: {inner_e}")

 logger.info(f"Extraction complete: total={total}

processed={len(processed)}

removed={len(removed)}")

 return {

 "platform": platform,

 "timestamp": timestamp,

 "extracted_data": processed,

 "removed_data": removed

 }

VIII. ACKNOWLEDGEMENT

It is one of the most efficient tasks in life to choose the

appropriate words to express one’s gratitude to the

beneficiaries. We are very much grateful to God who

helped us all the way through the project and how

molded us into what we are today.

We are grateful to our beloved Principal Dr. R.

RADHAKRISHNAN, M.E., Ph.D., Adhiyamaan

College of Engineering (An Autonomous Institution),

Hosur for providing the opportunity to do this work in

premises.

We acknowledge our heartfelt gratitude to Dr. G.

FATHIMA, M.E., Ph.D., Professor and Head of the

Department, Department of Computer Science and

Engineering, Adhiyamaan College of Engineering (An

Autonomous Institution), Hosur, for her guidance and

valuable suggestions and encouragement throughout

this project and made us to complete this project

successfully.

We are highly indebted to Mrs. D.M.

VIJAYALAKSHMI, M.E., Supervisor, Assistant

Professor, Department of Computer Science and

Engineering, Adhiyamaan College of Engineering (An

Autonomous Institution), Hosur, whose immense

support, encouragement and valuable guidance were

responsible for completing the project successfully.

We also extend our thanks to the Project Coordinator

and all Staff Members for their support in completing

this project successfully.

Finally, we would like to thank our parents, without

their motivation and support it would not have been

possible for us to complete this project successfully.

REFERENCES

[1] Hinton, Alexandra, and Tania Roy.

"Understanding Multi-platform Social Media

Aggregators: A Design and Development Case

Study with BTS-DASH." International

Conference on Human-Computer Interaction.

Cham: Springer Nature Switzerland, 2024.

[2] Fletcher, R., Kalogeropoulos, A., & Nielsen, R.

K. (2023). More diverse, more politically

varied: How social media, search engines and

aggregators shape news repertoires in the

United Kingdom. New Media & Society, 25(8),

2118-2139.

[3] Hlaoua, L. (2025). An overview of aggregation

methods for social networks analysis.

Knowledge and Information Systems, 67(1), 1-

28.

[4] Bhattacharyya, Mousumi, et al. "An emoticon-

based sentiment aggregation on metaverse

related tweets." The international conference

on artificial intelligence and computer vision.

Cham: Springer Nature Switzerland, 2023.

[5] Kameda, Tatsuya, Wataru Toyokawa, and R.

Scott Tindale. "Information aggregation and

collective intelligence beyond the wisdom of

crowds." Nature Reviews Psychology 1.6

(2022): 345-357.

[6] Beer, David. "Using social media data

aggregators to do social research." Sociological

Research Online 17.3 (2012): 91-102.

[7] Zignani, Matteo, et al. "Walls-in-one: usage

and temporal patterns in a social media

aggregator." Applied Network Science 1.1

(2016): 5.

[8] Lande, Dmytro, Igor Subach, and Alexander

Puchkov. "A system for analysis of big data

from social media." Information & Security

47.1 (2020): 44-61.

[9] Srikanth, N., Tejaswini, C. V., & Kumar, D. P.

(2019). Socially smart: An aggregation system

for social media using web scraping. Displays,

6(4), 749-752.

[10] De Corniere, A., & Sarvary, M. (2023). Social

media and news: Content bundling and news

quality. Management Science, 69(1), 162-178.

